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ABSTRACT

Urban flood is one of the significant and frequently occurring catastrophic events in the
recent era. Urbanisation is one of the causes of climate change, and climate change results in high-
intensity rainfall, which produces urban floods. Major causes of urban floods can be extreme short-
term rainfall, the improper design of the drainage systems, and increased imperviousness. The areas
vulnerable to flood disaster can be identified using appropriate technologies for flood vulnerability
mapping and visualisation. The knowledge about the changes in extreme rainfall is considerable in
planning flood mitigation activities and water resources management.

Amaravati, the area taken up for the study, is a part of the Kondaveeti Vagu catchment.
Amaravati is situated at the banks of the Krishna River, on the upstream side of Prakasam barrage.
The area has a history of flooding.

Monthly, seasonal and annual maximum rainfall trends were analysed in this study, using
Mann Kendall (MK1), Modified Mann Kendall (MK2) trend tests and Innovative Trend Analysis
(ITA) technique. Variations in seasonal and annual maximum rainfall trends across Kondaveeti
Vagu were analysed with MK1 and MK2 tests and compared with the ITA technique. Using ITA
Technigue, monotonic and non-monotonic trends are identified in data with or without any
condition of the serial correlation, size of the dataset and distributions. Results conclude that rainfall
trends showed variability from the ITA technique to MK tests. For monsoon season, no trend was
detected in MK1, MK2 whereas ITA technique detected trends. During post-monsoon season,
trends were seen for all grid points using MK1, MK2 and ITA techniques. The result obtained from
the ITA technique agreed with the result obtained from MK1 and MK2 tests. It was also observed
that the ITA technique detected trend better than MK tests.

Homogeneity of precipitation series was tested by Pettitt's test, von Neumann's test,
Buishand's test, and Standard Normal Homogeneity Test (SNHT). Stationarity and non-stationarity
of precipitation time series are determined using Kwiatkowski— Phillips—Schmidt-Shin (KPSS),
Phillips-Perron (PP) and Dickey-Fuller (ADF) methods. Parametric linear regression analysis of
annual precipitation exhibited a positive trend in most of the stations. In the non-parametric test for
annual average precipitation series, 47% of the stations showed a positive trend, in which the

significant trend was detected in Vijayawada urban station. Sen's slope values varied from -1.233



mm/year (at Kanchikacherala) to 1.744 mm/year (in Vijayawada Urban). Most of the stations

showed homogeneity and stationarity.

Frequency analysis of rainfall data (1961-2020) provided the estimates of the rainfall depth
for different return periods. Hydrological modelling was carried out with the help of HEC-HMS,
and the surface runoff of urban sub-catchments are estimated. For 2-year, 5-year, 10-year, 50-year,
and 100-year design storms (rainfall) of 84.475mm, 119.95mm, 145.25mm, 206.5mm, and
234.9mm data input into Kondaveeti Vagu, HEC-HMS model generated runoff (peak flood
discharges) of 107m3/s, 192.4 m®/s, 238.3 m%/s, 398.7 m%/s, and 460 m®/s magnitudes respectively
at the Undavalli outlet. The model output results of HEC-HMS are the computed runoff floods that
resulted from input rainfall data. These hydrographs generated are given as input for unsteady flow
data in HEC-RAS. Results obtained indicated that the methodology developed in the study for
developing flood inundation maps with the combination of HEC-GeoHMS to ArcGIS, HEC-HMS
and HEC-RAS, is very robust.

Studies on the impact due to climate change on water resources are typically evaluated for
regional scale, and the evaluation is carried out at site-specific or local scale. General Circulation
Models (GCMs) and Regional Climate Models (RCMs) are used to understand future climate
changes. RCMs show critical biases in precipitation. Six RCMs are considered and analysed in this
study to reduce the errors in RCMs. Four statistical bias correction techniques are used: linear
scaling, cumulative distributive transformation, quantile mapping using parametric transformation,
and quantile mapping using smooth spline methods. These bias-corrected datasets are compared
with observed datasets using different relative errors, viz. standard error, mean absolute error, root
mean square error and mean square error. Relative errors showed the performance of simulated data
with observed data. The results showed that quantile mapping using the parametric transformation
technique gave optimum values for the results with minimum error compared to the other three
methods. However, there is no generalised optimised technique available, at present, to reduce the
bias in the datasets of the RCMs, and there is a need to reduce the errors for reducing the
uncertainties in the climate impact studies either at the local or regional scale.

RCM ensemble was done for the six RCM models with 2 different parameters using the
multi-model mean method. Historic (1970 — 2005), RCP 4.5 future 1 (2014-2056), RCP 4.5 future
2 (2057-2099), RCP 8.5 future 1 (2014-2056) and RCP 8.5 future 2 (2057-2099) are the ensemble
RCM time series. Rainfall depths for different return periods using GEV for historical data (RCM),
RCP 4.5 future 1, RCP 4.5 future 2, RCP 8.5 future 1 and RCP 8.5 future 2 were calculated. For the

Vi



respective rainfall depth, peak discharges were calculated, and it was found that RCP 8.5 future 1
showed maximum peak discharge.

Three LID scenarios, viz., biological BMPs, structural BMPs and a combination of
biological and structural BMPs, were considered for the study. Biological BMPs chosen are
Bioretention, Rain Garden and Grass swale. Structural BMPs used are Permeable pavement,
Infiltration trench and Rain barrel. The three scenarios are simulated for 5-year return period in five
sub-catchments for 50% of the catchment area. Based on the results obtained, it was observed that
the performance and potential of biological BMPs were higher in controlling and reducing the

runoff volume compared to those of structural BMPs.

The results of this study will help to make decisions in planning, management and

development of water resources under climate change scenarios in the Amaravati region.
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CHAPTER 1

INTRODUCTION
1.1. General

Urban flooding is one of the severe disasters, and various studies show that its effects
are intensifying due to climate change which can cause changes in the hydrologic cycle.
Changes in the hydrological cycle can cause significant impacts to both environment and the
economy, such as flooding of urban areas, overflowing of sewers, damage to stormwater
drainage infrastructure, disruption to day-to-day life, etc. Furthermore, as urbanisation
continues, high rainfall intensities during the rainy season also become more common. The
urban drainage infrastructure network is one of the most vulnerable systems due to the adverse
effects of heavy rainfall. Climate change magnifies the problems that are already existing in
the ageing infrastructure. Besides the climatic variabilities, the increasing perviousness due to
urbanisation and land-use changes are other relevant issues. Therefore, the impact of climate
change on the existing drainage infrastructure is a significant focus of many hydrological

studies.

In the most recent decades, significant flood events have seriously affected and harmed
many areas worldwide. Urban flooding frequently occurs with short notice and in regions not
clearly inclined to flood, making it challenging to oversee and foresee. Urban flood inundation
mapping has become more significant due to the frequent and unexpected occurrence of urban
floods. The purpose of flood hazard/flood inundation mapping is to identify and visualise areas
at different level of risk from flood hazards.



Flood modelling is an important activity to examine the impact of floods on urbanised
areas. It helps to create inundation maps to determine the areas susceptible for floods by
determining the depth of water levels. Flood risk management strategies must be employed to
optimise flood protection measures and minimise harmful effects on the life and property of
human beings. This can be achieved either by reducing the likelihood of flooding or by
reducing the negative impacts when flooding occurs. A flood is an event that cannot be
stopped, but its after-effects can be minimised. Mitigation is a long-term and ongoing process
that should be carried out before the occurrence of floods to minimise the damages caused by
flooding. Considering the cost as the determining factor, there are a few hurdles in mitigating
the flood risk through engineering measures. It is the process of making humanity to survive
sensibly with floods and its consequences. To mitigate floods, the first step should be creating
public awareness followed by the political support that results in the proper drafting of
schemes by law and order. Many urban stormwater management techniques can be used to
reduce the effects of urban runoff and its flooding. Stormwater Best Management Practice
(BMP) is one of the surface runoff mitigation and treatment technique at the source to control

stormwater overland runoff, to controls flood volume and its flow rate.

1.2. Urban Floods

Flood is caused by various factors such as precipitation, the flow in the streams and
rivers and tidal surge, topography and infrastructural modifications. There are considerable
variations in flood events; some floods build up and discharge over a longer time, while others
can occur in a short time and recede quickly. Though floods have been occurring since time

immemorial, deeper study of urban floods started only during the last few decades.

Urban areas are densely populated areas. High population results in an increased
number of residences, paved surfaces, parks, paved parking lots etc., which overlay the natural
ground, increasing the imperviousness and reducing the time of concentration. Construction
activities further modify the natural slope of the ground and alter the existing drainage pattern.
Properly designed drainage systems can help control floods up to a specific limit. Lack of
proper maintenance of the drainage and disposal of solid wastes and sewage into the storm
drains reduces the carrying capacity of the drains, adding to the severity of the floods.

Industrialisation and consequent urbanisation were perhaps the major causes for global



warming and the consequent climate changes have resulted in high-intensity rainfall with
shorter return periods. If there exists a green belt boundary surrounding the urban area in
question, the system acts as a heat island creating difference in air temperature, resulting in

heavy rains downstream.

Urban flooding has attracted significant attention and consideration from hydrologists
in the last few decades as it is one of the foremost principle challenges encountered in modern
cities. Rapid urbanisation disturbed the natural drainage system, resulting in an increase in the
runoff to the drainage networks. There is a rise in the flood peaks upto 1.8 to 8 times and flood
volumes are escalated up to 6 times because of the increase in paved and impervious surfaces

in the developed regions.

Urban flooding often leads to significant economic losses and devastating social and
environmental impacts. Unlike other types of flooding, urban flooding is a direct, quick and
localised consequence of rainfall. It often occurs with minimum warning and in areas not prone
to flooding, making it difficult to manage and predict the consequences. Extreme or prolonged
rainfall events can also occur in rural areas and urban areas, but compared to rural areas, the

same amount of rainfall can cause more pronounced and damaging losses in urban areas.

Urban flood risk is expected to increase significantly in the future as a result of climate
changes and demographic shifts: the climate change is likely to increase the magnitude and
frequency of extreme storm events, the driving force of urban flooding, while the demographic

shift will increase exposure and hence, risk.
1.2.1. Causes of Urban Floods

The drainage and sewerage networks in most parts of the country are old and their
present conditions are very poor. They cannot adapt to the increased volume of water or are
hindered by refuse and by non-biodegradable plastic wastes dumped into them. Due to the
increased developments on the pervious lands, the quantity of the runoff from the surface into
the drainage and sewerage systems rises rapidly. Unplanned development impacts floodplains,

blocking the flood-ways and reducing the natural flood storage.

Urbanisation leads to some major hydrological effects. They are listed below:



e Due to the densely populated clusters, the water demand rises which is generally higher

than the availability of water at the various sources.

e The wastewater generated from the urban area is also more, which burdens the receiving
water systems like streams, rivers and lakes. This can also endanger the ecology and cause

imbalances in the eco-system.

e The increased percentage of imperviousness results in faster and higher peak flow into the

drainage channels.

e Reduction in infiltration of the water causes reduction in the groundwater recharge,

increment in the use of groundwater, and diminished base flow.
1.2.2. Consequences of Urban Floods

Many of the recent studies show that the flood is considered as one of the severe
massive natural hazards. The consequences of floods can be understood at different levels
causing social disturbances, large economic and environmental losses. These effects can be

broadly classified into (i) primary effects; and (ii) secondary effects as discussed below.
Q) Primary effects

e Urban areas being densely packed are more adversely affected by the floods. The
occurrence of floods over an area primarily affects the life and property, which in turn,
will affect the economy.

e Flood causes damage to the buildings and structures resulting in shortage or lack of shelter
for the people who are residing in the flooded and flood-prone areas. It can also cause

damage to the heritage structures.

e Extreme floods result in disruption of the stormwater drainages, sewerage systems,
roadways, railway tracks, and also airways. Some of the recent examples of airport
disruption are due to the Kolkata and Delhi floods which resulted in the stagnation of huge

amount of water on the airport.

e Disruption of the sewerage systems can lead to the mixing of the clean waters to the
sewerage resulting in contamination of water, causing waterborne diseases such as

typhoid, giardia, cryptosporidium, cholera, etc.



e Power transmissions and power generation are also affected, resulting in long hours of
power shortages. Further, the fire due to short circuit in the affected regions can cause

major accidents leading to loss of human lives as well as affecting the economy.
e Educational institutions are affected resulting in a shutdown.

e Flood makes it difficult for flood relief teams to mobilise the aids to the affected people or
in providing the emergency health treatments due to the damage to the roads and the
transport infrastructure. Road accidents due to open pits, and manholes hidden under

accumulated water add to the problem.

e It becomes a major challenge to maintain the supply of essential services and
telecommunication, which affect the industrial productions. The escalation of prices of the
essential commodities causes difficulties, especially for the urban poor, to survive the

situation.
(i)  Secondary effects

Secondary effects can be understood as the long-term damages resulting from the
occurrence of extreme flood events. Economic hardships faced by society and administrations
can be considered as the long-term effect of floods. Disturbance in tourism, rehabilitation of
residents and rebuilding of the damaged structures or maintenance of roads, food shortages
are a few factors that hit the economy real hard. Urban flooding can cause persistently wet
houses, resulting in the growth of indoor mould, which can lead to adverse health effects,
particularly respiratory illness. There are uncertainties of the safe returns of the family
members in flood-hit areas resulting in psychological stress and damages. Extreme flood
events in a country can result in the damage of the agricultural harvest. Prolonged stagnated
water in the farms and fields makes them unworkable for harvesting or cropping, resulting in

the shortage of food for human as well as the cattle.

1.3. Need for Urban Flood Studies

Urban development increases flood risk in cities due to local changes in hydrological
and hydrometeorological conditions. Large concentration of people in urban areas increases
the vulnerability to floods. Urbanisation results in significant increase in the proportion of

paved surfaces, which increases flood risk up to three times. Increased runoff and early peak



discharge results in floods within short durations which can be minutes. Urban areas being
densely populated, the floods affect large numbers of people, causing severe economic and
infrastructural losses. The unauthorised and dense construction in the vicinity of coastline
regions results in frequent flooding even for a short duration rainfall.

The study of urban floods is needed for carrying out flood risk management activities
prior to the occurrence of the hazard. The damages caused by the urban floods can be
minimised if prior to floods, some measures like maintenance of the existing drainage
networks, providing different drainage paths (including underground), controlling the entry of
non-biodegradable solid wastes like plastics, etc. into the drainage systems, constructing
permeable and porous pavements to allow infiltration of rainwater, application of stormwater

management techniques etc. are taken up to mitigate the losses.

1.4. Climate Change Impact on Urban Flood

A warmer climate is already causing extreme weather events that affect the lives of
millions of people around the world (Schiermeier, 2011). Specifically, as per IPCC (2014),
extreme climate events are likely to occur more frequently in different parts of Asia during
different seasons in the future. Brunner et al. (2017) indicated that climate change impacts the
peak, the volume of runoff and the shape of the flood hydrograph. Hence, assessment of
climate change impacts on floods should consider all the flood characteristics (i.e. peak,
volume and duration) rather than only the flood peak. Urbanisation is one of the causes of
climate change, and climate change results in high-intensity rainfall, which produces urban
floods.

General Circulation Models (GCMs) are very helpful in understanding the future
evolution of the global climate. However, they have too coarse a spatial resolution (100-300
km) for assessing regional or local changes (Turco, 2017). To get a better spatial resolution
(10-50 km), Regional Climate Models (RCMs) are obtained by dynamically downscaling the
GCM data (Hostetler, 2011). However, these models are unable to accurately reproduce the
historical climate since they suffer from systematic biases in the simulated variables (e.g.,
precipitation and temperature); a correction is therefore needed to obtain reliable local-scale
results (Christensen, 2008; Teutschbein, 2012). GCMs and RCMs are used to understand



future climate changes. RCMs have a higher resolution to understand the reliable estimation

of local-scale climate variables.

1.5. Flood Modelling

Flood modelling is becoming a fundamental process to examine the impact of floods
on urbanised territories. It helps create inundation maps to determine the susceptibility of the
flood-hit areas by determining the depth of water levels. However, advances in computational
methods, coupled with broad and more wide-ranging meteorological data observation and
topographic data acquisition practices, have permitted simulation models to solve the principal
equations to define the hydraulic transport processes and generate the inundation map (Marko
et al. 2019). The flood inundation map demonstrates the spatial extent of possible flooding
under various circumstances and can be utilised quantitatively or qualitatively. Nowadays,
good computer software is available for carrying out the 1D, 2D or integrated 1D/2D flood
inundation modelling such as SWAT, SWMM, HEC-RAS, MIKE 11, etc.

The hazard assessment using flood modelling is carried out to know the probability of
occurrence of an explicit hazard, in an obvious future time, as well as its intensity and area
under influence. Hazard is hypothetically a destructive physical occurrence, an event that may

cause death or injury, property harm, natural debasement, social and monetary interruption.

1.6. Flood Mitigation

A flood is an event that humans cannot stop, but its after-effects can be minimised.
Mitigation can be understood as a long-term and ongoing process that should be carried out
before the occurrence to minimise the damages caused due to flooding. Considering the cost
as the determining factor, there are a few hurdles in mitigating the flood risk through
engineering measures. It is the process of making humanity to survive sensibly with floods
and their consequences. To mitigate floods, the first step should be the creation of public
awareness followed by the political support that results in the proper drafting of schemes to
be followed in the event of floods. Proper education and training are required to reduce

physical vulnerability.

The following activities are to be considered prior to planning of flood mitigation:

« Activation of emergency response strategies for communities to be readied.



o Defining the properties of the watershed or coastline.
o Climatological interpretations and forecast statistics on precipitation should be done.

« Hydrological observations and flood forecasts should be made.

A flood inundation map can help in the flood mitigation work. Urban flood mitigation
is of high priority concern, because urban areas are the centers of economic activities with
vital infrastructure that needs to be protected 24x7. The flood mitigation approach can be
divided into structural and non- structural approaches. The purposes of urban flood
management are to obtain specific results that have to be achieved in a predetermined time
frame. These are: reducing exposure of people and property to flood hazards, reducing the
existing level of flood damages, minimising receiving water pollution, enhancing recreational
opportunities and improving overall urban amenities. Best Management Practices (BMPs) are
used to describe both structural or engineered control devices and systems to reduce both
pollution and runoff from stormwater. On the other hand, Low Impact Development (LID) is
also used to describe a land planning and engineering design approach to manage stormwater
runoff through various techniques such as infiltrating, filtering, storing, evaporating, and
detaining runoff close to its source (NDMA, 2012).

Structural measures can reduce the post-development runoff peak. Structural measures
are physical in nature and include redesigning the existing drainage system or providing
suitable interventions in the form of storage at suitable locations in the upstream catchment,
which may include detention ponds, grass swales, grass filter strip, and activating inline
storage. The storage reduces the peak, but not the volume of runoff, and this contributes to
increased runoff flows over long time periods. Non-structural measures attempt to keep people
away from the flood waters by means of Early Warning System and other mitigation measures.
(Ivan and Jelkovic, 2001; NDMA, 2012)

1.7. The Problem and its Significance

Urban floods represent a significant risk to settlements and the environment in many
areas and results in significant monetary losses. Further, failure of electric power due to floods
in the urban areas are common. Development of the rural areas into urban areas causes
increased percentage of imperviousness leading to the early and higher peak of the floods.

There has been almost no advancement in the provision of drainage infrastructure for the urban
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communities. This results in various issues like flooding, spreading of waterborne sicknesses,

and disruption to routine life.

Amaravati city, in the state of Andhra Pradesh, is under rapid development, resulting
in increased impervious surfaces due to the construction of new roads, path walks, parking
lots, rooftops, and other infrastructure. Kondaveeti Vagu, also known as the 'Sorrow of
Streams' and flowing through the city, and Pala Vagu, undergo seasonal flood extremities
every year. Low lying areas are inundated even in a matter of a few hours when extreme
rainfall occurs in the region. Climate change intensifies the rainfall resulting in severe floods.
Thus, the study and modelling of the urban floods are required for proper management to
reduce the losses as much as possible. The relief for flood risks can be effectively provided
when point by point information is gathered about the frequency, character, and magnitude of
the hazard in the area.

The efficiency of the present drainage networks should be checked to predict and
manage the consequences created by the excess runoff. Flood inundation mapping is required
to check the overflow of the drainage or the streams due to the high-intensity rainfall, thereby
providing the solutions like the construction of bunds or improving the drainage network and

stormwater management using BMPs and LIDs.

1.8. Objectives of the Study

The main objectives of the study is to determine the impact of climate change on urban
flood, develop flood inundation maps, and determine strategies for mitigation for urban floods

using Best Management Practices. Specific objectives of the research work are to:

e Perform precipitation trend analysis for observed, gridded and climate data and carry
out extreme rainfall variation analysis.

e Determine the Land Use Land Cover changes in the study area.

e Apply a selected flood model for the study area.

e Study the impact of climate change on the urban flood.

e Develop a sustainable solution for managing urban floods (BMP).



1.9. Organisation of the Thesis

The problem taken up for the study and discussion on the significance of the problem
and the objectives of the study are presented in this Chapter. A detailed review of the literature
related to various trend analysis methods, stationarity and homogeneity, flood frequency
analysis, hydrological modelling, flood hazard mapping, climate change impact on urban

flooding and mitigation is carried out and presented in Chapter 2.

Chapter 3 presents the methodology related to the trend analysis, stationarity and
homogeneity analysis, LULC changes, hydrological modelling, flood inundation, bias
correction, climate change impact analysis and mitigation of urban flood. Further, the
description of the study area, data needed and available for the study are also presented in this

Chapter. The result and discussion of the work carried out are given in Chapter 4.

The summary of the work, conclusions arrived from the study and some
recommendation for further research activities based on the conclusions from study on the
impact of climate change on flood risk are presented in Chapter 5. A comprehensive list of the

various references used in the study follow Chapter 5.
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CHAPTER 2

LITERATURE REVIEW

2.1. General

Urban flood has become an intensifying and constant danger throughout the world due
to the impacts of continuous urbanisation and climate changes. Hence, better analytical
comprehension, visualisation and mitigation of such floods are essential to prepare to limit the
consequences of urban flooding. In this Chapter, a review of the existing literature relevant to
the present work has been carried out. This review covers topics related to rainfall analysis,
frequency analysis of extreme events, land use land cover, hydrological and hydraulic
modelling, and climate change impact on urban flood and mitigation.

2.2. Trend Stationarity and Homogeneity

Trends in precipitation have been extensively studied around the world (Nair and
Mirajkar, 2021; Nufiez-Gonzalez 2020; Bartels et al. 2019; Asfaw et al. 2018; Langat et al.
2017; Verma and Swain 2016; Javari 2017 and Alahacoon et al. 2018). These studies reveal
both increasing and decreasing trends with the behavioural changes in seasonal precipitations
at various spatial scales across India (Singh et al. 2021; Pathak et al. 2020; Bisht et al. 2018;
Kumar and Jain 2011; Duhan and Pandey 2013 and Krishnakumar et al. 2009). For effective
planning, development, and efficient water resources management, it is very important to

analyse the trends in precipitation and interpret appropriately.

Significant research has been carried out in detecting daily, monthly, seasonal and

annual rainfall trends using different parametric/non-parametric trend methods like the Mann-
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Kendall (MK) test (Jain et al. 2013; Kendall 1975; Mann 1945), linear regression (Meshram
et al. 2018), Spearman’s Rho test (Spearman 1904), Sen’s slope (Sen 1968) and cumulative
sum approaches (Karpouzos et al. 2010). Non-parametric tests are appropriate for distribution-
free (non-normally distributed) datasets compared to parametric tests. The most extensively
applied trend detection tests are the Spearman Rho and Mann- Kendall tests, followed by trend
rate evaluation tests using the approaches used by Theil (1950) and Sen (1968). Kumar et al.
(2010) calculated the long-term rainfall trends for India using the MK test. Trend analyses for
temperature and rainfall datasets using MK and Sen’s slope tests over India were carried out
by Jain and Kumar (2012). Patra et al. (2012) applied the MK and linear regression trend tests
for the rainfall dataset over Orissa, India. Palizdan applied average MK test, MK test coupled
with bootstrap, and discrete wavelet transform to study rainfall trends over the Langat River
Basin, Malaysia (Palizdan et al. 2014; Palizdan et al. 2017). Huang et al. (2014) evaluated the
trend in rainfall on a monthly and seasonal basis using Holt’s method. These methods have
some assumptions like (i) no seasonal dependence, (ii) time series structure to be independent

and (iii) normality of distribution.

Zekai (2012) proposed a graphical trend evaluation technique named innovative trend
analysis (ITA) technique representing low, medium and high values for the time series.
Analyses of trends in meteorological and hydrological variables using the ITA technique and
its different modifications have been carried out in some of the recent studies (Singh et al.
2021; Kumar and Kumar 2020; Guclu et al. 2020; Wang et al. 2020; Marak et al. 2020;
Farrokhi et al. 2020; Caloiero 2020; Serencam 2019; Malik and Kumar 2020; Al Balasmeh et
al. 2019; Zhou et al. 2018; Wu et al. 2018; Mohorji et al. 2017; Cui et al. 2017; Dabanli et al.
2016). Ay and Kisi (2015) carried out the monthly total rainfall trend analysis by MK test and
ITA technique. The studies concluded that the ITA technique could be effectively applied to
estimate maximum and minimum values of rainfall data for trend analysis. Compared with
other non-parametric tests, the ITA technique has broad applicability, regardless of
distribution assumptions, size and serial correlation of a dataset. Because of these advantages,
the ITA technique has been extensively applied in detecting trends for meteorological and
hydrological variables. Kisi (2015) and Tabari and Willems (2015) used the ITA technique
for annual maximum, monthly pan evapotranspiration and streamflow data. Graphical
representation in ITA shows hidden sub-trends of time-series that overcome the assumptions

of dependency of dataset, distribution normality, and data length.
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The precipitation data are subjected to homogeneity identification as a precursor to
modelling the precipitation series under various climate change scenarios. Precipitation data
with non-homogeneity indicates sudden and unexpected discontinuities in the original time-
series data, mainly due to variations in the precipitation pattern at the stations in the immediate
vicinity. The output from the model becomes less reliable if the input hydrological time-series
data contain non-homogeneity. Several tests already exist in the literature to identify the
homogeneity in the time-series data (Buishand 1982 and Yozgatligil and Yazici 2016). Based
on whether the homogeneity test is applied for each station at a time or to multiple
neighbouring stations, the methods of homogeneity analysis are classified into two broad
categories, viz., absolute and relative. Among these, the absolute methods are mostly preferred
for analysing precipitation time-series homogeneity (Buishand 1982; Tomozeiu et al. 2005;
Huss et al. 2009 and Byakatonda et al. 2018). Yozgatligil and Yazici (2016) recommended
that the Standard Normal Homogeneity Test (SNHT) was more suitable for identifying non-
homogeneity in precipitation data. Machiwal and Jha (2012) pointed out that more than one
method should be considered for improved identification of non-homogeneity in precipitation
time-series data. Machiwal et al. (2016) and Jaiswal et al. (2015) used the Pettitt homogeneity
test developed by Pettitt (1979) to determine rapid changes in precipitation pattern over the

Indian sub-continent,

In the domains of hydrology and meteorology, some studies preferred the stationarity
test to identify the statistical characteristics of the original dataset. However, such tests are
widely used in econometric studies to evaluate time-series data (Phillips and Xiao 1998; Fuller
1996 and Dickey and Fuller 1979). In hydrological studies, non-stationarity tests and trend
analysis are more commonly used for non-stationarity detection (Rosenberg et al. 2010 and
Wang et al. 2005). Kwiatkowski et al. (1992) presented an easy and direct method to find the
stationarity null hypotheses to distinguish the types of time series, whereas, for other tests, it
was necessary to use the unit root null hypotheses that indicated the non-stationarity of data.
A set of new stationarity tests has also been applied to evaluate the time-series data in
hydrology and meteorology (Tan and Gan 2015 and Villarini et al. 2009). Modarres and Ouard
(2013) used the Philips-Perron test and the Augmented Dickey-Fuller (ADF) test to study the
stationarity of runoff series at two gauged stations and four precipitation stations around
Quebec, Canada. They also used these tests at two stations in Iran to determine the

stationarities in the atmospheric indices and drought indices before the analysis of data were
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carried out using the multivariate generalised autoregressive conditional heteroscedasticity
(GARCH) models.

2.3. Frequency Analysis of the Extreme Events

The design and assessment of flood risk for hydraulic structures, water resources
planning, reservoir management, and flood hazard maps involve identifying the flood events
with a low probability of exceedance. Flood frequency analysis seeks to connect the magnitude
of extreme events with their frequency of occurrence using an appropriate probability
distribution. The objective of frequency analysis is to estimate the return period associated
with a flood of a given magnitude (Castellarin et al. 2012). The use of return period as a
standard criterion is common in designing hydraulic structures and flood control. In most
cases, it is necessary to obtain the frequency curve fitting the Probability Distribution Function
(PDF) to the observed data to estimate flood quantiles associated with given return periods.
Many PDFs have been considered in different situations for the probability modelling of flood
events. Malamud and Turcotte (2006) and EI Adlouni et al. (2008) divided the widespread
distribution in frequency analysis into four groups as the Generalised Extreme Value (GEV)
family, the Normal family, the Pearson Type Il family and the Generalised Pareto
Distribution family. Several approaches are available to analyse the data, including
probability plots and probability plot regression, weighted-moment estimators, maximum
likelihood estimators, conditional probability models, and partial probability weighted
moments. Methods for the maximum likelihood estimate of a GEV distribution from samples
have been suggested by Prescott and Walden (1983) and Phien and Fang (1989). Wang (1990a,
1996a, 1996b) introduced the concept of Partial Probability Weighted Moments (PPWMs) to

analyse monitored data samples and a derived unified expression for the GEV distribution.

Extreme events, such as floods, hurricanes, earthquakes etc., can damage
infrastructure, cause harm to life and affect the economy. These events cannot be prevented
but can be managed so that the damage is minimised as much as possible with the relief
measures taken before and during these events. Thus, the study and visualisation of the
frequency of occurrence of extreme events are essential. Bisht (2016) carried out frequency
analysis based on the L-moments method being employed to estimate the design storm for a

small urbanised area in West Bengal, India, using daily annual maximum rainfall.
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The frequency analysis of rainfall and streamflow data was conducted by Leonard et
al. (2008) for the seasonal and climatic situation in Murray-Darling Basin, Australia. Different
seasonal and annual rainfall data were analysed for various neighbourhoods throughout
Australia, and an in-depth analysis was presented for the daily streamflows in the study area.
The urban design scenario of the for Scott Creek in the Adelaide Hills, South Australia was
analysed. The strong influence of seasonal and climatic variability in the occurrence of
extremes was illustrated using streamflow data. They showed a wide variety of potential
applicability for incorporating seasonal and climatic scenarios into the design concepts for

water resources arrangements as:

i.  Examining whether the simulation models appropriately replicate the seasonal

composition of extreme.

ii.  Validating, for similar recurrence interval, whether the seasonal rainfall extremes give
the streamflow extremes.

iii.  Inferring seasonal/climatic conditional levels of risk and necessary draw-down levels.

iv.  Dual-purpose watersheds for water retention and flood mitigation can be designed.

v.  Allowing for in-stream processes in a design such as placing aquifer-storage pumps in
a flood detention basin.

vi.  For the regions where seasonal flood is susceptible, the design of the structures and

channels can be done.

By carrying out hydrological frequency analysis, Chebana et al. (2013) assessed the
non-stationarity hypothesis. They used two different types of non-parametric trend tests and
applied their multivariate extensions to multi-variable and multi-site flood attributes. For the
development of the model, the importance of trends in multivariate distributions (copula and
margin) was highlighted. The generalised additive model is valuable for regional frequency

analysis in the expressions of performance and practical phases.

By using the Archimedean copulas, Li et al. (2019) presented the study for non-
stationary frequency analysis of extreme rainfall for Eastern China. The study highlights
integrating non-stationarity in multivariate hydrological analysis and incorporating

compatible data sets for improving copula inference.

Jeffrey and Edward (2019) worked on the challenges that emerged out with the
availability of the limited data for the study area of Weser River basin, Germany. The data
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was analysed and processed: (a) for the data of average daily discharge evaluating the
instantaneous peaks (the adjustments from daily to instantaneous discharges reach as high as
1.39 for gauges with smaller drainage areas), (b) to eliminate unrepresentative data for cases
in which reservoirs may have changed flow conditions because mean annual maximum
discharges were 21% lower after reservoir construction for the longest gauge record. In order
to calculate the flood discharges for various return periods, the processed data were utilised

for the regional frequency analysis using L-moments.

Zamir et al. (2021) studied the use of the Gumbel-logistic model for the analysis of the
bivariate rainfall frequency for two correlated events - the annual extreme monthly rainfall
and the corresponding total amount of rainfall. They found out that the Gumbel logistic model
has been used to improve the extreme rainfall assessment of univariate and bivariate by
analysing the distributions of two positively correlated extreme random variables which are
Gumbel distributed. The fit of the logistic model applied in this study was also examined
through the fitness test of the data. The fit of the distribution was determined by comparing
the empirical probability value with the theoretical probability value of the distribution. Based
on the comparison, the result of the estimation of the combined duration of the analysis of the

rainfall variability showed a similar pattern to the univariate rainfall data.

2.4. Hydrological Modelling

Hydrological modelling is considered an essential tool for water resources planning
and management. A hydrological model is a valuable tool for studying the impact of climate
change on water resources from present and future scenarios. Many urban areas have
experienced a change in the frequency and magnitude of extreme hydrological events
(Praskievicz and Chang, 2009; Wang et al. 2020). Numerous hydrological models have been
developed and applied to assess the impact of climate change on water resources, particularly

for floods. This section is devoted to a comprehensive review on hydrological models.

Rainfall-runoff models can be classified into several categories based on model input
parameters and the physical principles used within the models. They can also be classified
based on the model parameters as a function of time and space (i.e. lumped and distributed).
Besides, the model is considered deterministic if a set of input values will always produce the

same output values. A model is stochastic if the input values do not produce the same output
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values. The event and continuous simulation models are distinguished based on the specific
and continuous period of output respectively (Wheater et al. 2008). Table 2.1 presents the brief
characteristics of three types of hydrological models, viz., empirical, conceptual and
physically-based models.

Table 2. 1 Characteristics of hydrological models (Devia et al. 2015)

Empirical model Conceptual model Physically-based model

e Metric or black box e Parametric or grey e Mechanistic or white box
model box model model

e Describe by e Based on modelling e Based on spatial distribution,
mathematical structure of reservoir and evaluation of parameters
using  time  series include semi describing physical

information

Do not need prior
knowledge about
hydrology process

High predictive power

empirical equations
with a physical basis
Model  parameters
are calibrated

Simple and easily

characteristics

Model parameters can be
measured

Complex model and requires
high computational demand

but low explanatory
capacity computer code

e Cannot be generated to e Require large hydro-
another catchment meteorological data

demand, scale

parameterization

Rainfall-runoff modelling had its origin during the middle of the 20th century. In 1932,
Sherman introduced the concept of “unit-graph” or unit hydrograph. This method not only
concentrated on predicting the peak flow and time to peak instead, but also, for first time, the
whole hydrograph was predicted. Hydraulic models are complex tools, requiring large
amounts of input data for their specification to a particular application and produce a huge
amount of output data. The data requirements for distributed hydraulic models are grouped
into topographic and hydrologic data (Cunge, 1980). An important role of hydrologic design
has been to quantify and mitigate the risks of flooding that arise from the variability of extreme
rainfall and streamflow values (Michael et al. 2007). Many software like ILLUDAS, SWMM,
HEC-RAS, LISFLOOD, MIKE FLOOD, MIKE URBAN etc. are available for urban storm
drainage modelling (Patro et al. 2009; Sen 2013; Bisht et al. 2016; Patel et al. 2017; Teng et
al. 2017).

The EPA's Storm Water Management Model (SWMM) is used extensively throughout
the world for planning, analysis, and design related to stormwater runoff, combined and
sanitary sewers, and other drainage systems. The runoff component of SWMM works on a
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combination of sub-catchment areas that receive rainfall and generate runoff and pollutant
loads (Rossman and Huber, 2016). SWMM is dynamic rainfall-runoff simulation model which
is mainly used for quantitative as well as qualitative simulations of both single and long-term
continuous runoff events. The work carried out by Bisht et al. (2016), Vemula et al. (2018),
Rai et al. (2018), Ranger et al. (2011), Sahoo and Sreeja (2016) and Dasgupta et al. (2013) are

some of the studies conducted in urban flood modelling using SWMM in India.

HEC-1 was developed in the 1960s by the Hydrological Engineering Centre, U.S.
Army Corps of Engineers. Later, HEC-1 came to be known as HEC-HMS with the addition
of new user interface and spatial data input and analysis features. Jain and Ramsastry (1990)
effectively utilised the HEC-1 model for modelling the rainfall-runoff response of Hemavati
river basin up to Sakleshpur within the constraints of data availability. HEC-1 along with Nash
IUH model was used by Chatterjee et al. (2001). For the generation of the direct surface runoff
(DSRO) hydrograph, they compared the performances of HEC-1 model and Nash model for
the catchment considered in the study. Coupling of HEC-HMS with an atmospheric model
was performed for the estimation of the resulting runoff in the catchment of Sierra Nevada
Mountains California, USA by Anderson (2002). Integration of GIS, HEC-HMS and HEC-
RAS was successfully carried out by Knebl et al. (2005) using the Next Generation Weather
Radar (NEXARD) data for the development of flood polygons for the basin of San Antonio
River. A successful tool was suggested for the regional scale hydrological forecasting of floods
which will be beneficial in future. Ranaee et al. (2009) carried out the routing of floods for
two branches of Zoshk River by using HEC-GeoHMS extension in ArcMap, HEC-HMS and
MIKE 11. HEC-GeoHMS was employed to successfully develop the statistics that were
required for rainfall-runoff modelling in HEC-HMS.

2.5. Flood Inundation Mapping

By 1976, the techniques used for solving the Saint-Venant equations were found
adequate with mathematical models found to be satisfactory for the wide range of applications
(Priessmann, 1976). Bates et al. (2000) developed the model, LISFLOOD-FP, which was
tested for the estimation of flood inundation for the river reach of 35 km of the River Meuse
in the Netherlands. This model comprised of a one-dimensional kinematic wave
approximation for the channel flow which was solved using explicit finite difference and a

diffusion wave scheme for 2D representation of flow in the floodplain.
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Best outcomes were obtained by the combination of GIS and remote sensing with
urban storm drainage model (Talukdar et al. 2021; Jamali et al. 2018., Zhang and Pan, 2014.,
Mokhtar et al. 2018)., The urban flood inundation maps display the water flow paths in detail
during extreme events based on high-resolution DEM. Four-dimensional GIS (4D GIS)
analyses, manages and integrates, spatial and temporal information, providing quality
communication, simulation, and visualisation, which will be useful for the spatial extension

of the flood with respect to time. (Kumar and Reshma, 2017).

Demonstration of the applicability of SOBEK, the 2D hydrodynamic model for
rebuilding characteristics of a higher magnitude outburst flood was done by Carrivick et al.
(2006). The study depicted a better understanding of spatial and temporal hydraulics as well
as higher magnitude flow phenomenon.

Patro et al. (2009) used the coupled 1-D and 2-D hydrodynamic model, MIKE
FLOOD, to simulate the flood inundation range and flooding intensity in the watershed of
Mahanadi River, India. They performed the bathymetry survey of the watershed using SRTM-
DEM and used it as an input data to the 2-D model, MIKE 21. Using parallel links in MIKE
11 and MIKE 21 models, flood inundation mapping was prepared. They analysed the results
with real inundated stretch downloaded from IRS-1D WIFS image.

Sarchani et al. (2020) used a combination of 1D/2D hydraulic model to determine the
extent of flooded area and concluded that the 2D model delivered more accurate flood
mapping during the maximum flood depths as well as for flow velocities and peak discharge.

MIKE FLOOD model was prepared and successfully simulated by Timbadiya et al.
(2014) for the Lower Tapi River basin. It was concluded from the study that in comparison to

1D and 2D models, the results generated by an integrated 1D/2D model was better.

Papaioannou et al. (2016) found that it is advantageous to use terrestrial laser scanner
(TLS) that can direct to a high-resolution digital elevation model (DEM). They employed
several hydraulic-hydrodynamic modelling methodologies and numerous types of river and
riparian area spatial resolution for implementing the sensitivity analysis to the floodplain
mapping and flood inundation modelling process at ungauged watersheds. Flood hazard maps
have been produced for each modelling approach and landscape alignment at the lower part
of Xerias River reach Volos, Greece, and analysed for evaluating the sensitivity of input data

and model structure uncertainty. Different models that were used and compared were MIKE
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ZERO, MIKE 11 and HEC-RAS for floodplain mapping. The study concluded that the
accuracies in flood inundation mapping by different approaches can be better by using higher

spatial resolution data.
2.5.1 HEC-RAS

The HEC-2 computer model was introduced by the Hydrologic Engineering Centre
(HEC) of the US Army Corps of Engineers in 1964 in order to help the hydraulic engineers to
deal with river channels and floodplains (USACE, 2010). Due to the increase in the use of
Windows operating systems by 1990, the HEC-2 was upgraded to be used in the operating
system and the software was renamed as HEC-River Analysis System (RAS).

Martin et al. (2012) carried out a study to generate flood inundation maps from which
the flood hazard zones within the area can be recognised. The detailed objectives of the study
for the River Sironko basin comprised of three stages namely: (i) performing rainfall-runoff
analysis (hydrological modelling); (ii) performing hydraulic modelling; and (iii) preparing
flood inundation maps. Hydrological modelling was carried out using HEC-HMS software,
after watershed delineation and generating the catchment basin model (325km?) using HEC-
GeoHMS in ArcGIS environment, populating the meteorological model input with design
storm data, and assigning the control specifications. Flood hazard zones and inundation maps
were produced by exporting the output from the HEC-RAS model to ArcGIS where they were
processed to recognise the flood-prone areas. From the flood hazard zoning maps, it was

concluded that the areas around the middle reach of Sironko River were mostly affected.

Ahmad et al. (2010) carried out the hydraulic modelling and produced the flood
inundation maps for Nullah Lai River, Rawalpindi using HEC-GeoRAS extension with GIS
and HEC-RAS model. Correlation among the immersion depth and flow runoff values was
established. Adnan et al. (2012) conducted the bathymetry mapping based on remotely sensed
imagery coupled with ancillary datasets utilising the hydraulic model HEC-RAS for River
Kelantan, Malaysia. Comparison and analysis of the predicted flood inundation extent using
HEC-RAS were carried out with the flood predicted from a RADARSAT image. The areas
were marked as upstream; midstream and downstream and thus the accuracy assessment was

applied for identifying the spatial variation in the error between above-mentioned areas.
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Geographic Information System (GIS) and HEC-RAS were integrated and used by
Fosu et al. (2012) for the modelling of Susan River basin. Contour data was processed in
ArcGIS to produce DEM. The geometric inputs desired for modelling were obtained from the
DEM, topographic map and field dimensions. Land use land cover maps were generated for
classifying different land-use types and thus estimating the manning's roughness coefficient.
The outputs produced by the model were analysed in ArcGIS environment. The delineation of
the affected buildings and assets were carried out by superimposing the results of the flood
simulation with the topographic map. The map generated gave the clear picture of the spatial

distribution of the inundated regions which were essentially the areas with relatively high risk.

Silva et al. (2014) mapped the extent of flood in the urban region of Rio dos Cedros
city, Medium Itajai River Valley — Santa Catarina, with HEC-RAS, supported by a GIS.
Simulation was carried out to find out the region that will result in inundation for the events
of 2, 5, 10, 100 and 200-year return periods and a past flood event. The study showed the
appropriateness and capability of HEC-RAS in flood plain mapping when the higher

resolution spatial data was used.

One dimensional steady flow analysis was carried out by Ahmad et al. (2016) using
HEC-RAS for the watershed of Jhelum River, Jammu and Kashmir, India. The steady flow
analysis showed the suitability of HEC-RAS model. The area was susceptible for inundation
by 50-year and 100-year floods. The area lying towards the left bank was found to be more

susceptible for floods and thus mitigation measures were needed.

Probabilistic flood inundation mapping to evaluate the uncertainty introduced by the
roughness coefficient values in hydraulic models and for the ungauged Xerias stream reach,
Volos, Greece was carried out by Papaioannou et al. (2017). They performed manual
calibration by trial-and-error method for the simulation of a historical flood event and
estimated average value of Manning’s n for the study. They proposed the applicability of

HEC-RAS software for hydraulic modelling at ungauged streams.

Patel et al. (2017) carried out the assessment of the flood inundation due to the past
event that occurred in the Surat city, situated 100km downstream of the Ukai dam. The study
included the breaching of the dam. 1D/2D hydrodynamic model was developed and simulated

to determine the inundation extent in the low-lying areas. The authors demonstrated the
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applicability of HEC-RAS for flood modelling. In the study, the extents of depths and area

were found that were most likely to be inundated and those needed the mitigation measures.

Yalcin (2020) studied the impact of land cover and topography resolutions on the
calculation of flood coverage, flow velocities, depths, and time of concentration of the 2D
HEC-RAS model for differently sized mesh structures. To determine these properties for a
large variety of data conditions, Manning’s roughness layers (MRL) and digital surface
models (DSM) with different resolution were formed for the floodplain by processing the
high-quality DSM. In addition, different computational point spacings (CPSs) were tested to
estimate variations in the model outputs depending on the dimensions of mesh grids. The
simulation executed for the most detailed model configuration was utilised as the base model
simulation to compare the performances of other simulations. The model simulation
configured with the 2 m cell size DSM, 10 m cell size MRL, and 10 m x 10 m CPS showed
performance comparable to the base model simulation with a small loss in the accuracy of the
estimates, indicating that very-fine-resolution (less than 2 m) topography and high-resolution
(less than 10 m) land cover data may not be indispensable to produce reliable simulations with
2D urban flood modelling using HEC-RAS software.

2.5.2. Urban flood inundation model

An urban flooding analysis simulated by one-dimensional hydrodynamic modelling
incorporating the interaction between, the buried pipe system, the streets with open channel
flow and the areas flooded with stagnant water was proposed by Mark et. al (2004). The study
handled both urban flooding with and without flood water entry into houses. The modelling
results were presented in the form of flood inundation maps produced in GIS. Local rainfall
was considered together with the impact in terms of flood extent, flood depth and flood
duration. The data requirement for verification of urban flood models together with an outline

of a simple cost function for estimation of the cost of the flood damages were explained.

Zhu et al. (2016) proposed an approach to quantitatively and qualitatively estimate
flood risks in urban drainage network based on a stormwater management model. The K-
means clustering technique and the projection pursuit technique were verified using a
residential area in Guangzhou, China. Seven evaluation indices were considered and twenty

rainfall-runoff events were selected to calibrate and validate the parameters of the rainfall-
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runoff model. The flood risks in the drainage system in the study region were assessed for
various rainfall conditions. A SWMM model inundation risk evaluation approach was used
with the observed rainfall and runoff data. This method could estimate the inundation risk of
the present urban drainage network. By this method, the flooded area could be derived at
various scales and the results were transferable to other scales without methodological
limitations. This paper proposed a successful and novel method to find out the risk in urban
drainage network and gives guidance for improving urban drainage network and flood

awareness.

Jamali et al. (2018) developed a rapid urban flood inundation and damage assessment
model (RUFIDAM), using GIS technology with the intention of rapidly estimating flood
extent, depth and its associated damage. RUFIDAM integrates a 1D hydraulic drainage
network model (SWMM or MOUSE) with an adapted version of rapid flood inundation
models. Surcharge volumes from the 1D drainage network model were fed statically into the
rapid inundation model. The model was tested on three urban catchments located in southeast
Melbourne. Results of flood depth, extent and damage costs were compared with those
produced using MIKE FLOOD. Results showed that RUFIDAM can predict flood extent and
accumulated damage cost with acceptable accuracy. Although some variations in the
simulated location of flooding were observed, simulation time was reduced by two orders of
magnitude compared to MIKE FLOOD. As such, RUFIDAM is suitable for large-scale flood
studies and risk-based approaches that rely on a large number of simulations.

An efficient and flexible cellular automaton (CA) model to simulate stormwater runoff
and the flood inundation process during extreme storm events was developed by Liu et al.
(2015). The process of infiltration, inlet discharges and flow dynamics can be simulated with
a little preprocessing of commonly available basic urban geographic data. In this model, a set
of gravitational diverging rules were implemented to govern the water flow in a rectangular
template of three cells by three cells of a raster layer. The model was calibrated using one
storm event and validated by another event in a small urban catchment in Guangzhou of
southern China. The depth of accumulated water at the catchment outlet was interpreted from
street-monitoring closed-circuit television (CCTV) videos and verified by on-site survey. A
satisfactory level of agreement between the simulated process and the reality was attained for

both storm events. The model reproduced the changing extent and depth of flooded areas at
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the catchment outlet with an accuracy of 4 cm in water depth. Comparison with a physically
based 2-D model (FloodMap) showed that the model was capable of effectively simulating
flow dynamics. The high computational efficiency of the CA model can meet the needs of city

emergency management.

Mei et al. (2020) developed a numerical flood model of Xiamen Island in China.
Simulations were conducted for 12 design rainstorm events with different return periods,
rainfall patterns, and durations. The results indicated that, in the case of an equal rainfall
amount, the rainfall intensity is the key factor that influences the inundated area, depth, and
damages. However, the rainfall intensity was not the only determining factor, but the rainfall
pattern also affected the inundations. Considering the rainfall pattern, a higher rainfall peak
coefficient usually leads to severe urban inundation and damage. As a result, the lag time
would be shorter, which may further aggravate the impact of urban flood disasters. The results
of this study provided the insights into managing flood risks, developing urban flood

prevention strategies, and designing flood prevention measures.

Tsubaki and Fujita, (2010) developed a comprehensive method to conduct detailed
inundation flow simulations for a populated area with complex topographical features using
LiDAR data. Detailed geospatial information including the location and shape of each building
was extracted from the LiDAR data and used for the grid generation. The approach developed
could distinguish buildings from vegetation and treat them differently in the flow model. With
this method, a fine unstructured grid could be generated which represented the complicated
urban land features precisely without much labour for data preparation. The accuracy of the
generated grid with different grid spacing, grid type and the optimal range of grid spacing for
direct representation of urban topography were investigated. The developed method was
applied to the estimation of inundation flows in the basin of the Shin-minato River. A detailed
inundation flow structure was represented by the flow model, and the flow characteristics with

respect to topographic features were discussed.

Both 2D and 3D hydrodynamic models were built separately to quantify the flood
danger to a coastal city and studied by Rong et al. (2020). A digital city model was generated
by integrating building information modelling (BIM) and GIS technology based on digital
aerial photogrammetry for the 3D hydrodynamic model. The results revealed that 2D

hydrodynamic assumptions and approximations weaken if the vertical fluctuations were
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enormous, especially in urban environments. In comparison, a 3D model coupled with high-
resolution topographic data could provide a more realistic and accurate result for the complex
flow field. Furthermore, comparisons between using the digital city model and a standard
digital elevation model (DEM) in a 3D model were carried out. The flood inundation was
simulated step-wise using the standard DEM, while the wave front propagated in a more
realistic manner based on high-resolution topography data. Thus, a 3D hydrodynamic model
coupled with the digital city model was recommended for urban flood simulation, since it
would improve the ability of flood prediction and prevention.

Hou et al. (2021) established a rapid forecasting model of urban flood inundation based
on machine learning (ML) algorithms and a hydrodynamic-based urban flood model. The ML
model is obtained by training the simulation results of the hydrodynamic model and rainfall
characteristic parameters. Part of Fengxi New Town, China, was used to validate the
forecasting model. A comparison of ML predictions and hydrodynamic model simulations
showed that when using one ML algorithm (random forest (RF) or K-nearest neighbour
(KNN)) for inundation prediction, the accuracy of the inundation water volume and area was
not satisfactory, the maximum error being 28.56%. Combining the RF and KNN models can
effectively improve the prediction accuracy and overall stability. The mean relative errors of
the inundation area and depth were less than 5%, and the mean relative error in the estimation
of the inundation volume was within 10%. The simulated time of a single rainfall event can
be controlled within 20 seconds, which could provide sufficient lead time for emergency
decision-making, thereby helping decision-makers to take more appropriate measures against

inundation.

An enhanced inundation method (EIM) for urban flood hazard mapping at the large
catchment scale is proposed by Zhao et al. (2019). EIM can be easily coupled with urban
hydrological models and the coupled framework can be considered both source flooding and
non-source flooding in floodwater generation. In EIM, the floodwater spreading order in the
positive process is based on the topological relationship between depression outlets; the
floodwater from lower depression elements is considered as a feedback process. These
improvements made the proposed method suitable for inundation estimation in large urban
catchments. Dahongmen (DHM) catchment in Beijing, China was selected as the case study

area to illustrate the applicability of the proposed method. Historical inundation records of one
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heavy storm were applied to test the performance of the method. EIM is compared with
USISM (urban storm inundation simulation method) on the flood hazard map in the DHM
catchment, which reveals the effectiveness of the improvements. The results show that all
inundation locations were successfully identified by EIM and distributed in flooding areas
(water depth greater than 0.15 m) in the catchment. The average relative error of simulated
inundation depths was 15%, which indicated that EIM can successfully simulate flooding
scopes and depths in the study area. The results revealed that EIM can be a valuable tool for
mapping urban flood hazards at the large catchment scale based on GIS techniques.

2.6. Land Use Land Cover (LULC) Changes

Land cover modifications generally associated with the infrastructure development,
such as removal of vegetative surface, replacement of raw land with impervious pavements,
clearance and filling of natural ponds and streams, could induce increased number of
pollutants and harm the quality of urban water systems (Arora et al. 2013., Hardy et al. 2005.,
Jayasuriya et al. 2007, Elliott and Trowsdale, 2007). LULC changes play a significant part in
the runoff generation due to the modification in various hydrological processes such as
erosion, interception, evapotranspiration, and infiltration (Melesse and Shih 2002). To attain
an improved sustainable development and management of the watershed, knowledge, proper
understanding and evaluation of the effects of LULC changes on the watershed hydrological
process are of great importance to forecast the flood risk, flood hazard and flood potential
(Riebsame et al. 1994; Vorosmarty et al. 2000; Beighley et al. 2004; Chen et al. 2009; Ali et
al. 2011; Suriya and Mudgal 2012; Potter 1991; Wang et al. 2007). Analysis of LULC changes
is essential to quantify the changes in the runoff generation at different spatial and temporal
scales. LULC changes also determine the human-induced changes on the watershed. Several
studies (e.g., Lopez et al. 2001; Lorup et al. 1998; Saghafian et al. 2008; Lambin 1997) have
suggested combining traditional statistical tests and hydrological models to determine the
impact of LULC changes on runoff on a catchment scale. A large number of studies have
attempted to examine land use and land cover changes using remote sensing and GIS
techniques. The need for greater attention towards monitoring the changes in land use and land
cover in urban areas was understood, since past studies had shown that anthropogenic
activities influence the urban environment considerably (Stow and Chen, 2002; Alberti et al.
2003; Andersson 2006; Lundholm et al. 2010).
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A combination of Markov Chain models, cellular automata (CA), and logistic
regression (LR) was used to find the future land use land cover changes based on historical
data. Flood risk assessment was made at present and for future and land use land cover changes
scenarios (Mohammed et al. 2020)

Zope et al. (2017) analysed the LULC change using the toposheets and satellite images
for the watershed of Poisar River in Mumbai, India. For the assessment of flood, a combination
of HEC-RAS, HEC-GeoHMS and HEC-HMS with HEC-GeoRAS was used. These models
were integrated with remote sensing and GIS data to make a regional model for the flood
hazard analysis and estimation of flood plain extent. The effect of LULC change and impacts
of detention ponds on flood plain extent as well as surface runoff for different return periods
were calculated and flood plain maps and flood inundation maps were created. The results
showed that for low return period rainfall events, the hydrological impacts were higher due to
geographic features of the region.

An indicator based on the runoff coefficient, which allowed quantifying the impact on
runoff due to the increase of green infrastructure, was presented by Zimmermann et al. (2016).
This study suggested a method to identify the indicator with the flood risk. Four scenarios
were evaluated: baseline scenario (current scenario), three hypothetical (future) scenarios,
considering moderate and severe waterproofing situations, respectively, and one green
scenario with increased green infrastructure. The results showed that the moderate and severe
waterproofing scenarios increased flooding risk from 1.9 times to 4 times, respectively. This
implied a necessary reinvestment to be made in urban stormwater infrastructure in order to
maintain the original security levels. The green scenario would maintain the runoff coefficient,
even considering the major increases in population and urbanisation. Improving the green
infrastructure constituted a strong strategy to adapt to climate and urban changes and cope

with upcoming increase in the precipitation and rate of urbanisation.

Idowu and Zhou (2021) introduced a map-matrix-based, post-classification LULC
change detection method to evaluate multi-year land cover changes. Seven conditions were
recognised as potential contributing factors accountable for the increasing flood hazards in the
study area. Their weights were evaluated using a combined (hybrid) Shannon Entropy
weighting method and Analytical Hierarchy Process (AHP). The resulting flood hazard
categories were very low, low, moderate, high, and very high hazard levels. Investigation of
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the LULC change in the framework of flood hazard showed that most LULC changes resulted
in the conversion of wetland areas into developed areas and unplanned development in very
high to moderate flood hazard zones. The study concluded that the changes in LULC were

responsible for the rise in flooding in the study region.

Nguyen et al. (2021) developed an innovative method integrating hydraulic models
and land-use change to discover future urban flood risk, intending to decrease it in different
exposure and vulnerability situations. Sentinel-2 and SPOT-3 images were processed to
generate land cover maps, which were then used to forecast the land cover using the Land
Change Modeler Module of Terrset. Flood risk was calculated by integrating vulnerability,
exposure, and hazard using hydrodynamic modelling and the AHP method. Although flood
risk increases with urbanisation and population density, especially in the coastal region, the
area exposed to high and very high risks decreased due to a reduction in the poverty rate. This
study provided a theoretical framework supporting climate change related to risk assessment
in other metropolitan regions. The importance of using satellite imagery and the continuity of

data in the planning-related decision-making process was highlighted in the study.

2.7. Climate Change Impact on Urban Flood

From recent studies, it was observed that climate change affected the intensity of
precipitation in urban areas (Kang et al. 2021; Hosseinzadehtalaei et al. 2020; Sun et al. 2017,
Li et al. 2019; Han et al. 2015; Shahid et al. 2015; Kug and Ahn 2013 and Sun et al. 2014).

Climate change has been widely acknowledged as a global issue due to its anticipated
impacts on urban water systems in terms of changes in water runoff and urban flooding
(Ranger et al. 2011, Willems et al. 2012, Hallegatte et al. 2011). General Circulation Models
(GCMs) and Regional Climate Models (RCMs) are used to understand future climate changes.
RCMs have a higher resolution to understand the reliable estimation of local-scale climate
variables. Many studies have reported that the expected increase in design intensities due to
climate change can reach 20%-80%, depending on the region (Willems et al. 2012, Arnbjerg-
Nielsen, 2012, Ekstrom et al. 2005). This has posed a considerable challenge to the current
drainage system designed based on a specific return period. The stormwater management
system, therefore, faced severe capacity problems in coping with the increasing amount of

water due to climate change impacts. More importantly, future drainage design needs to
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consider the increased frequency and intensity of precipitation to maintain an acceptable

frequency of system overloading (Mailhot et al. 2010., Burrell et al. 2007).
2.7.2. Bias correction

In spite of the significant improvements in the results obtained by using RCMs in
replicating the regional climate scenarios, systematic errors were still present in them (Frei et
al. 2003; Suklitsch 2008; Suklitsch et al. 2011). The precipitation simulations produced by
RCMs are biased due to limited understanding of the process or due to inadequate spatial
resolution. It is, therefore, statistically needed to adjust with post-processing before it could
be used for the assessment of climate variables (Maraun et al. 2010; Winkler et al. 2011).
Various studies used daily precipitation data obtained from climate models that were then bias-
corrected and matched with the precipitation statistics already observed for modelling
applications. Appraising the impact of climate change over hydrological systems lies in
evaluating the effects of variations in the precipitation frequencies that may occur in the future.
This is a major challenge since climate models do not always simulate the daily precipitation
values very accurately.

Various bias correction methods were used in climate change impact studies. Quantile
mapping is one of the widely used methods (Panofsky and Brier, 1968; Thrasher et al. 2012).
Quantile mapping corrects the model variable by creating quantiles of the distribution of
model onto those of the observations. This method has been used worldwide to analyse the
output of climate models (Thrasher et al. 2012). Another technique used for bias correction is
the cumulative distribution transformation method (Michelangeli, 2019), assuming that the

modelled and observed CDF mappings affect future data.

2.8. Flood Mitigation

Flood mitigation comprises of the various actions that alter the exposure of life and
property due to flooding. For mitigation of the floods in urban areas, some of the established
best management practices (BMP) are preferred. These BMPs are the non-structural measures
which are used in the developing regions to minimise or reverse the impacts of urbanisation.
The suggested BMPs should be economically justifiable and environmentally sustainable. The

two basic requirements that BMP should ensure is: (i) it should result in the reduction of the
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flood volume; and (ii) the flood peak discharge should be attenuated by implementing the
BMPs.

An approach was presented for low impact development type of BMP for stormwater
management to manage the urban runoff for the region of Beijing Olympic Village (Jia et al.
2012). Coupled SWMM-BMPDSS model was used to evaluate the runoff peak rate and the
reduction in flood volume after defining the low impact development (LID) approach and
BMPs into the model. Analysis of low impact development were carried out for BMPs such
as green roofs, green spaces and porous pavements. They recommended the BMP plan resulted

in the reduction of flood volume by 27% with the optimisation of the cost.

Te Xu et al. (2017) developed a new methodology based on SWMM for block scale
low impact development (LID) best management practices (BMP). For the study, SWMM 5.1
was to identify the BMPs and these are simulated for Haihe River in Tanggu Bay, Tianjin,
China. They referred “Technical Guide for the Construction of the Sponge City” for setting
the parameters for LID-BMPs.

Meena et al. (2018) described a modelling approach to incorporate four types of BMPs
in the study site and estimated the impacts of BMPs on flood volume and peak flow reduction.
They showed the effects of the suggested BMPs in reducing floods using PCSWMM, for the
urban area of the Bengaluru city. The evaporation was assumed to be negligible; the runoff
over the catchment was infiltrated, flowed away or stored on the surface. The model was
simulated for the conditions of pre-BMP and post-BMP. Post BMPs included the installation
of permeable pavement, infiltration trench, and rain barrel storage and bioretention cell. The
study showed that by adopting BMPs, that there was around 40% reduction in the flood

volume.
2.9. Summary

In this Chapter, a comprehensive review of the literature on trend, stationarity,
homogeneity, frequency analysis of extreme events and LULC changes are presented. The
literature review also provided the clarity of the appropriateness and applicability of the
software available which can be used in the study. Detailed review of literature on climate
change impact on urban flood and flood mitigation has also been reported. Some ideas, which

were derived from the review of the literature, and used in the study are presented below.
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Performing the frequency analysis on the basis of L-moments to estimate the design storms

of different return periods for the watershed, using daily annual maximum rainfall.

The watershed delineation in the study considering flow direction and flow accumulation

in the catchment using HEC-GeoHMS extension in ArcGIS.

Determination of peak discharges and flow hydrographs for various duration rainfall
events using the HEC-HMS and SWMM software.

Integration of GIS to HEC-HMS, HEC-RAS and SWMM for the urban flood inundation
mapping. The applicability of software used can be established from the above-mentioned

studies.
Climate change impact on urban flood carried out using RCM models.

Use of BMPs as flood mitigation measures.
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CHAPTER 3

STUDY AREA AND METHODOLOGY

3.1. Introduction

This Chapter gives details of the area taken up for the study and data collected during
the visit to the Andhra Pradesh Capital Region Development Authority (APCRDA) in the
proposed legislative capital city region. The Chapter also explains the methodologies including
rainfall-runoff modelling adopted in the study to estimate the influence of rainfall on runoff.
Flood inundation maps are generated by hydraulic modelling to locate the depth and area that
are susceptible to flooding. The frequency analysis of rainfall data was carried out to estimate
rainfall depth for different return periods prior to any model application. The methodology
used for calculating land use and land cover changes and different indices is explained.
Methods used for climate change impact and mitigation for urban flooding are also included
in this Chapter.

3.2. Study Area

Based on the Andhra Pradesh Reorganisation Act, 2014, the state of Andhra Pradesh
was bifurcated into the states of Telangana and Andhra Pradesh, initially with a common
capital city, Hyderabad. Later, a new capital city for Andhra Pradesh, Amaravati, was
proposed. The administration created the Andhra Pradesh Capital Region Development
Authority (APCRDA) to plan, develop, and manage the capital city. Amaravati is situated at
the banks of the Krishna River, on the upstream side of Prakasam barrage. Development is
proposed over an area covering about 217 km?, spread across 25 villages of Guntur district.

The capital city zone has rich natural features, including hillocks, stream islands, abundant
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water, fertile soil and greenery. While the abundance of water is a boon for the capital city,
seasonal flooding of the Krishna River and the Kondaveti Vagu pose a threat to the capital city
region. Amaravati is proposed to be developed as a capital city with a vision of building up a
sustainable and green capital city. Due to the seasonal floods of Kondaveeti VVagu occurring
every year and causing floods in the low-lying areas, Kondaveeti VVagu has also come to be
known as Stream of Sorrows. The capital city region has four reservoirs, viz., Ananthavaram,

Sakhamuru, Neerukonda and Krishnayapalem.
3.2.1. Boundary map of the study area

The study area, shown in Fig 3.1, shows the geographic location of Andhra Pradesh in
India and the location of the Kondaveeti VVagu catchment in Andhra Pradesh. Geographically,
Amaravati lies between the latitudes 16°17'30" N and 16°34'55" N and between longitudes
80°15'30"E and 80°39'00 "E. The elevation of the study area ranges from 13 m in the SE to

22m, AMSL (above mean sea level) in the north.

Fig 3. 1 Map of the study area showing Kondaveeti Vagu catchment
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3.2.2. Kondaveeti Vagu and its tributaries

Perecherla village of Guntur district, which has the Kondaveedu hill ranges, the
originating point of Kondaveeti Vagu, is situated on the south of the proposed capital city,
Amaravati. The vagu (a small stream) passes through Achampeta, Tadikonda, Mangalagiri and
Amaravati over a length of 29.5 km before its confluence with Krishna River near the upstream
of Prakasam Barrage. The major tributaries which join Kondaveeti Vagu at different points
are Paala Vagu, Kotella VVagu, and Erra Vagu. Pala Vagu is spread over a length of 16.3km.
To overcome the issue of flooding in Kondaveeti Vagu, a lift system is built to handle the
floodwater. The pump house is built in the low-lying region; Undavalli of Amaravati near the
upstream of Prakasam barrage is installed with 16 pumps, each capable of lifting 350 m3/sec
of water to transfer it back to the Krishna River. One of the pumps is kept as a standby in case,

any of the pumps fail any time.
3.2.3. Climatic condition

The temperature of the warmest month, May, in the region has an average high
temperature of 42°C and an average low temperature of 27°C. Most of the rainfall occurs in
the month of July in Amaravati. The average annual rainfall in the region is about 870 mm.
The average high and average low temperatures range between 28°C and 15°C during the

coldest months of December and January.
Humidity

The humidity in the study area is the highest during July to September and the least
from March to April. The relative humidity in the district around Guntur ranges from 63% to
81%. The most extreme moistness is seen during September. This is because, before the end
of August, this area would have received significant rainfall, and all the tanks would be full,
and waterways and streams would be streaming in rapids. These make the relative humidity in
the district as high as 81%. In the dry and hot months of April and May, when practically all

the tanks and water resources are dry, the most extreme humidity is about 63%.
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3.2.4. Land Use Land Cover (LULC)

The landscape of the city of Amaravati is dominated by hills, tanks, forests and rock
formations. From the land use and land cover map of the Kondaveeti Vagu catchment, it can
be seen that the built-up area in the catchment is 25.2%, while the barren land covered 16.76%
of the catchment area. As the catchment comprises of fertile soil, around 51.4% is the cropland,
and the vegetation cover over the catchment is around 6.17% with the water bodies over 0.4%

of the total area.
3.3. Data Collection

The various data required for carrying out the flood inundation modelling include the
Digital Elevation Model (DEM), rainfall data of the study area, geometric and cross-sectional
data of the streams and reservoirs present in the watershed, topographical details, hydro-

meteorological data like infiltration, base flow etc.

Rainfall data was collected from the Indian Meteorological Department (IMD) for the
past 59 years (from 1961 to 2020) as gridded data (0.5° x 0.5°). Hourly rainfall data from
Gannavaram Airport and daily rainfall data from APCRDA were also collected. Shuttle Radar
Topography Mission (SRTM) DEM with 30m x 30m resolution, downloaded from United
States Geological Survey (USGS), is used in the study to delineate the watershed as well to
generate the terrain for the hydrodynamic modelling. Toposheets, cross-sectional data of the
Kondaveeti Vagu, Pala Vagu, Anathavaram, Sakhamuru, Neerukonda and Krishnayapalem
were collected from APCRDA. The land use and land cover map, and soil map were
downloaded from Bhuvan website. Discharge data or water stages for the Vagu were not
available. From the reports of APCRDA, the only recorded data known about the discharge
was that for 100-year return period the peak discharge was 460 m?/s at the confluence point of
Kondaveeti Vagu with Krishna River. Table 3.1 shows the different satellite images that were

collected for the study.
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Table 3. 1 List of satellite images collected

Satellite Date
Landsat5 TM 03 June 1990
Landsat5 TM 27 April 2000
Landsat5 TM 09 May 2010
Landsat 8 OLI 01 May 2013
Landsat 8 OLI 17 March 2014
Landsat 8 OLI 20 March 2015
Landsat 8 OLI 22 March 2016
Landsat 8 OLI 25 March 2017
Landsat 8 OLI 31 May 2018
Landsat 8 OLI 15 March 2019

Sentinel 2A 26 April 2016
Sentinel 2A 11 April 2017
Sentinel 2A 16 April 2018
Sentinel 2A 26 April 2019

Regional climate model data was obtained from Coordinated Regional Climate
Downscaling Experiment (CORDEX) which is of 50km x 50km resolution simulated under
RCP 4.5 and RCP 8.5 scenarios. Based on the availability of climate data, five models were
selected for the impact studies (Table 3.2). RCP 4.5 is a scenario with stabilized radiative
forcing of 4.5 W m—2 i.e., approximately 650 ppm CO2-equivalent, which considers the long-
term global emissions of greenhouse gases on short-lived species. Thomson et al. (2011)
suggested that RCP4.5 scenario in climate models investigated the remote future response of
climate system by stabilizing the anthropogenic components of radiative forcing. RCP 8.5 is
characterized as high greenhouse gas emissions scenario over time with increased

concentration levels of greenhouse gases (Riahi et al. 2011). Climate model data has bias when

compared with observed data.
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Table 3. 2 List of climate models

Acronym Expansion Modelling Centre
Commonwealth  Scientific
ACCESS Australian Community Climate and | and .Ind_ustrial Research
Earth System Simulator Organization and Bureau of
Meteorology, Australia
. . National Center for
CCsSM4 Community Climate System Model Atmospheric Research
Centre National de
Recherches
Centre National de Recherché | Meteorologiques, Centre
CNRM_CMS Meteorologiques Europeen de Recherche et de
Formation  Avancee en
Calcul Scientifigue
Bjerknes Centre for Climate
NorESM 1 Norwegian Earth System Model 1 Research, Norwegian
Meteorological Institute
Max Plank Institute Earth System | Max Planck Institute for
MPI-ESM-LR Model at Base Resolution Meteorology
GEDL-CM3 Geophysical _ Fluid Dynqmics Geophysical Fluid Dynamics
Laboratory Climate Model version 3 | Laboratory

3.4. Methodology

3.4.1. Trend analysis

There are mainly two types of statistical tools that are being used to identify the trends
in time-series: parametric and nonparametric. Parametric trend test of the annual average
precipitation series was carried out using the linear regression method. This method is
extensively used in the research since it gives results that are simple and easy to interpret,
analytically as well as graphically, considering the parameters and shape of the trend equation
(Wibing and Gloicki 2002; Feidas et al. 2004). The value of the slope determines the sign of
the trend for temperature. In this interpretation, a slope which is greater than zero indicates a
positive or increasing trend, a slope which is less than zero indicates a negative or decreasing

trend and a slope that is equal to zero indicates no trend (no change).

The occurrence of monotonic negative or positive trends was identified using the non-
parametric MK1 trend test. The MK1 test was considered for monotonic series, and therefore,
it was not appropriate for cases with periodic or sequence data. The Modified Mann Kendall

(MK2) trend test was used to obtain better results of the trend from the autocorrelated series.
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Using Innovative Trend Analysis (ITA) technique, monotonic and non-monotonic trends in
the data were identified with or without any pre-condition of the serial correlation, size of the
dataset and distributions. Trends in low, medium and high ranges in the rainfall data were
checked using ITA technique. For finding the proper slope of a linear trend, Sen's slope
technique, which uses a linear model for the estimation of residual’s variance and trend's slope,
was used. The Kolmogorov-Smirnov test was used to identify the normality of maximum
monthly, seasonal and annual rainfall data (Deepesh and Jha 2012; Kanji 2006). It should be
noted that single data error or outliers will not produce a considerable impact on Sen's slope
technique (Gilbert 1987). The spatial distribution of the trends in monthly, seasonal and annual
maximum rainfall series was interpolated using the inverse distance weighting (IWD) method
in ArcGIS 10.3 environment. The MK1, MK2 and ITA approaches have many advantages
which make them valuable in analysing hydrological variables.

3.4.1.1. Mann-Kendall Test (MK1)

MK1 trend analysis is a rank-based non-parametric test (Kendall 1975; Mann 1945).
The MK1 test statistic S is computed using equation (3.1), and the sign function is calculated
using equation (3.2).

S = Til i sign(x; — x;) (3.2)

J=1i=j+1
1 ... for (x>1)
sign(x) =5 0 ... for (x=1) (3.2)
-1 ... for (x<1)

where n - length of data

x; - rank for j" observations (j = 1,2,3...n— 1),

x; - rank for i" observations (i = j+1,2,3....n)

For the time series, S is the test statistic considered where the length of observation n > 10

is usually asymptotically allocated with variance given in equation (3.3) and mean E(S) = 0.

nn—1)2n+5)

o~ (3.3)

V(s) =

The standardised Z value is calculated as shown in equation (3.4)
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S—-1

( when §>0
JVV(s)

Z=10 when S=0 (3.4
S+1

VV(s)

Z follows the standard normal distribution with mean zero (un = 0) and variance equal to 1.0

when S<0

(62 = 1).The null hypothesis (Ho) indicates that there is no significant trend, and the
alternate hypothesis (H1) indicates that there is a significant trend. Therefore, in a two-sided
test, the hypothesis Ho and H1 are verified at significance levels (a), i.e., a=10% with Z =
1.645, a = 5% with Z = + 1.96 and a = 1% with Z = £ 2.33. If £ Z >+ Z /2, then H1 is
accepted, and Ho is rejected. Positive Z indicates an increasing trend and negative Z indicates

a decreasing trend.
3.4.1.2. Modified Mann Kendal (MK2)

To detect a trend in the time series with autocorrelation, pre-whitening is used, which
is likely to decrease the significant trend detection rate in MK1 test (Cunderlik and Burn 2004;
Kumar and Rathnam 2019; Yue et al. 2003; Wang et al. 2020). Hence MK2 test (Hamed and
Rao 1998) was also applied to the autocorrelated series for better detection of the trend.
Initially, the Theil and Sen's median slopes were calculated and subtracted from the data. Then
the ranks of the observations p, were analysed, and the autocorrelation between these ranks
was evaluated. To arrive at the variance correction factor n/ng, only the significant values of
pr Were evaluated. The variance correction factor for positive n is required since the variance

of S is underestimated when autocorrelated positively charged data is used (equation (3.5)).

n

n-—1
2
Zo1+ xZ K-k —1)(n—k—2 35
T e haop LR ) o (39
where n is the actual length of data
ng - 'effective’ number of data to account for autocorrelation
Py - autocorrelation function of ranks of the data.

Corrected variance, V*(S) is given by

V(S) = V(S) X ni (3.6)

S
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where V(S) is given as

nn—1)2n+5) - X%, t;(t; — 1)(2t; + 5)

= 3.7
v(s) o (3.7)
The standardised test statistics Z (N (0,1)) is calculated by
/ when S > 0\
\/V*(S |
S +1
when S <0
V*(S

3.4.1.3. Innovative Trend Analysis

The ITA technique, proposed by Sen (2012), was used to analyse the rainfall trends for
maximum monthly, seasonal and annual time series. The advantage that ITA technique
possesses over other trend analysis methods is, that, it does not involve assumptions like non-
normality, serial correlation and sample number. For ITA, the dataset was divided into two
equal lengths. Both parts were arranged in increasing order. The first half of the dataset were
plotted on the X-axis, and on the Y-axis- the second half of the dataset were plotted. When the
points are plotted on the 45° line (1:1 ideal line), no trend was observed. An increasing trend
existed for the points in the upper triangular area of the 45° line. If points are in the lower
triangular area of the 45° line, then a decreasing trend was observed (Zekéi 2012). In some
situations, non-monotonic trends occur for the variable concerned, which indicated decreasing
as well as increasing trends which occurred within the series temporally. In such cases, for
detailed interpretation, points that are plotted on the 45°line graphs are separated into clusters
called low, medium and high. The main advantage of ITA technique is that the MK trend test
assumptions are avoided here and further, square area plots can calculate the trend magnitudes.
Therefore, the trends of low, medium and high values of hydro-climatic or hydro-

meteorological variables can accurately be recognised through this technique.
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3.4.1.4. Sen'sslope

The magnitude of Sen's slope (Sen 1968) is calculated as using equation (3.9)

. . (Yj=Yg) . .
S; = median (—(j—k) )for i=123....N,(j>Kk) (3.9)
where, Y; and Y, are observations at times j and k. The median of the N = @ where n is

the number of time-periods.
3.4.2. Stationarity and homogeneity analysis

Homogeneity of precipitation series is calculated by Standard Normal Homogeneity
Test (SNHT), Buishand's test, Pettitt's test and von Neumann's test. Stationarity and non-
stationarity of precipitation time-series were determined using Kwiatkowski— Phillips—
Schmidt-Shin (KPSS), Phillips-Perron (PP) and Dickey-Fuller (ADF) methods.

3.4.2.1.  Stationarity analysis

The main objective of trend analysis is to understand whether the data set has general
decreasing or increasing trend characteristics. But, this behaviour of the time series does not
show non-stationarity always. To find out the non-stationarity in series, further analyses are
required. In this study, three statistical analyses are used identify the non-stationarity in the
annual average precipitation series. These are ADF, KPSS and PP approaches. These methods
are considered because they are commonly used in hydrological research (Yoo, 2007; Wang
et al. 2005; Wang et al. 2006).

Phillips-Perron test is based on the equation (3.10)
Xe=pu+at+nX,_tu, (3.10)

where, u and a are the first-order polynomial regression parameters and u: is not considered
as white noise. PP test is the modification of ADF test (Dickey and Fuller, 1979), by correcting
the heteroskedasticity and serial correlation present in the error. The unit root null hypothesis

is verified with HO: = = 1 in contrast to the alternate Ha: n < 1.
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KPSS method was introduced by Kwiatkowski et al. (1992). It matches the unit root
test by finding the null hypothesis of stationarity either around a deterministic trend or a fixed
level against the alternate of difference stationary series. The series {Xi} is stated as the sum
of stationary error (gt), random walk (r), deterministic trend (at) and the test is Lagrange
Multiplier Test of the hypothesis (equation (3.11))

Xt = at + T‘t + Et (311)

re=ry_1+u, , where u, are iid(0,c?) (3.12)
3.12

The null hypothesis Ho: cu2 = 0 and o = 0 against the alternative Ha is the same as that of
deterministic trend (trend stationarity), to find the stationarity around a trend stationarity, in
AR (1) model and ADF test, as shown in equation (3.13)

Ve =0y + & (3.13)

The stationarity against the unit root null hypothesis alternative corresponds to: Ha: 6 < 1
against HO: 0 =1. The model can be also formulated as (equation (3.14))

Ay=(0 — Dyt & =mye g & (3.14)
where 1= 0 — 1= 0 (1). The unit root hypothesis converts to HO: = = 0 against HA: = < 0.

The test statistic of ADF (t') is calculated by equation (3.15)

A~

0-1 7
se() se(R)
The asymptotic distribution of 7 is not normal. This distribution depends on the deterministic

$= (3.15)

components. In the simple case, the 5% critical value (one-sided) is —1.95 and not —1.65.

PP and ADF tests show non-stationarity in the time-series when the result shows null
hypothesis HO, while the KPSS test show stationarity in the time-series data for null hypothesis
HO. A confidence level of 0.05 was considered for the stationarity test in this study. The null-

hypothesis HO is rejected when the confidence level is higher than the Probability (P-value) of
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the statistics. van Gelder et al. (2007) and Sen and Niedzielski (2010) explained these tests in

details.
3.4.2.2. Homogeneity and change point analysis

In this study, change point analysis was done for the annual average precipitation time
series to determine the time period showing the discontinuity in the data for this study. This
can be due to the effects of various factors like climate change, human interference or
observational error while monitoring or recording. Four methods are selected in this study to
determine the homogeneity of the precipitation series and to find the change point. These
methods are: the Buishand range test (Buishand, 1982), the SNHT (Alexandersson, 1986), the
von Neumann ratio test (von Neumann, 1941) and the Pettitt test (Pettitt, 1979). The SNHT,
Pettit test and Buishand range test identify the year of change point, while von Neumann ratio
test shows only the presence of change point in the series (Winjngaard et al. 2003). The SNHT
test detects change point near the starting and end of the time-series while Buishand test and
Pettitt test identify change point in the middle of the series. (Hawkins 1977, Kang and Fadhilah
2012, Costa and Soares 2009).

In SNHT a statistic T,,, as shown in equation (3.16), is used to relate the average of the first y

years with the last of (n-y) years:

T,=yzi+(n—y)z, ,y=123,..,n (3.16)
where
7 =iy, 1t (317)
7, = — Zn:(y"_y_) (3.18)
2T n— o S '

The year y has break if value of T is maximum. To reject null hypothesis, the test statistic,
Ty = maxT, (3.19)

must be greater than the critical value, which depends on the sample size.
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In Buishand Range test, the adjusted partial sum is defined as given in equation (3.2).
S;=0 and S;=Y_,(;,—-Y) y=123,..,n (3.20)

When the series is homogeneous, then the value of Sy will rise and fall around zero. The year
y has break when S’y has reached a maximum (negative shift) or minimum (positive shift).
Rescaled adjusted range, R is obtained by (equation (3.21)

max S, — min S,

R = 0<ysn 0<ysn (3_21)
N

The % is the critical values used by Buishand (1982).

Pettitt Test is based on the rank, ri of the year, y; and ignores the normality of the series.
X,=2Y  n—-y(n+1),y=123,..,n (3.22)
The change is observed in year k when

X, = max |X, | (3.23)

1<y=n

The result is then related with the critical value by Pettitt (1979). The ratio of mean square of
successive year to year difference to the variance is used in Von Neumann Ratio Test. The test
statistic is shown in equation (3.24)

11'1—_11(Yi - Yi+1)2

sy .

The null hypothesis HO is considered as homogeneous series and the alternative

hypotheses Ha is non-homogeneous.
3.4.3. Land Use Land Cover changes

3.4.3.1. Land Use Land Cover classification

Supervised classification technique was used to classify the images into five classes,

namely, cropland, barren land, built up area, vegetation, and water. Supervised classification

44



is the process of sorting pixels into a finite number of individual classes or categories based
on their digital values. If a pixel satisfies a certain set of criteria, then the pixel is assigned to
the class that corresponds to that criterion. In this process, the pixels that represent certain
patterns are selected or can be identified with the help of other sources. Knowledge of the data,
the classes desired and the algorithm to be used are required to be planned before selecting the
training samples. In this study, Maximum Likelihood Classification (MLC), was the algorithm
used for supervised classification, which is one of the most popular supervised classification
methods used with remote sensing image data. This method is based on the probability that a
pixel belongs to a particular class. The basic theory assumes that these probabilities are equal
for all classes and that the input bands have normal distributions (Erdas Inc, 1999). Training
sets were given as input to as signature files to classify the FCC image. ArcGIS 10.3 software

was used for supervised classification.
3.4.3.2.  Accuracy assessment

Error matrix (or) Confusion matrix was used for accuracy assessment. Producer's
accuracy, user's accuracy, overall accuracy and kappa coefficients were calculated for the data.
Google Earth images were used as reference data to compute the accuracies and kappa
coefficient.

The producer's accuracy is defined as the ratio of correctly classified pixels to the total
reference pixels. The user's accuracy is referred to as the ratio of correctly classified pixels to
the total classified pixels. Overall accuracy represents the ratio of a total number of correctly
classified pixels to the total number of pixels. All the three types of accuracies are expressed
as the percentage. Kappa coefficient quantifies the level of information represented in the main
diagonal of the table and later these values are adjusted for the amount of agreement that could
be expected due to chance alone. Kappa coefficient, given in equation (3.25) is always less
than or equal to 1. A value of 1 indicates perfect agreement between the classified data and the
actual data (Gwet, 2002; Viera and Garrett, 2005).

0A-AC
1-AC

kappa coefficient = (3.25)

where OA = Overall Accuracy and AC = Agreement by Chance.
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3.4.3.3. Indices

NDVI, MNDWI, NDBI, and NDISI, were calculated for Landsat images from 2013 —
2018. NDVI, NDBI, and MNDW!I1 were calculated for sentinel images from 2016 — 2019.
NDISI was not possible to be calculated for sentinel images as there was no thermal band for
sentinel data. Raster calculator in QGIS 3.4 was used to calculate the indices for the
corresponding data. Corresponding bands in different satellites are shown in Table 3.3. The

following expressions have been used to calculate different indices.

(i) Normalized Difference Vegetation Index (Lucas 1995):

NIR — RED
= — 3.26
NDVI NIR + RED (3.26)

(i)  Normalized Difference Built Index (Zha et al. 2003):

SWIR1 — NIR

= (3.27)
SWIR1 + NIR

NDBI

(ili)  Modified Normalized Difference Water Index (Xu, 2006):

MNDWI GREEEN — SWIR1 (3.28)
" GREEN + SWIR1 '

(iv)  Normalized Difference Impervious Surface Index (Xu, 2010):

TIR — (MNDWI + I\QIR + SWIRl)
NDISI = MNDWT + NIR + SWIR1 (3:29)
TIR + ( ; )
Table 3. 3 Corresponding bands in different satellites
SI No: Band Landsat 8 Sentinel 2
1. Green Band 3 Band 3
2. Red Band 4 Band 4
3. Near Infrared Band 5 Band 8
4. Shortwave Infrared Band 6 Band 11
5. Thermal Infrared Band 10 -

46



3.4.4. Rainfall data analysis of extreme events

For the frequency analysis of the rainfall data, 24-hour maximum annual series was
generated from the collected rainfall data. Fig 3.2. shows the rainfall variation. 24-hour
maximum rainfall events in the years 1969, 1977, 1989, 1994, 1996, 2005, 2006, 2012, 2013
and 2017 are 185.95mm, 138.43mm, 182.63mm, 135.83mm, 151.22mm, 175.05mm,
146.83mm, 152.70mm and 157.21 respectively.

Frequency analysis was carried out in the study with the help of EasyFit software.
EasyFit is effectively used by business analysts, engineers, researchers and scientists for
different purposes like risk analysis, economics, market research, reliability engineering,
hydrology, forestry, image processing, and many other areas where the users need to deal with
random data. The ranking by three goodness of fit test approaches, viz., Kolmogorov Smirnov,
Anderson Darling and Chi-Squared method was obtained. The distribution with the best fit
rank was chosen for the estimation for 24-hour maximum rainfall for different return periods.
The analysis of the precipitation data showed the Generalised Extreme Value (GEV)
distribution as the best fit. Therefore, one-day maximum rainfall depth was estimated for
various return periods of 2, 5, 10, 50, 100 and 200 years using GEV.
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Fig 3. 2 Depth of rainfall from 1961-2020
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3.4.5. Hydrologic modelling
3451 HEC-HMS

HEC-HMS is one of the models used for carrying out the hydrological modelling in
the catchment area. HEC-HMS is a differential surface - water model that is reliable for the
simulations of rivers, watersheds, channels, and water-control structure behaviour, thus
predicting flow, stage, and timing. The model carries out the computation of the rainfall losses
into the soil and the excess rainfall is converted to runoff and routing (Maidment and Seth,

1999). HEC- HMS version 4.2.1 is used in the study to carry out the hydrologic modelling.

Fig 3.3 shows the user interface of the HEC-HMS model comprising of the basin
model, meteorological models, control specifications and time-series data. All the sub-basin,

junction and reaches can be identified in the Kondaveeti Vagu catchment.

& HEC-HMS 42.1 [C\Users\user\Desktop\Finaal trial2\trail hms] - S EA
File Edit View Components Parameters Compute Results Tools Help
D@ S }T G Q& & @ P S P Hone selected- ~None Selected-- VB EE@
ol % Basin Model [trail] [E=ER
&)~ |, Basin Models A
= B
Meteorologic Models

Control Specifications
Time-Series Data

Outlett

Components | Compute | Results

{7 Basin Model

Name: trail
Description: |trail =
Grid Cell File: |C:\Users\user\Desktop\Finai| (5

Local Flow: No v
Flow Ratios: |No
Replace Missing: No
Unit System: Metric
Sediment: |No

Water Quality: No

< |« |I< |[< |I<

NUTE TU0UST BEgIm OpEning Project wal T arecory CroSers JserDEskop Vinaal TalZ St une Z6JUn202U, 187 1331
NOTE 10019: Finished opening project "trail”in directory "C:\Users\user\Desktop\Finaal trial2" at time 28Jun2020, 18:14:32.

Fig 3. 3 User interface of HEC-HMS showing basin model file
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HEC-HMS has three major components i.e.

Basin Model: The basin model component contains descriptions associated to the physical

characteristics of the basin. Basin model consists of the sub-basins, junction and river

reach.

Sub-basin: Various inputs that are to be provided for a sub-basin are the area of the sub-

basin, downstream of the sub-basin, loss method and the transform method. The area of

the sub-basins is given as obtained in ArcGIS during the terrain processing.

Loss model - SCS Curve Number method

a)

b)

c)

Different loss methods available in HEC-HMS are Green and Ampt, Deficit and
Constant, Exponential, Initial and Constant, SCS Curve Number, Smith Parlange, and
Soil Moisture Accounting. In the study, the SCS CN method is used as the loss method
for estimating the initial abstraction parameters for the sub-basins.

Basin Curve Number depends on the physical property of the sub-basin. While data
processing of the DEM using HEC-GeoHMS extension in the ArcGIS environment,
the basin Curve Number values were estimated for every sub-basin. These values of
sub-basin Curve Number were then obtained from the attributes table of the sub-basin
layer.

Percentage of imperviousness for each sub-basin is considered as 60.0% for the city

area in the Kondaveeti Vagu catchment since the urban area is still under development.

Transform method - Modified Clark Method

a)

For Modified Clark method, Kirpich formula (Eq.3.30) (Subramanya 2018) is used to
calculate the time of concentration. One of the basin parameters is time of
concentration Tc (in minutes) which represents the physical characteristics of the
basin, the time taken to travel to the outlet from the farthest point in the watershed. It

depends on length travelled (L) in metres and slope S of the watershed.

Ll (3.30)

50.385

Tc=0.01947(

The land use and land cover digital maps were utilized to find the spatially varying

roughness coefficient and CN values for the floodplain.
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b) Basin Lag time in hours for each sub-basin was computed using equation (3.31)
(USACE, 2000) and then is multiplied by 60 for converting into minutes.

Lag:fiﬂﬁilfﬁ (3.31)

1900xY0-5

where S = Maximum retention

Lag = basin lag time (hours)

L= hydraulic length of the watershed (the longest flow path in feet)

Y = Basin slope (%)

Reach: For routing, Muskingum—Cunge method is applied to the handle the water
movement in the reach.

Junction: The downstream reach to the junction is given as the input for a junction in

the model.

Precipitation model consists of precipitation data input files of a past flood event and for
return periods of 2, 5, 10, 50, 100 and 200 years.

Control specifications is the section that comprises information related to the date and time
of the occurrence of a storm event or the time interval for which the simulation is to be
carried out.

The simulation is run to obtain the peak runoff hydrographs at the outlet as well as for each
junction. The hydrographs generated are used as the input flow hydrographs in the
unsteady flow data in HEC-RAS.

Data Processing Tools
HEC-RAS is used for the modelling of flood in the Kondaveeti Vagu catchment. To
delineate the watershed, ArcGIS 10.3 containing Arcinfo, ArcCatalog, ArcToolbox and
extensions such as 3D analyst, spatial analyst, ArcHydro tools and HEC-GeoHMS was used.
In the present work SRTM 30m x 30m DEM in ESRI format has been used in developing the
HEC- HMS basin model.

Terrain processing is carried out in ArcGIS by using the HEC-GeoHMS extension. It
involves the following procedure for pre-processing, project setup, characteristics, and HMS:
Pre-processing

I.  Fill Sinks: Resampling and interpolating of the grid can cause errors in the DEM which

may result in pits or depression. Thus, to create a depressionless DEM, filling of the

50



Vi.

Vii.

viil.

iX.

depression was done by increasing the elevation of lower elevated cells to the level of
the neighbouring terrain. Raw DEM is the input given for generating fill sinks.

Flow Direction: It defines the direction of the steepest descent for each terrain cell.
Hydro DEM is given as input data for generating the flow direction map.

Flow Accumulation: It defines the number of upstream cells which will be draining
into a given cell. By multiplying the flow accumulation value to the grid cell area,
upstream drainage area can be determined. Flow direction data is given as input for
generating the flow accumulation of terrain.

Stream Definition: This progression arranges all cells with a flow accumulation greater
than the user-defined threshold as cells belonging to the stream network. The flow
accumulation for a specific cell must surpass the user-defined threshold for a stream
to be started. Flow accumulation grid and the number of cells are given to define the
stream as input data for generating stream definition.

Stream Segmentation: For dividing the stream grid into segments, stream grid and flow
direction grid are used as input data. Streams segments are the parts of a stream that
combines two successive junctions, a junction and an outlet, or a junction and the
drainage divide.

Catchment Grid Delineation: Knowing the input of flow direction grid and stream link
grids for all of the stream segments, the watershed is delineated into sub-basins.
Catchment Polygon Processing: Using the catchment grid delineation as input, the
polygon sub-basin layer of the catchment is produced.

Drainage Line Processing: Giving the input of stream link and flow direction, the
stream vector layer of drainage line is generated.

Adjoint Catchment Processing performed in the sequential order.

Project setup

Start a new project: Project is defined by giving the name of the project and thus input
of the location to save the project. Project area and project point are defined. Then the
watershed is provided with an outlet or inlet by adding project points.

Generate project: After adding the project point and defining the project, generate

project is done.
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Characteristics
River length, river slope, longest flow path, basin centroid and the centroidal longest
flow path are the characteristics used in the study.

Parameters
River name, basin name, grid cell processing and sub-basin parameters from raster are

the parameters used.

HMS
i.  Basin model file
ii.  Grid cell processing
iii.  HMS Schematic
iv.  Meteorological model file
v.  Creation of an HEC-HMS project.

3.45.2.  Storm Water Management Model (SWMM)

The SWMM (Huber,1984; Metcalf and Eddy Inc, 1971; Peterson and Wicks, 2006;
Burger et al. 2014) is a dynamic rainfall-runoff simulation model based on momentum, mass
and energy conservation laws. This model is used in the design, analysis and planning of
drainage systems and for the simulation of runoff quality and quantity in urban areas
(Rossman, 2010, Martinez-Solano et al. 2016; Rabori and Ghazavi, 2018). Additionally,
SWMM can simulate the quality and quantity of runoff generated in each catchment and
through each pipe during a simulation period. Compared with other models, SWMM results
indicated that runoff reached a peak in the shortest time, and the calculated values were closer
to the measured values (Lee et al. 2010). In this study, each catchment (containing both
impervious and pervious areas) was regarded as a nonlinear reservoir, and its net rainfall was
delivered from or overflowed to other catchments. Runoff that changes over time was
calculated using the combined continuity equation and Manning's equation. According to the
specific circumstances of the study area, infiltration was calculated using the Horton model.
For the hydraulic calculations of the pipeline network, the dynamic wave method is used
because it considers the counter-flow, pressure flow and storage of the drainage system.

SWMM is used all over the world, for planning, analysis and design related to
stormwater runoff, combined and sanitary sewers, and other drainage systems in urban areas.

There are many applications for drainage systems in non-urban areas as well. The model tracks

52



the quantity and quality of runoff made within each sub catchment. It also tracks the flow rate,
flow depth, and quality of water in each pipe and channel during a simulation period made up
of multiple time steps.

(a) Applications

Since its release, SWMM has been used in several sewer and stormwater studies
throughout the world. Typical applications include the following:

« Designing and sizing of drainage system components for flood control

« Sizing detention facilities and their appurtenances for flood control
and water quality protection

o Mapping flood plains of natural channel systems (SWMM 5 is a FEMA approved
model for National Flood Insurance Program (NFPI) studies)

« Designing control strategies for minimizing combined sewer overflows

o Evaluating the impact of inflow and infiltration on sanitary sewer overflows

o Generating non-point source pollutant loadings for waste load allocation studies

o Controlling site runoff using LID practices

« Evaluating the effectiveness of BMPs for reducing wet weather pollutant loading

In this study, drainage network is created in SWMM with the help of flow accumulation
developed from the DEM. The flood occurrence points are determined by providing input
data such as intensity from IDF curve, continuous rainfall from historic rainfall data, and
runoff by rational method. Other sub-catchment parameters like percentage imperviousness
and slopes are also given as input.

Overland flow from each sub-catchment is calculated using the rational formula.
Runoff coefficients (C) for each sub-catchment are taken based on land use of the study area.
Each sub-catchment has a heterogeneous land use, and hence the C values are taken as
weighted average of the area. Open conduits are selected for the study area. Design storms
with return periods 2, 5, 10, 25 and 100 years are simulated by giving historical rainfalls in
the SWMM model with no combined sewer overflow.

Sub-catchment areas may either be pervious or impervious. Pervious areas contribute
to runoff losses due to infiltration. Impervious areas have losses due to depression or detention
storage. Infiltration is modelled using the Horton infiltration method. Surface runoff is

calculated using Manning’s equation. Flow routing in channels and pipes is simulated by Saint
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Venant equation through the conservation of mass and momentum for unsteady flow. To arrive
at the most theoretically accurate results, dynamic flow routing was used to solve the complete
one-dimensional Saint Venant flow equations (EPA, 2013).

SWMM conceptualizes a drainage system as a series of water and material flows
between several major environmental compartments. The sub-catchments are perceived as a
land surface compartment. SWMM uses rain gauge readings to represent rainfall inputs to the
system. The land surface compartment sends outflow in the form of infiltration to the
groundwater compartment and also as surface runoff and pollutant loadings to the transport
compartment. In this study, pollutant loads are not considered. The transport module contains
a network of conveyance elements (channels, pipes, pumps, and regulators) and
storage/treatment units that transport water to outfalls or to treatment facilities. Inflows to this
module can come from surface runoff, groundwater interflow, sanitary dry weather flow, or
from user-defined hydrographs. The components of the transport compartment are modelled
with node and link objects.

The study area was divided into 25 sub-catchments by watershed delineation. Outlet
points of each sub-catchment were identified. Discharge outlet points can be either nodes of
the drainage system or other sub-catchments. Infiltration of rainfall from the previous area of
a sub-catchment into the unsaturated upper soil zone can be described using the Horton
infiltration equation, Green-Ampt infiltration equation or the SCS Curve Number approach.
In this study, Green-Ampt infiltration model is adopted.

The other principal input parameters for sub-catchments include:

. Rainfall from assigned rain gauges;

. Outlet node or sub-catchment;

. Assigned land uses;

. Tributary surface area;

. Imperviousness;

. Slope;

. Characteristic width of overland flow;

. Manning's n for overland flow on both pervious and impervious areas;
. Depression storage in both pervious and impervious areas; and

. Percentage of impervious area with no depression storage.
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Invert elevation and height to ground surface are two important parameters to the junction
nodes, where invert elevation is found with the help of DEM. SWMM has 20 common conduit
shapes includes irregular open channels, custom closed conduits. SWMM uses the Manning’s
equation, given in equation (3.32), to express the relationship between flow rate (Q), cross-
sectional area (A), hydraulic radius (R), and slope (S) in all conduits.

1 2 1
Q= ~ AR3S2 (3.32)

where n is the Manning roughness coefficient. The slope S is interpreted as either the conduit
slope or the friction slope (i.e., head loss per unit length).
The principal input parameters for conduits are:

» Names of the inlet and outlet nodes;

» Offset height or elevation above the inlet and outlet node inverts;

» Conduit length;

« Manning's roughness;

« Cross-sectional geometry.

(b) Sub-catchment Parameterisation

For every sub-catchment in the drainage network, there is an outlet node (junction) to
which it is connected. Twenty-five sub-catchments with different areas, shapes based on the
conduits and drainage grid, are located on the natural flow paths and named (S1 to S25)
matching the names of the drainage basins. The channels (link) are designed in such a way
that the water is redirected to the outlets, along the riverside by gravity. The runoffs from both

impervious and pervious fractions of sub-catchments are connected to a single junction.

For the accurate calculation of rainfall-runoff, it is important that the characteristics of
the sub-catchments are also considered. The factors that affect the accuracy of surface water
runoff modelling using SWMM are (a) width of the overflow path in meters, and (b) the

percentage impervious area.

The widths of the sub-catchments are considered as a ratio of the area of sub-catchment
(A) to the length of the longest overland flow path of the sub-catchment (L). The Manning's
roughness coefficient (n), was assumed based on literature, i.e., for smooth asphalt, n was set
to 0.015 for impervious areas and for the pervious area, n was taken as 0.02. The depth of the

depression storage was taken as 1.52 mm and 3.81 mm for impervious and pervious surfaces
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respectively (Rossman, 2010). For this study, the calibration of model was done with the

observed 100-year return period discharge data.

3.4.6. Flood inundation

Flood models can be categorised into several types depending upon their data
requirements, level of complexity of the underlying equation and the resolution. 1D models
can solve problems of flood flows in open channels with assumptions that vertical acceleration
is not significant and that water level in the channel cross-section is approximately horizontal
are valid. However, problems arise when the channel is embanked and water levels are
different in the flood plain than in the channel and in such situations, 2D models are needed.
2D numerical models solve full shallow water equations, which are able to simulate timing
and duration of inundation with high accuracy. 2D flood inundation models are now important
parts of flood risk management practices because they are capable of adequately predicting
water depth, velocity and flood risk with high level of accuracy (Lamb et al. 2009, Teng et al.
2017). However, 2D modelling has some limitations such as taking a long time to set up and
run 2D model, particularly for the large area.

3.4.6.1. HEC-RAS

HEC-RAS is a one-dimensional/ two dimensional steady/unsteady flow hydraulic
model designed to support the hydraulic engineers in river flow analysis and floodplain zoning
(USACE, 2010). HEC-RAS version 5.0.3 is used in the present study to carry out the hydraulic

modelling of the Kondaveeti VVagu catchment.

RAS Mapper is the GIS integration to HEC in which the terrain of the work area is
generated from clipped DEM by specifying the project spatial reference system and the input
is given for ESRI Projection file of WGS 1984 UTM_ Zone 44N", GEOGCS
["GCS_WGS _1984", DATUMI["D_WGS_1984]. Different map layers such as Google map,
Google satellite, Open street maps, Google terrain streets water, etc. can be enabled in the
background from Web Imagery option present in the tools, to get the better understanding of
the terrain or work area. The places or the attributes can easily be identified with the help of
map layers by adjusting the transparency from the properties of the map layers. The user

interface of RAS Mapper is shown in the Fig 3.4.
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Fig 3. 4 User interface of RAS Mapper showing the catchment area with google map layer
HEC-RAS consists of three main components: -

Geometry data: The geometry data contains the information regarding the dimension,
shape, and connectivity of stream cross-sections. The Amaravati region consists of four
reservoirs in the capital area region namely, Anathavaram, Sakhamuru, Neerukonda and
Krishnayapalem. Cross-sectional details of all the reservoirs, Kondaveeti Vagu and Pala
Vagu present in the study area are defined and given as input in the geometry data.

The downstream boundary is provided at the Undavalli outfall where the discharge
confluences with the Krishna River and the upstream boundary is located near the Thullur
region as the stream from the south of the Kondaveeti Vagu watershed brings the water

near Neerukonda reservoir. (Fig 3.5 and Fig 3.6).
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Fig 3. 6 Cross sectional view for the part of the Kondaveeti Vagu

ii.  The flow data containing discharge rates: The runoff hydrographs generated in HEC-
HMS are given as input for flow data. The model is simulated for the unsteady flow
data. Fig 3.7 shows the user interface for unsteady flow data input in HEC-RAS.
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i)

3.4.6.2.

rainfall, topographical details, channel characteristics and hydro-meteorological data like
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Fig 3. 7 User interface for unsteady flow data input in HEC-RAS

The plan data consists of the information related to the run specifications like
simulation time, computation settings and information of the flow regime of the model.
The primary method used by HEC-RAS to estimate the water surface profiles assumes
a steady, gradually varied flow scenario. The program is then run for geometry

processor, unsteady flow simulation and floodplain mapping.

Flood inundation study using SWMM

Urban flood inundation studies require high-resolution DEM, land use and soil map,
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evaporation, infiltration etc. Preparation of flood inundation map requires runoff resulting
from a stormwater management model. All the surface water that is flowing on the terrain
drains out through a common outlet. Awareness on the mechanism of drainage basins is the
starting point in understanding how vulnerable an area is to floods, as their varying properties
have a greater impact on hydrology. Watersheds can be delineated both manually on paper
maps and digitally in a GIS environment. Delineation of drainage basins present in this study
area was performed by applying the basin tools in ArcGIS and the characteristics of the flow
of water on the surface of these basins are studied.

The reference coordinate system of the DEM was transferred to geographic coordinate
system WGS1984 (Janssen, 2009). The fill option in ArcGIS helped to remove peaks. Flow
direction map was created from the filled DEM. For the study area, flow accumulation and
existing drainage network were found to be similar. Thus, pour points were given in the outlets
based on the flow accumulation details and watershed delineation was done. After watershed
delineation, the total area was divided into 25 sub-basins. The flowchart of the procedure to
attain the visualisation of the flood is presented in Fig 3.8.

DEM Rainfall dati Subcatchment Drainage
Parameters network
Watershed
delineation SWMM

——/ \ respect to time

N
‘R (" Peak runoff and
@cene € depth variation with

N
Flood Inundation
Visualisation Map

Fig 3. 8 Flowchart of the methodology used for the flood inundation map using SWMM and
ArcGIS
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Flood inundation visualisation

Based on the results from the SWMM (peak discharge and discharge depth with
respect to time), shapefiles with respect to the discharge were prepared. Flood inundation
visualisation is the spatial-temporal geographic information system which can be used for the
spatial extension of the flood with respect to time. The 4D tool provides a graphical
representation of the overall flood inundation which makes it easy for the analysis of floods
and decision-making process. ArcScene 10.1 was used to convert DEM into 3-Dimension.
Flood-prone areas were identified with the help of SWMM. Using GIS, flood inundation maps
were prepared by considering the elevation and discharge depth of those places. 4-D flood

inundation visualisations were carried out using ArcScene time slider visualisation tool.
3.4.7. Bias correction

RCMs show critical biases in precipitation, and therefore, it is mandatory that bias
correction is to be carried out so that they are usable for research. Nine grid points, from in
and around Amaravati, were selected for this study. The CORDEX simulated RCM outputs
for South Asia such as CNRM-CM5, ACCESS, CCSM4, GFDL-CM3, NORESM1-M and
MPI ESM LR were selected for bias correction. The observed precipitation data obtained from
the Indian Meteorological Department (IMD) with a resolution of 0.5° x 0.5° observed gridded
data were used to obtain the optimise method for bias correction. Four statistical bias

correction techniques were applied to each observation stations separately.
3.4.7.1. Bias correction methods

Bias correction is carried out by (i) Linear scaling, (ii) Cumulative distributive
transformation function (iii) Quantile mapping parametric transformation and (iv) Quantile

mapping smoothing splines. These are briefly discussed below.

(i) Linear scaling: In this approach, the RCM daily precipitation data, P, are transformed into

Pcorrected SUCh that
Pcorrected = aPmod (3.33)

where o is a scaling factor, o = O/ Pmod, O is the observed precipitation values and Pmod IS

modelled values. For every modelled precipitation value, the scaling factor is applied and the
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corrected time-series is generated. Linear scaling methods include delta change methods and
factor change methods which belong to the same family (Hay et al. 2000). This method is
simple with modest data requirement. But correction applied to the monthly mean rainfall data
can adversely affect the relative change in the distribution of rainfall in different months and

may distort other moments of daily rainfall distribution models.

(if) Cumulative distributive transformation function (CDF): The basic principle of this
approach is to first arrive at a statistical connection between observed data and outputs of
models on the basis of historical data. The transfer function, thus derived, was then applied to
future model projections and the track of future observations was obtained. The distribution of
monthly RCM precipitation variables was mapped onto that of the observed gridded data by
the quantile-based mapping method. Quantile-based mapping is a simple and efficient method
that has been used successfully in various climate impact studies as well as in hydrology
(Cayan et al. 2008; Maurer and Hidalgo, 2008). The method can be mathematically

represented for a climate variable y, which is corrected to y as shown in equation (3.34)

adjst

)\jadjst = F_lobs—c(Fobs—c(ym—p)) (334)

Here F denotes the CDF of either the modelled values (m) or observed values (obs) for the
current climate or future projection period (p) or a historic training period (c). The bias
correction of future model values was done by first calculating the percentile values for the
future projection points in the CDF of the model for the period. Next, for that CDF, the
observed values were traced to arrive at the bias-corrected model values. An important
advantage of the method is that the rank correlation between observations and models is
maintained and all the moments are adjusted in such a way that the distribution of the
observations used for the training period agree with the modelled distribution. However, the
method is based on an important assumption that there is no significant change in climate
distribution over time. In other words, only the mean changes and the skew and variance of
the distribution remain constant. This will not hold true if there are variations in the higher
moments (Meehl and Thomas, 2007). It would be better, if, instead of assuming that the
historic data distribution can be applied to the future period, information from model

projection CDF is incorporated. It is assumed that for a given percentile, the adjustment
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function is a constant, that is, the difference between the observed and model values also

applies to the future.

(iii) Quantile mapping parametric transformation (Qmap.P). The quantile-quantile
relation can be directly modelled by using parametric transformations. The appropriateness of

the parametric transformations given below (equations: (3.35) to (3.39)) are studied.

Pops = aPpoq (3.35)

Ps = b+ aPpyg (3.36)

Pops = aPpod® (3.37)

Pobs = a(Pmoa — X)° (3.38)

Pos = (b+ aPppq) (1 — e~ (Pmoa=2)/7) (3.39)

Here, P, denotes the estimate of Poss and a, b, ¢, x and 1 are free parameters that are subject
to calibration. The direct scaling, Eq. (3.35), is very much related to linear scaling (Widmann
et al. 2003; Schmidli et al. 2006) and is often used to correct RCM precipitation (Maraun et
al. 2010). Piani et al. (2010) used the transformations Eq. (3.36) to Eq. (3.39), which have also
been used in some studies that followed (Rojas et al. 2011). By reducing the residual sum of
squares, all parametric mappings were matched to the part of CDF correlated to wet days in
observed series (Pobs > 0). The modelled values set to zero correspond to dry part of the

empirical CDF observed.

(iv) Quantile mapping smoothing splines (Qmap.S): Non-parametric regression can also be
used in modelling the transformation, Eq. (3.40). Even though there are other non-parametric
methods which are equally efficient, the use of cubic smoothing splines is more popular as it
is the only method suited for part of CDF correlated to wet days in observed series. In order to

identify the spline's smoothing parameter, generalized cross matching was used.

Pops = h(Pmod) (3-40)
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3.4.7.2.  Evaluation methodology

By comparing the differences between observed, corrected and RCM datasets, the
overall performance of each method used for bias correction can be analysed. But quantitative
analysis of the robustness of the methods have not been carried out. The assessment of the
robustness of each method was done by quantifying the relative errors such as standard error,

mean absolute error, root mean square error and mean square error.

3.4.8. Climate change impact on urban flood

Climate change studies have been carried out using Regional Climate Downscaling
Experiment-South Asia (CORDEX-SA) data under RCP 4.5 and RCP 8.5. CORDEX is a
World Climate Research Program (WCRP) developed to produce an improved set of regional
climate change projections worldwide. CORDEX considers an ensemble of different
dynamical and statistical downscaling models that consider multiple forcing GCMs. In this
study, an ensemble of 6 RCM models under 2 representative concentration pathways (RCP
4.5 and RCP 8.5) are used. The ensemble of climate models was carried out using the multi-
model mean method. The climate data is then divided into two series as Future 1, F1 (2021-
2060) and Future 2, F2 (2061-2099).

The ranking for the time series was obtained by three goodness of fit tests, viz.,
Kolmogorov Smirnov, Anderson Darling and Chi-Squared method. The distribution with the
best fit rank was carefully chosen for the estimation for 24-hour maximum rainfall for different
return periods. The analysis of the data showed the Generalised Extreme Value (GEV)
distribution as the best fit. So, one-day maximum rainfall depth was estimated for various
return periods of 2, 5, 10, and 20 year using GEV. Peak discharge was calculated for the RCP
45F1, RCP 8.5 F1, RCP 4.5 F2 and RCP 8.5 F2 series for the respective one-day maximum
rainfall depth.

3.4.9.Mitigation of urban flood

Low Impact Development (LID) is a stormwater management strategy that seeks to
mitigate the impacts of increased runoff and stormwater pollution by managing runoff as close

to its source as possible. LID comprises a set of site design strategies that minimise runoff and
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distributed small scale structural practices that mimic natural or predevelopment hydrology
through the processes of infiltration, evapotranspiration, harvesting, filtration and detention of
stormwater. These practices can effectively reduce the volume and intensity of stormwater
flows. There are several different types of LID controls available for implementation. For each
LID control, different scenarios are created with their respective level of implementation. LID
is a decentralised small-scale measure module which is included in SWMM. It is
environmentally friendly, easy to construct, small in size, economical, and ornamental as
landscape. In SWMM, several LID modules are created, which are then added to the
corresponding sub-area by changing the parameters according to the actual situation. Based
on the principle of water balance, the SWMM calculates real-time inflow and outflow of the
sub-area (Rossman, 2014). Three scenarios considered for the study were: Biological BMPs,
Structural BMPs and Combination of biological and structural BMPs. Biological BMPs are
Bioretention, Rain Garden and Grass swale. Structural BMPs considered are permeable
pavement, infiltration trench and rain barrel. The three scenarios are simulated for 5-year

return period in five sub-catchments for 50% catchment area.

During the simulation, SWMM performs a moisture balance that keeps track of how
much water moves between and stored within each LID layer. Representation of the water
pathway in LIDs of SWMM is shown in Fig 3.9. Surface layer is the ground surface that
receives direct runoff from upstream land areas, stores excess inflow and generates surface
outflow. Pavement layer is the layer of porous concrete used in continuous porous pavement
systems. Engineered soil mixture is used in bioretention cell to support vegetative growth.
Storage layer is the bed of crushed rock or gravel that provides storage in bioretention cells,
infiltration trench, and porous pavement. Under drain conveys water out the gravel storage of
Bio retention cells, infiltration trench, into an outlet pipe.
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Fig 3. 9 Representation of the water pathway in LIDs of SWMM
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CHAPTER 4

RESULTS AND DISCUSSION
4.1. General

Rapid changes of climate and land use result in the increase of the flood risk. Flood
inundation mapping and proper flood mitigation measures are required for the management
and mitigation of floods. This chapter contains the application of methodology and the results
of the analysis carried out in the study for the flood inundation mapping, climate change
impact on flood for the study area and the best management practices that can be used in the

study area to reduce the impact of flood.

4.2. Rainfall Characteristics

Observed rainfall data from 1985-2020 for 17 rain gauge stations were collected from
APCRDA (Andhra Pradesh Capital Region Development Authority). The gauged stations are
located in and around the study area. Table 1 gives the locational details of the rain gauge
stations and the periods for which data are available. All the stations, except Mangalagiri,
Guntur and Pedakurapadu, have some missing data. Missing data of the annual precipitation
series were estimated using multiple imputation methods, suggested by Sovilj et al. (2016).
Multiple imputation is considered much better than single methods or case deletion as it
imputes M times and returns M complete datasheets (Scheffer, 2002). The missing data were
filled in by a set of values. They are, later, analysed using standard statistical methods
explained by Rubin (1987,1988). Basic statistical properties of time-series of maximum values
of daily rainfall data for the 17 rainfall stations in and around Kondaveeti Vagu from 1985 to
2020 are presented in Table 4.2. The gauge station at Ibrahimpatnam showed the highest mean
(122.1 mm) with a standard deviation of 44.20 mm in maximum values of daily rainfall data
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among all the stations, while the lowest mean (91.4mm) and standard deviation (25.28 mm)
was observed at Tadikonda. Maximum values of daily rainfall varied from 145.60 mm
(Pedakakani) to 263.200 mm (Guntur). The lowest coefficient of variation (CV) was seen at
Medikonduru where the lowest maximum rainfall observed in a day during a year was 161
mm/day and highest CV was seen at Pedakurapadu with a highest in daily annual maximum
rainfall of 230.40 mm/day. These indicate that the highest CV of rainfall had lowest value in
maximum values of daily rainfall and this agrees with the study conducted by Bewket &
Conway (2007). Fig 4.1 shows the box-whisker plots of temporal variation extension of
maximum values of daily rainfall over the 17 gauged stations. Vatticherukuru had the widest

variations among all other station with 25.60 mm/day to 256.40 mm/day.

Table 4. 1 Latitude and longitude of gauged stations and number of years of missing data

Gauge Name Latitude (N) Longitude Number of
station (E) years where
number data is
missing

1 Amaravati 16°34'33.68" 80°21'27.27" 4

2 Thullur 16°31'26.84" 80°28'30.00" 3

3 Thadepalli 16°28'54.73" 80°38'41.45" 4

4 Mangalagiri 16°25'05.28" 80°33'59.56" 0

5 Tadikonda 16°25'14.41" 80°27'23.89" 4

6 Medikonduru 16°21'04.47" 80°18'09.54" 9

7 Guntur 16°17'25.83" 80°26'46.03" 0

8 Pedakakani 16°29'39.48" 80°29'39.54" 9

9 Duggirala 16°19'27.10" 80°37'38.72" 1

10 Pedakurapadu 16°28'12.10" 80°15'27.27" 0

11 Phirangipuram 16°17'32.63" 80°16'03.30" 1

12 Prathipadu 16°10'54.48" 80°20'6.72" 2

13 Vatticherukuru 16°10'55.2" 80°26'52.08" 3

14 Ibrahimpatanam 16°34'55.83” | 80°30'55.71” 3

15 Vijayawada Urban 16°30'19.00” 80°38'54.26” 8

16 Penamaluru 16°28'5.52" 80°43'10.2" 3

17 Kanchikacherla 16°41'0.24" 80°23'25.44" 4
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Table 4. 2 Minimum, maximum, mean and standard deviation of maximum daily
precipitation time-series during the year (1985-2020)

Variable Minimum Maximum Mean Std. deviation
(mm/day) | (mm/day) | (mm/day) (mm/day) CV (%)
Amaravati 40.00 194.20 115.84 41.06 35.44
Thullur 49.80 183.00 105.73 34.33 32.46
Thadepalli 52.60 211.60 111.28 37.10 33.33
Mangalagiri 53.60 203.00 112.45 33.27 29.58
Tadikonda 50.40 166.00 91.41 25.28 27.65
Medikonduru 40.20 161.00 96.66 23.64 24.46
Guntur 54.60 263.20 98.29 42.40 43.13
Pedakakani 42.30 145.60 92.66 25.76 27.80
Duggirala 31.00 150.20 94.35 32.11 34.03
Pedakurapadu 47.60 230.40 96.39 45.20 46.89
Phirangipuram 37.20 216.30 99.04 43.04 43.45
Prathipadu 22.60 200.00 91.89 40.36 43.92
Vatticherukuru 25.60 256.40 99.89 52.74 52.79
Ibrahimpatanam 65.40 230.00 122.06 44.20 36.21
Vijayawada Urban 50.00 190.80 120.27 37.68 31.33
Penamaluru 58.60 211.60 117.91 40.00 33.92
Kanchikacherala 28.20 220.60 117.99 49.46 41.91
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Fig 4. 1 Box-whisker plot illustrating median and extremes of maximum daily precipitation
time-series of 17 stations.
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4.3. Trend Analysis

In this study, maximum of monthly, seasonal and annual trends for rainfall are
analysed using MK1, MK2 and ITA techniques and the trend magnitudes are calculated using
Sen’s slope estimator for 15 grid points in the study area. Kolmogorov—Smirnov test was used
to determine if the maximum monthly and seasonal rainfall data for the entire period (1961
2018) was following the normal distribution. It was found that none of the rainfall series used
in the study was following the normal distribution. Results of the MK 1, MK2 and Sen’s slope
approaches are tabulated for all 15 grid points. ITA technique was employed for annual and
seasonal rainfall for the period 1961-2018. Trend detection using the ITA technique was
performed to plot the sub-series of the dataset. While doing so, no assumptions regarding the
statistical distribution were made. For the discussion and comparison, results of the ITA
technique for annual, winter, pre-monsoon, monsoon, and post-monsoon seasons represented
in Figs. 4.5, 4.6, 4.7, 4.8 and 4.9. Due to large volume, the results are presented only for six
grid points (G2, G4, G7, G8, G13 and G14). Results from the ITA technique are compared
with MK1 and MK2 test only for these six grids.

4.3.1. Monthly maximum trends for rainfall

The Z statistics of monthly maximum rainfall data obtained from MK1 and MK2 are
presented in Table 4.3 and Table 4.4. These represent both the negative and positive significant
trends. Out of the 180 cases, 21 cases (11.6%) displayed positive trends in MK1 while 22
cases (12%) displayed significant positive trends in MK2 considering the three significant
levels. In this study, no significant negative trends are exhibited for monthly maximum
rainfall. For the MK1 test, significant positive trends were detected in January, February, May,
August and November, whereas for the MK2 test, most of the trends were observed in May,
August, November and December. Compared to MK1, the MK2 test exhibited similar
significant positive trends. Among the 15 grids, G5 and G10 in the MK1 test and G5, G10 and
G13 in the MK2 test did not have any significant trend, while the remaining grids exhibited
significant trends for some months as seen from Tables 4.3 and 4.4. From MK1 and MK2
tests, more significant positive trends are seen in the month of May followed by August and

November.
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Table 4. 3 Z statistic of MK1 test for monthly maximum rainfall

Mann Kendall test (MK1)

Grid

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Gl

0.89

1.14

0.53

-0.94

0.58

-0.36

-0.06

0.16

-0.12

-0.49

0.24

1.69%

G2

1.66°

1.67%

0.92

0.45

0.66

-0.05

0.61

0.45

0.74

0.65

1.19

1.19

G3

1.792

1.00

0.58

-0.12

2.57°

0.40

0.06

0.05

-0.21

-1.01

0.85

0.33

G4

1.12

0.44

1.32

0.39

2.59°

0.78

0.34

091

-0.07

-0.68

1.11

0.73

G5

1.09

1.10

0.21

-0.55

1.27

0.93

0.08

0.80

-0.65

-0.30

0.92

1.00

G6

0.64

0.93

-0.36

-0.82

2.14°

0.59

-0.78

0.96

-0.23

-0.33

1.30

0.28

G7

1.40

0.83

0.18

-0.31

2.41°

0.71

-0.87

091

-0.13

-0.85

1.832

0.27

G8

0.46

0.23

0.86

0.07

2.56°

1.04

0.03

1.39

-0.07

-0.58

1.90%

0.63

G9

1.80%

1.10

0.30

-0.28

0.82

0.97

-0.15

1.59

0.36

-0.40

1.46

0.99

G10

1.39

0.99

-0.18

-0.37

1.21

0.54

-0.96

1.34

-0.12

-0.94

1.45

0.12

Gl1

1.25

0.70

0.02

0.01

1.47

0.75

-1.25

1.02

0.05

-0.81

1.842

0.03

G12

1.06

0.70

0.62

0.22

1.918

0.79

-0.83

1.15

0.33

-0.53

2.23°

0.33

G13

0.80

0.35

0.33

-0.23

1.43

0.79

-0.41

1.99°

0.21

-0.83

1.54

-0.34

G14

1.51

0.79

0.44

-0.10

1.65%

0.78

-0.68

1.39

0.35

-0.51

1.932

-0.47

G15

0.46

0.70

0.62

0.12

1.73%

0.90

-0.37

1.70%

0.64

-0.11

2.39°

-0.13

Numbers with symbol ‘a’,’h’,’c’ shows the significance level at 1%, 5%, 10% respectively.
Y g P y

Table 4. 4 Z statistic of MK2 test for monthly maximum rainfall

Modified Mann Kendall Test (MK2)

Grid

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Gl

1.03

0.97

0.71

-0.95

0.52

-0.33

-0.06

0.17

-0.13

-0.50

0.25

2.63°

G2

0.86

1.04

0.74

-1.43

2.08°

0.13

-0.52

0.18

-0.16

-0.91

0.89

0.56

G3

1.31

1.00

0.50

-0.17

2.58°¢

0.54

0.09

0.07

-0.18

-1.02

0.85

0.33

G4

0.82

0.45

1.18

0.35

2.94¢

1.27

0.45

1.39

-0.07

-0.84

1.11

0.73

G5

1.25

0.94

0.22

-0.56

1.27

0.86

0.08

0.80

-0.66

-0.31

1.00

1.46

G6

0.64

0.80

0.12

-0.82

2.15°

0.59

-0.78

1.18

-0.28

-0.43

1.51

0.28

G7

1.40

0.83

-0.19

-0.31

241°

0.71

-0.91

2.69°

-0.15

-0.85

1.94°

0.26

G8

0.47

0.24

0.21

0.07

3.20°

1.05

0.03

1.40

-0.07

-0.81

1.91°

0.60

G9

1.81°

0.96

0.32

-0.28

0.82

0.97

-0.16

1.60

0.36

-0.40

1.57

1.35

G10

1.40

0.99

-0.30

-0.38

1.22

0.64

-0.96

-0.09

-0.15

-0.94

1.55

0.13

Gl1

1.25

0.71

0.31

0.01

1.47

0.93

-1.25

2.26°

0.06

-1.08

1.85%

0.04

G12

1.06

0.70

1.01

0.22

1.91°

0.99

-0.83

1.07

0.33

-1.68

2.23°

0.33

G13

0.80

0.35

1.10

-0.23

1.43

0.98

-0.44

0.21

0.21

-0.83

1.54

-0.34

G14

1.51

0.79

0.62

-0.10

1.65%

1.09

-1.03

2.69°

0.35

-0.51

-0.47

1.932

G15

0.46

0.80

1.692

0.12

1.732

1.21

-0.37

2.66°

0.64

-0.14

2.39°

-0.13

(Numbers with symbol ‘a’,’b’,’c’ shows the significance level at 1%, 5%,
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4.3.2. Seasonal and annual trends for rainfall

The monthly maximum rainfall was grouped into four seasons. The Z statistics attained
from MK1 and MK2 tests for seasonal and annual rainfall are presented in Table 4.5. In this
study, no significant negative trends are exhibited for seasonal and annual rainfall. It is
observed from Table 4.5, that out of the four seasons, the post-monsoon season showed no
trend at all the grid points. In contrast, the monsoon season exhibited a significant positive
trend only at G1for the MK1 test. Winter season displayed positive significant trend at all grid
points for both MK1 and MK2 as seen in Table 4.5. The significant trend for annual series
was observed only at G8 for both tests, while no trend was observed at the remaining 14 grids.
The number of positive significant cases (out of 180) and their percentages for seasonal and
annual rainfall at 1%, 5% and 10%significance levels are presented in Table 4.6. Seasonal
trends at 1% significance level have 12 positive significance cases in MK1 and 22 in MK2
(0.16% for MK1 and 0.29% for MK?2) tests. For 5% significance level, 8 positive significance
cases for MK1 and 2 cases for MK2 and at 10% significance level, 8 positive significance
instances in MK1 and 2 cases in MK2. Seasonally more trends were observed at a 1%
significance level compared to 5% and 10% significance levels. Table 4.7 presents the
significant positive trend cases at different significance levels for four seasons. Winter season
exhibited more positive trend cases followed by pre-monsoon season. No significant trend was
detected in post-monsoon seasons at any of the selected significance levels. At a 1%

significance level, winter season showed more significant positive trends.
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Table 4. 5 Z statistic of MK1/MK2 tests for seasonal and annual maximum rainfall

Grid Winter Pre-monsoon Monsoon Post-monsoon Annual
Gl 2.50°/2.51°¢ 0.94/1.13 -1.72%/-1.61 -0.15/-0.17 -0.59/-0.65
G2 2.69%/2.70¢ 1.34/2.75° 0.11/-0.35 0.79/-0.62 1.24/-0.11
G3 2.49%2 50° 2.95¢/2.95°¢ 0.17/0.23 -0.48-0.49 0.34/0.28
G4 2.39¢/3.28°¢ 3.22%/2.84°¢ -0.01/-0.01 -0.23/-0.32 1.12/0.89
G5 2.63¢/3.64°¢ 1.87%/2.34¢ 0.20/0.20 0/0 0.17/0.20
G6 2.41%/3.24°¢ 2.26°/2.26° -0.03/-0.03 0.32/0.32 0.64/0.65
G7 2.16°/2.79¢ 2.84%2.46° -0.46/-0.43 -0.05/-0.05 0.61/0.61
G8 2.05°/2.69¢ 3.12¢/3.12°¢ -0.13/-0.16 0.33/0.29 1.69%/1.692
G9 2.55%3.65°¢ 1.21/1.21 1.006/1.01 -0.11/-0.12 1.02/1.33

G10 2.00°/2.75¢ 1.68%/1.68? 0.56/0.56 -0.19/-0.24 1.02/1.42

G11 1.87%/2.98¢ 1.78/1.4 -0.18/-0.21 0.18/0.24 0.74/0.73

G12 1.89%/3.01°¢ 2.32°/2.31° 0.06/0.06 0.39/0.42 1.43/1.43

G13 2.17°/3.55¢ 1.83%/1.45 1.09/1.24 -0.28/-0.37 0.96/0.97

Gl4 1.99°/3.52¢ 2.01°/1.59 0.72/0.59 0.01/0.01 1.01/0.95

G15 1.88%/3.34°¢ 2.74%2.37° 0.71/0.70 0.38/0.34 1.37/1.37

umbers with symbol ‘a’,’b’,’c’ shows the significance level at 1%, 5%, 10% respectively.
Numb ith symbol ‘a’,’b’,’c’ sh he signifi level at 1%, 5%, 10% respectively

Table 4. 6 Mann Kendall trend statistics for monthly rainfall

Monthly Significant positive Seasonal and Annual
trend Significant positive
Significance level trend
Cases (180) Percentage Cases Percentage
(75)

1% (values > 2.33)
MK1 5 2.78% 12 16%
MK2 9 5% 22 29.33%
5% (values >1.96)
MK1 3 1.67% 8 10.67%
MK?2 5 2.78% 2 2.67%
10% (values >1.645)
MK1 13 7.22% 8 10.67%
MK2 8 4.44% 2 2.67%
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Table 4. 7 Mann Kendall trend statistics for seasonal and annual rainfall

Significance Level Season Significant Positive
Trend cases
Winter 7/15
Pre-monsoon 5/7
1% (values > 2.33)

MK1/MK2 Monsoon 0/0
Post-monsoon 0/0

Annual 0/0

Winter 5/0

Pre-monsoon 3/2

5% (values >1.96)

MK1/MK2 Monsoon 0/0
Post-monsoon 0/0

Annual 0/0

Winter 3/0

Pre-monsoon 4/1

10% (values >1.645)

MK1/MK2 Monsoon 1/1
Post-monsoon 0/0

Annual 1/1

4.3.3. Comparison of spatial changes in trends of MK1 and MK2

Comparisons of spatial distribution of Z statistics of MK tests for the monthly, seasonal
and annual maximum rainfall are shown in Fig. 4.2, Fig. 4.3 and Fig.4.4. From the Fig. 4.2
and Fig. 4.3, the similarities between the spatial distributions of trend can be observed, except
in the month of March. The Z values of MK2 show a more significant trend than MK1 which
is not visible in the spatial distribution. Fig. 4.4 shows the comparison of Z values in MK1 and
MK2 in seasonal and annual maximum rainfall; from the figure, it can be seen that winter and

pre-monsoon seasons show significant difference since MK2 showed a more significant trend.
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Fig 4. 2 Spatial distribution of Z statistics of MK1 test for the monthly maximum rainfall
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Fig 4. 4 Spatial distribution of Z statistics of MK1 and MK2 test for seasonal and annual
rainfall

4.3.4. ITA technique for annual rainfall

The results of the ITA technique for the annual maximum series are presented in Fig.
4.5. As mentioned earlier, the results of 6 grid points out of 15 are only presented and

explained. ITA plots are divided into three clusters as low, medium and high to examine the
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trend variations. Explanations for the ITA technique are given for these three clusters. Plots

G2, G13 and G14 showed no trend and increasing trend in the low phase, while in the medium

phase, all grids are showing an increasing trend except for G13; in the high phase a declining

trend is exhibited for G7 and G8; grid points G2 and G4 are detected with a growing trend. A

monotonically increasing trend was observed only at G4, while all the remaining grids showed

non-monotonic trends as shown in Fig. 4.5.
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Fig 4. 5 ITA technique results for annual maximum rainfall for (a) G2, (b) G4, (c) G7, (d)

4.3.5. ITA technique for seasonal rainfall

G8, (e)G13 and (f) G14

The results of the ITA technique for four seasons are presented in Fig. 4.6 to Fig. 4.9.

Seasonal results are also explained for the same 6 grid points out of 15 grid points. Rainfall

dataset of pre-monsoon season (Fig. 4.6) displayed an increasing trend in low and medium

phases for all the selected 6 grids, whereas in the high phase, increasing trend for three grids



(G2, G8 and G4) and a decreasing trend for grids 4 and 7 were observed as shown in Fig. 4.6.
In the monsoon season (Fig. 4.7), for all 6 grids, dataset points are spread over low, medium
and high phases. In the low phase, no trend was observed in all the 6 plots except for G8 and
G13 (no trend followed by increasing trend), whereas in medium and high phases, an
increasing trend was exhibited for all grids except for grid 2. Grid G2 exhibited no trend in
low and high phases and a non-monotonic trend was observed in the medium phase as shown
in Fig. 4.7. For the post-monsoon season, rainfall dataset of plots G2 and G4 are spread in low,
medium and high phase. For all the grids, either no trend or increasing trends were observed
in all three phases. G8 exhibited no trend, whereas, for G13 and G14, an increasing trend was
observed in the medium phase with no trend in low and high phases. G7 displayed an
increasing trend only in the high phase as shown in Fig. 4.8. For the winter season, for the
dataset points of G2, G4, G7, G8, G13 and G14 no trend was detected at starting subseries

plot, and furthermore, a continuously increasing trend was observed as shown in Fig. 4.9.
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G2, (b) G4, (c) G7, (d)G8, (e) G13 and (f) G14
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Fig 4. 7 ITA technigue results for the monsoon season maximum rainfall for (a) G2, (b) G4,
(c) G7, (d)G8, (e) G13 and (f) G14
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Fig 4. 8 ITA technique results for the post-monsoon season maximum rainfall for (a) G2, (b)
G4, (c) G7, (d)G8, (e) G13 and (f) G14
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Fig 4. 9 Results of the ITA technique for the winter season maximum rainfall for (a) G2,
(b) G4, (c) G7, (d)G8, (e) G13 and (f) G14

4.3.6. Comparison of seasonal and annual trends

As expected, rainfall trend showed large variability in ITA technique compared to
MK1 and MK2 trend tests. For annual series, using MK1 and MK2 tests, trends were detected
only for G8 as shown in Table 4.5, whereas, in the case of the ITA technique, trends were
detected for all grid points as shown in Fig. 4.5. The ITA technique does not have any
assumptions like that of MK tests, due to which, the graphical test is more appropriate in

detecting monotonic and non-monotonic trends.

In the pre-monsoon season, similar trends were detected for MK1 and MK2 tests
compared to the ITA technique. But, for the ITA technique, all trends were limited only to low
phase. In the monsoon season, no trend was noticed for MK1 and MK2, whereas, by ITA
technique, increasing trends were observed at G4, G7, G8, G13 and G14. During the post-
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monsoon season, no trends were detected for all grid points using MK1 and MK2, while for
ITA technique, increasing trends were observed for G4, G13 and G14. In the winter season,
trends were detected for all the 15 grid points using MK1 and MK2 tests, whereas an
increasing trend was noticed for all 15 grid points in the low phase using the ITA technique.
So, the ITA technique showed a tendency for more increasing trends compared to MK1 and

MK2 tests without any assumptions.
4.3.7. Sen’s slope for maximum monthly rainfall

Monthly maximum rainfall trend magnitudes are calculated using Sen’s slopes and
plotted using box plots as shown in Fig. 4.10. In the box plots, the central thick horizontal line
of all the months represents the median. Vertical lines (whiskers) with lower and upper ends
signify the magnitudes of lowest and highest rainfall values. The upper and lower ends of the
boxes represent the 25th and 75th percentiles respectively. For the months of January,
February, March, April and December, the median passes through the origin as there were no
trend magnitudes for these months. From May to November, the trend magnitudes were
positive and negative, falling above and below the origin. Among all vertical lines, only one
month, i.e. October, signifies the lowest negative magnitude, i.e. nearly - 0.08 mm/year
followed by July with 0.05 mm/year. Similarly, the highest magnitude occurred in May (nearly
0.17 mm/year) followed by November (nearly 0.14 mm/year).
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4.3.8. Sen’s slope for seasonal and annual rainfall
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Sen’s slope approach was used in estimating the magnitudes for seasonal and annual

rainfall as shown in Fig. 4.11. All the four seasonal and annual magnitudes exhibited positive

slopes with a peak of 0.23 mm/year in the pre-monsoon season and annually at 0.18 mm/year.

The highest and lowest magnitudes were observed in pre-monsoon (nearly 0.23 mm/year) and

post-monsoon seasons respectively. The magnitudes Sen’s slope of seasonal and annual

rainfall varied between 0.00 and 0.23 mm/year. The seasonal magnitudes were decreasing

from pre-monsoon to post-monsoon and then magnitude increased in winter season as shown

in Fig. 4.11.
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Fig 4. 11 Seasonal and annual maximum rainfall trend magnitudes

4.3.9. Parametric trend (regression analysis)

Trends, along with model equations of annual average rainfall over a period of 30 years
(from 1985 to 2014) of seventeen gauged rainfall stations in and around Kondaveeti Vagu
using linear regression analysis. Because of space constraint, details of only 8 stations with
visible trends are shown in Fig.4.12 (A-H). Rainfall at stations at Amaravati, Thadepalli,
Mangalgiri, Pedakurapadu, Vijayawada Urban and Penamaluru showed positive trends while
the rainfall at Tadikonda, Guntur, Vatticherukuru, Ibrahimpatanam and Duggirala showed
negative trends. Rainfall at rest of the stations, namely Kanchikacherala, Phirangipuram,
Prathipadu, Medikonduru, Thullur, Pedakakani showed no trend. From these, it can be inferred
that, even though the rainfall series at the six gauged rainfall stations showed positive trends
and that at five gauged stations showed negative trends, the trends were very insignificant, as

their RZ values were less than 0.12.
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Fig 4. 12 Trends of annual average rainfall series over 30-year period of at 8 gauged
precipitation stations (A-H) in and around Kondaveeti VVagu using linear regression
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4.3.10. Non-parametric trend test for annual average rainfall

The results of the MK Test and Sen’s slope test for annual average rainfall series of 17
gauged rainfall stations are listed in Table 4.8. The parametric statistical MK trend test showed
that the rainfall series at Vijayawada Urban has a significant positive trend (Z = 1.71, S=97
and 1=0.223) at 5% significance level (0=0.05). Sen’s slope values for a confidence interval
of 95% vary from -1.233 (Kanchikacherala) to 1.744 (Vijayawada Urban). Rainfall at gauged
stations, Prathipadu, Thadepalli, Amaravati, Phirangipuram, Penamaluru, Mangalagiri and
Pedakurapadu showed an insignificant positive trend (0.09 <Z < 1.71) and those at Tadikonda,
Guntur, Kanchikacherala, Vatticherukuru, Medikonduru, Duggirala, lbrahimpatanam,
Thullur, Pedakakani showed an insignificant negative trend (-1.46 < Z < -0.11). Fig. 4.13
showed the P-values of the MK test of the annual average rainfall series of the seventeen
gauged stations. Annual average rainfall series with the significance of 5% showed that the P-
values at Tadikonda, Pedakurapadu and Vijayawada Urban are low indicating a more

significant trend.

Table 4. 8 MK Test and Sen’s slope test results for annual average precipitation series
(1985-2014)

Annual Average Annual Maximum
Station Z-Value | Sen’sslope | Z-Value Sen's slope
Amaravati 0.54 0.52 0.36 0.28
Thullur -0.27 -0.257 0.59 0.36
Thadepalli 0.25 0.3 -0.07 -0.25
Mangalagiri 0.95 0.5 0.95 0.5
Tadikonda -1.46 -0.52 -1.43 -0.54
Medikonduru -0.68 -0.309 -0.61 -0.24
Guntur -0.96 -0.585 -0.96 -0.58
Pedakakani -0.11 -0.079 0.18 0.11
Duggirala -0.61 -0.414 -0.71 -0.57
Pedakurapadu 1.36 1.222 1.36 1.22
Phirangipuram 0.7 0.56 0.45 0.3
Prathipadu 0.09 0.1 0.16 0.23
Vatticherukuru -0.82 -0.529 -0.57 -0.29
Ibrahimpatanam -0.5 -0.467 -0.96 -0.89
Vijayawada Urban 1.71 1.744 1.75 1.34
Penamaluru 0.88 0.684 0.57 0.63
Kanchikacherala -0.95 -1.233 -0.8 -0.78
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Fig 4. 13 Sen’s slope for the annual average and annual maximum precipitation series of
gauged stations

4.3.11. Non-parametric trend test for gauged annual maximum rainfall

The results of the MK Test and Sen’s slope test for annual maximum rainfall series of
the 17 rainfall stations are shown in Table 4.9. The MK test results for the annual maximum
rainfall series also showed a significant positive trend only at Vijayawada Urban gauged
station, with a Z value of 1.75. Rainfall series at the gauged stations at Amaravati, Thullur,
Mangalagiri, Pedakakani, Pedakurapadu, Phirangipuram, Prathipadu and Penamaluru showed
insignificant positive trends with Z values ranging from 0.16 to 1.36. Rainfall at the rest of the
8 gauge stations namely Tadikonda, Guntur, Ibrahimpatanam, Kanchikacherala, Duggirala,
Medikonduru, Vatticherukuru and Thadepalli showed insignificant negative trends with Z
values in the range -1.43t0 -0.07. The S values varied from -81 (Tadikonda) to 99 (Vijayawada
Urban). The Kendall’s Tau (t) value has the maximum at Vijayawada Urban (0.23) and
minimum at Tadikonda (-0.19). With respect to P-value, Vijayawada Urban showed a
significant positive trend at 8%. Sen’s slope values calculated with a confidence interval of
95% showed positive values ranging from 0.11 to 1.34 and negative values in the range -0.89
to -0.24, which agree with the results of MK Test.
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Table 4. 9 Results of the MK test and Sen’s slope test for annual maximum rainfall series
(1985-2014)

. Z- S P-value | Tau (t Sen’s
Station Value Q) slope
Amaravati 0.36 21 0.72 0.05 0.28
Thullur 0.59 34 0.56 0.08 0.36
Thadepalli -0.07 -5 0.94 -0.01 -0.25
Mangalagiri 0.95 54 0.34 0.12 0.50
Tadikonda -1.43 -81 0.15 -0.19 -0.54
Medikonduru -0.61 -35 0.54 -0.08 -0.24
Guntur -0.96 -55 0.34 -0.13 -0.58
Pedakakani 0.18 11 0.86 0.03 0.11
Duggirala -0.71 -41 0.48 -0.09 -0.57
Pedakurapadu 1.36 77 0.18 0.18 1.22
Phirangipuram 0.45 26 0.66 0.06 0.30
Prathipadu 0.16 10 0.87 0.02 0.23
Vatticherukuru -0.57 -33 0.57 -0.08 -0.29
Ibrahimpatanam -0.96 -55 0.34 -0.13 -0.89
Vijayawada Urban 1.75 99 0.08 0.23 1.34
Penamaluru 0.57 33 0.57 0.08 0.63
Kanchikacherala -0.80 -46 0.42 -0.11 -0.78

4.4, Stationarity and Homogeneity Analysis

4.4.1. Stationarity and non-stationarity

The test for stationarity of annual average rainfall series was carried out using ADF,
PP and KPSS test for the 17 stations and the results are shown in Table 4.10. PP and ADF
tests show non-stationarity in the time-series when the test shows null hypothesis HO, while
the KPSS test showed stationarity in the time-series data for null hypothesis HO. A confidence
level of 0.05 was considered for the stationarity test in this study. ADF and PP tests showed
stationarity for all the gauged stations except for Penamaluru and it corresponded to the
maximum P-value (one-tailed) of 0.07 whereas other stations showed relatively lesser P-
values. KPSS test showed non-stationarity at Amaravati, Thullur, Pedakurapadu and
Vijayawada Urban gauged station having the P-value (one-tailed) as 0.002, 0.015, 0.023 and
0.002 respectively. Rest of the stations showed stationarity, the P-values ranging from 0.055

to 0.94 corresponding to Penamaluru and Tadikonda stations respectively.
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Table 4. 10 Stationarity of annual average precipitation series using ADF, PP and KPSS test

for the gauged stations

Dickey-Fuller test Phillips-Perron test KPSS test
. P-value . . P-value . . P-value
Station (one- Stationarity (one- Stationarity (one- Stationarity
tailed) tailed) tailed)

Amaravati 0.030 Ha 0.025 Ha 0.002 Ha
Thullur 0.001 Ha 0.001 Ha 0.015 Ha
Thadepalli 0.001 Ha 0.001 Ha 0.195 HO
Mangalagiri <0.0001 Ha <0.0001 Ha 0.729 HO
Tadikonda 0.001 Ha 0.001 Ha 0.940 HO
Medikonduru 0.000 Ha 0.000 Ha 0.837 HO
Guntur 0.000 Ha 0.000 Ha 0.625 HO
Pedakakani 0.020 Ha 0.019 Ha 0.260 HO
Duggirala 0.001 Ha 0.001 Ha 0.107 HO
Pedakurapadu 0.000 Ha 0.000 Ha 0.023 Ha
Phirangipuram 0.002 Ha 0.002 Ha 0.678 HO
Prathipadu 0.001 Ha 0.000 Ha 0.871 HO
Vatticherukuru <0.0001 Ha <0.0001 Ha 0.821 HO
Ibrahimpatanam 0.001 Ha 0.001 Ha 0.466 HO
Vijayawada Urban 0.011 Ha 0.007 Ha 0.002 Ha
Penamaluru 0.070 HO 0.094 HO 0.055 HO
Kanchikacherala 0.007 Ha 0.008 Ha 0.213 HO

4.4.2. Homogeneity of rainfall

Table 4.11, shows the results of the test for homogeneity of the annual average rainfall
series using SNHT, Pettit’s, Buishand’s and von Neumann’s tests. In SNHT, Pettit’s and
Buishand’s tests, the year of the change points for the annual average rainfall time-series was
obtained and shown in the Table, whereas the von Neumann’s test only identified the presence
of the change point. Pettit’s test shows that all the gauged stations are homogeneous for the
annual average rainfall series whereas heterogeneity for annual average rainfall series was

observed in all the tests.

The year 2004 can be recognised as the year having the greatest number of change
points. In SNHT test, the change points that are identified in the year 2007 and 2009 at
Vijayawada Urban and Pedakurapadu and the rainfall data were non-homogenous. Similarly,
in Buishand’s test, the change points that were seen in the year 2004 at the two stations, and
the rainfall data was non-homogenous in the year 2009 at Pedakurapadu. In von Neumann’s

test, data at Amravati and Penamaluru shows non-homogeneity.
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Rainfall series at the two rain gauge stations showed non-homogeneity by SNHT and

Buishand’s test both. Buishand’s test and von Neumann’s test showed heterogeneity in

Amaravati station.

Similar results are obtained in parametric regression analysis and non-parametric

Mann Kendall test, with Mann Kendall trend test showing significant trend among the result.

Table 4. 11 Homogeneity of annual average precipitation series using Pettit’s, SNHT,

Buishand’s and von Neumann’s test for the gauged stations

Stations Pettitt’s test SNHT Buishand’s test von Neumann’s test

K| t |trend| TO t trend | Q t trend N P-value | trend

Amaravati 115/2007| HO | 7.07 12007 | HO | 6.92 | 2004 | Ha 141 0.05 Ha
Thullur 81 |1991| HO |3.58|2004| HO | 497 | 2004 | HO 2.04 0.55 HO
Thadepalli 80 |2002] HO |2.34|2004| HO | 4.14 | 2002 | HO 2.00 0.48 HO
Mangalagiri 59 12000) HO ]2.02 2011 | HO | 2.74| 2009 | HO 2.46 0.90 HO
Tadikonda 76 [1998| HO |2.88|1995| HO | 4.56 | 1995 | HO | 1.98 0.46 HO
Medikonduru 53 12005| HO |5.11]2013| HO | 2.26 | 2013 | HO 2.29 0.79 HO
Guntur 81 |1996| HO |4.91]1990| HO | 551 | 1995 | HO 1.97 0.43 HO
Pedakakani 84 12002] HO |4.28 2002| HO | 5.65| 2002 | HO 1.54 0.10 HO
Duggirala 84 11990 HO [4.97]1990| HO | 4.97 ] 1990 | HO 2.07 0.57 HO
Pedakurapadu  |103]2009| HO |11.28/ 2009 | Ha | 6.97 | 2009 | Ha | 197 0.45 HO
Phirangipuram 63 |2011) HO | 2.23|2011| HO | 250 | 2011 | HO 1.94 0.42 HO
Prathipadu 42 11988 HO [1.96|1985| HO | 2.66 | 1997 | HO 1.95 0.43 HO
Vatticherukuru 65 |1997] HO |3.42]1997| HO | 5.11 | 1997 | HO 2.26 0.77 HO
Ibrahimpatanam | 74 [1998| HO |1.95|1998| HO | 3.88 | 1998 | HO 2.09 0.59 HO
Vijayawada Urban | 71 |2007| HO |9.79 (2007 | Ha | 7.38 | 2004 | Ha | 1.48 0.07 HO
Penamaluru 90 |2004| HO |6.71]2011| HO | 6.10 | 2004 | HO 1.21 0.01 Ha
Kanchikacherala | 88 |1994| HO |3.41|1985| HO | 3.47 | 1994 | HO 1.49 0.07 HO

HO-null hypotheses, Ha- alternate hypotheses.
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4.5. Land Use Land Cover Changes

4.5.1. Comparison of Landsat 8 OLI and Sentinel 2

The comparison of Landsat 8 Operational Land Imager (OLI) and Sentinel 2 data has
been made for the year 2018 (Fig 4.14). Table 4.12 and Table 4.13 give the comparison of
accuracy calculated using the error matrix or confusion matrix. For Landsat data, the average
user’s accuracy was 82.8%, and the average producer’s accuracy was 71.95%. The kappa
coefficient for Landsat data was 0.718. For Sentinel data, the average user’s accuracy was
82.9%, the average producer’s accuracy was 79.8% and the kappa coefficient was 0.77.

Comparison of these two data set showed that Sentinel 2 has higher accuracy than Landsat 8.
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Fig 4. 14 Comparison between Landsat and Sentinel supervised classification for the year
2018
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Table 4. 12 Error matrix for Landsat 8 (2018)

Supervised classification
Built-up | Barren | Cropland | Vegetation | Water | Total
Area Land
£ | Built-up Area 37 9 6 52
'S | Barren Land 19 2 21
@ | Cropland 2 78 1 81
S | Vegetation 1 9 5 1 16
£ | Water 5 12 17
@ | Total 39 29 100 6 13 187
Table 4. 13 Error matrix for Sentinel 2A (2018)
Supervised classification
Built-up | Water Barren Cropland | Vegetation | Total
Area Land
« | Built-up Area 55 1 2 58
S | Water 34 34
g | Barren Land 1 27 9 37
o Cropland 2 16 91 3 112
£ | Vegetation 10 10 20
@ | Total 58 34 44 112 13 261
4.5.2. Comparison of indices

The trends of different indices have been calculated for Landsat 8 and Sentinel 2. Fig
4.15 showed the maximum value of the indices (NDVI, MNDWI, NDISI and NDBI) using
Landsat 8, and Fig 4.16 showed the maximum value of the indices using Sentinel 2.

92




Indices (Landsat 8)

0.9
0.8
0.7
0.6

R ——

0.4
0.3
0.2
0.1

2013 2014 2015 2016 2017 2018 2019

=@=NDV| ==@=NNDWI NDIS| ==@==NDBI

Fig 4. 15 Plots of maximum indices values for Landsat 8 OLI
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Fig 4. 16 Plots of maximum indices values for Sentinel 2

The trend of indices in Sentinel showed the inconsistency of data. This trend does not
tend help to reach any conclusion. The trend should either decrease or increase. If the NDVI
decreases, it can be assumed that the construction activities have resulted in the reduction of
vegetation. If the NDVI increases, it can be assumed that plantation was being done in the
area. Inconsistency in the trend of indices in Sentinel is due to the fact that the data has not
undergone atmospheric correction. Sentinel data does not have a thermal infrared band and

hence the computation of NDISI was not possible.

Based on the results, it can be concluded that sentinel data is suitable for supervised
classification for the years 2016 to 2019. Landsat data is better for the computation of various

indices.
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Table 4.14 shows the maximum values of the indices calculated using Landsat data.
The NDVI, MNDWI, and the NDISI values decrease gradually from the year 2015 till 2018.
The increase in the values of these indices in the year 2019 can be justified due to the creation
of a new wing under APCRDA for the plantation works, called the Environmental
Management Regulatory Authority (EMRA), hence increasing the vegetation. The built-up
index does not show a gradual trend but increases in the year 2019. However, there is an
anomaly observed in the year 2016. This may be due to the error in collected data as these
indices were calculated mathematically using raster calculator without the involvement of any

manual operations

Table 4. 14 Maximum values of various indices

Indices 2013 2014 2015 2016 2017 2018 2019
NDVI 0.55 0.57 0.55 0.49 0.48 0.44 0.56
MNDWI 0.26 0.30 0.31 0.27 0.27 0.20 0.34
NDISI 0.72 0.75 0.76 0.73 0.73 0.66 0.78
NDBI 0.14 0.12 0.13 0.29 0.15 0.11 0.13

4.5.3. Land Use and Land Cover changes

Land cover has changed significantly between 2016 and 2019. This is because the new
capital city was being constructed with huge infrastructure causing conversion of most of the
cropland into urban and barren land. For studying the Land use and land cover details of the
area, Landsat 5 TM data was used for the years 1990, 2000, and 2010; Landsat 8 data was
used for the period from 2013 to 2016; Sentinel 2 data was used for 2016 to 2019. Sentinel
data was used due to its high resolution of 10m. The areas of different classes computed from
the supervised classification are shown in Table 4.15. The kappa coefficients for the

classification are presented in Table 4.16.

Table 4. 15 Area (Km?) of different classes.

1990 | 2000 | 2010 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019
Urban 1449 | 37.30 | 17.17 | 1495 | 29.50 | 33.65 | 26.19 | 3545 | 41.74 |107.25
Barren 18.45 | 1590 | 3.67 0.61 392 | 2144 | 879 | 73.04 |101.52 | 71.09
Cropland 367.46 | 364.75 | 396.45 | 407.15 | 384.73 | 353.91 | 376.31 | 304.95 | 276.92 | 218
Vegetation | 21.44 | 4.80 521 | 0.135 | 443 |14.041| 3.10 9.15 1.80 | 26.19
Water 131 | 0399 | 0.64 | 0.295 | 0.55 0.10 1.26 0.56 1.17 0.63
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Table 4. 16 Accuracy of supervised classification data

1990 | 2000 | 2010 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019

Users Accuracy

81.9 82 821 | 92.2 | 81.7 | 85.2 | 87.2 | 83.9 | 829 | 86.7
(average)

Producer
Accuracy 788 | 752 | 73.1 | 505 | 71 | 733 | 742 | 834 | 79.8 | 78.01
(average)

kappa Coefficient | 0.73 | 0.74 | 0.75 | 0.65 | 0.75 | 0.76 | 0.78 | 0.78 | 0.77 | 0.77

The built-up area (urban) had increased from 3.41% to 25.2%, most of which happened
between 2016 to 2019. The increased area was historically cropland. The cropland decreased
from 86.6% in 1990 to 51.4% in 2019. There was an increase in barren land from 4.3% in
1990 to 16.76% in 2019. This change in the land use was due to the farmers voluntarily
donating their lands under the ‘Land Pooling Scheme’. There was not much significant change
in the vegetation area during this period; it was 5.05% in 1990 and 6.17% in 2019. The water
area within the study area boundaries was about 0.3% in 1990, and it changed to 0.1% in 2019.
Though artificial canals were built to divert the river water into the new capital region in the
study area, it was not detected by the satellites since the data was from the months of April
and May. As the Krishna is a seasonal river, the canals might be dry during the summer
months. Temporal changes in land use and land cover for the years 1990, 2000, 2010, and
2018 are shown in Fig. 4.17. Supervised classification for the years 1990, 2000, 2010, 2013,
2014, 2015, 2016, 2017, 2018, and 2019 are shown in Fig 4.18 to Fig. 4.27. Details of

conversion of land cover from one class to another are shown in Fig 4.28.
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Fig 4. 17 Temporal change in land use and land cover

96




16°35'0"N-
16°30'0"N—
16°25'0"N-]
16°20'0"N-
1990
- urban
- cropland
- vegetation
3 6 12 Miles B vater
16°15'0" N I I | I | B varen fand
1 1 I
80°25'0"E 80°30'0"E 80°35'0"E

Fig 4. 18 Supervised classification based on 1990 data
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Fig 4. 19 Supervised classification based on 2000 data
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Fig 4. 20 Supervised classification based on 2010 data
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Fig 4. 21 Supervised classification based on 2013 data
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Fig 4. 22 Supervised classification based on 2014 data
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Fig 4. 23 Supervised classification based on 2015 data
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Fig 4. 24 Supervised classification based on 2016 data
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Fig 4. 25 Supervised classification based on 2017 data
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Fig 4. 26 Supervised classification based on 2018 data
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Fig 4. 27 Supervised classification based on 2019 data
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Fig 4. 28 Conversion of land cover
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4.6. Flood Inundation Using HEC-RAS

4.6.1. Frequency analysis

Frequency analysis was carried out for the rainfall data. Using the Easyfit Software,
the addition of the rankings of Kolmogorov Smirnov, Anderson Darling and Chi-Squared is
done to find the least sum, considering it as a good fit. It is found that the GEV distribution
fits well to the data. Table 4.17 shows the rainfall depth for different return periods using GEV.
The result indicates that for the return period of 100 years, the rainfall depth will be around
240mm.

Table 4. 17 Rainfall depth for different return periods using GEV

Return Period (years) P Xt (mm)

2 0.50 84.47

5 0.80 119.95
10 0.90 145.25
20 0.95 170.96
50 0.98 206.50
100 0.99 234.90
200 0.995 264.81

4.6.2. Watershed delineation

The Kondaveeti Vagu catchment is delineated into 25 sub-basins with the first step of
pre-processing using the extension HEC-GeoHMS. The HEC-HMS model was generated in
ArcGIS by preparing the basin model, meteorological model and control specifications. The
results of pre-processing namely, the maps for fill sinks, flow direction, flow accumulation,
stream definition, stream segmentation, catchment processing, and catchment grid delineation
are presented in Fig.4.29 and Fig. 4.30. Fig 4.29 shows the layouts of fill sink, flow directions,
flow accumulation and stream segmentation. Fig 4.30 shows layout for catchment grid

delineation, drainage line, catchment polygon processing and adjoint catchment.
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Fig 4. 29 Layouts for (a) fill sink, (b) flow direction, (c) flow accumulation and (d) stream
segmentation

109



(

Q

) Layout for Catchment Grid Delineation (b) Layout for Drainage Line e
w- E
i (

Legend

Catchment | 13
Value [wu
1 B -
. 2 Bl
(K B v
| B I
s
N B
- > s L !
. Bz ] 7 Legend-
| B . s T “
012 4 6 BK“ i o 0125 5 75 10K" ; DrainageLine
e mmm LU . — — lometers
S = y E.e [ subbasin215
(c) Layout for Catchment Polygon (d) Layout for Adjoint Catchment
Processing & "

Legend Legend
01785 7 105 14 Satchment 01785 7 105 14 || AdjointCatchment
o — w—(Clometers E Subbasin215 T — m— Kilometers |:| Subbasin215

Fig 4. 30 Layout for (a) catchment grid delineation, (b) drainage line, (c) catchment polygon
processing and (d) adjoint catchment
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Table 4.18 shows the characteristics of area of each delineated sub-basin of the

Kondaveeti Vagu catchment. The total area of the watershed is 420 sq km.

Table 4. 18 Attribute table of the sub-basins in the catchment area

%

Tﬂﬁ)ﬂ“ =1 x|
3% BRO X :
Subbasin217 X
gridcode | Shape_Length | Shape_Area | HydrolD | DrainlD | Name| Description PrecipGage | TotStormP
) 1 752048526 6818701598622 26 26(W260 |<Null= PrecipGage 1 [<Null»
2 5327.7514|  457056.308292 2 27|W270 | <Null= PrecipGage2  |<Null:
3 16729.9482|  5928699.271375 28 28|W280 |<Null= PrecipGage 3 |<Null:
< 50270.5664 | 35268984.690251 2 29|W290 |<Null= PrecipGage 4 |<Null:
5 29282.4534| 14775268.713419 ki) 30{W300 |<Nult= PrecipGage 5 |<Null-
6 9928.9918| 762710767822 3 31|W310 [<Null PrecipGage 6 |<Null:
7 12471.7826|  2407461.835001 R 32|W320 [<Null= PrecipGage 7 |<Null:
8 29928.2412|  10634067.876391 3 33|W330 [<Null= PrecipGage & |<Null:
9 37031.909| 17591423.764255 3 34|W340 [<Nult= PrecipGage 9 |<Null-
10 32814.1072| 20210257.585108 3 35|W350 [<Null= Precip Gage 10 |<Null:
11 44599.7402| 19505073.432843 % 36|W360 [<Null= Precip Gage 11 |<Null=
12 37798.782| 24151388.178713 kY| 37|W370 [<Nult= Precip Gage 12 |<Null=
13 2058.4494|  113525.868454 38 38(W380 |<Nult= Precip Gage 13 |<Null=
14 403617558 | 25154488.847192 3 39|W390 [<Null= Precip Gage 14 |<Null:
15 55134.1566| 40057028.705139 40 40 (W400 [<Null= Precip Gage 15 |<Null:
16 7123.8502|  637475.925548 41 41|W410 | <Null= Precip Gage 16 |<Null=
17 21748.709| 13566396.059548 42 42|W420 | <Null= Precip Gage 17 |<Null=
18 38545.4748| 12673359.532877 43 43|W430 | <Null= Precip Gage 18 |<Null:
19 17476.639|  4138350.023559 44 44|W4d0 | <Null= Precip Gage 19 |<Null=
20 35054.1842| 20309936.356272 45 45|W450 | <Null= Precip Gage 20 |<Null=
21 30736.1464 | 14492930.364167 46 46|W460 | <Null= Precip Gage 21 |<Null=
2 47626.8688| 31069035.431494 4 47| W4T0 | <Null= Precip Gage 22 |<Null:
23 24943.564|  8980356.954783 48 43| W430 | <Null= Precip Gage 23 |<Null=
2 45972.0382| 18979697.900904 49 49|W490 | <Null= Precip Gage 24 |<Null-
25 27345.0884| 13912471.868374 50 50{WS00 |<Nult= Precip Gage 25 |<Null:
< )
Mo 1M E (0 out of 25 Selected)

The longest flow path of the sub-basins, centroid for the sub-catchments, and
centroidal longest flow path for each sub-basin were found out by using HEC-GeoHMS
extension in ArcGIS software. Fig. 4.31 shows the layout for longest flow path, centroid and
centroidal longest flow path of sub-basins.
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Fig 4. 31 Layout for (a) longest flow path, (b) centroid and (c) centroidal longest flow path
of sub-basins
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4.6.3. HEC-HMS model

HEC-HMS model with the extension HEC-GeoHMS consists of 25 sub-basins, 12
reaches and 12 junctions. The simulation is carried out for 100-year return period for 24-hrs

maximum rainfall of 234 mm (Fig.4.32.)
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Fig 4. 32 HEC-HMS model generated in ArcMap using HEC-GeoHMS
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Since Kondaveeti Vagu catchment is ungauged, no water levels or discharge
measurements were available. The only calibration value available was the maximum
discharge of 460 m3 /s for 100-year return period, at the confluence point of Kondaveeti Vagu
with River Krishna. Manual calibration was carried out by trial-and-error method to simulate
the historical flood inundation event and to get an estimate of the average Manning’s n value
and percent of imperviousness for the study reach. By simulation for one day maximum of
100-year return period, the peak discharge at the outlet of the Kondaveeti VVagu catchment was
obtained as 460.4 m3/s. The hydrographs are generated at the outlet and junctions. The
hydrograph showing peak flow discharge obtained from HEC-HMS is shown in Fig.4.33.
These hydrographs obtained were given as input for the unsteady flow analysis by the HEC-
RAS model.
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Fig 4. 33 The flow at the outlet of sub-basin for 100-year return period

Table 4.19 shows the peak discharge, time of the peak and volume at every sub-basin,
junction, and reaches for the 100-year return period. Highest discharge of 460 m 3 /s was
observed at the Undavalli outlet. It can be seen from the results that the sub-basins like W260,
W350, W370, W430 etc., lying in the upstream region had much lower peak discharge and

volume compared to the sub-basins in the downstream low-lying region.
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Table 4. 19 Results obtained in simulation of HEC-HMS model for 100- year return period

Hydrologic Element Drainage area Peak Discharge Time of Peak
(km?) (m*/s)

W490 18.97 21.9 160ct2006, 15:00
W500 13.91 11.2 160ct2006, 16:00
J158 32.89 32.7 160ct2006, 15:00
R230 32.89 32.6 160ct2006, 16:00
W470 31.06 36.1 160ct2006, 15:00
W480 8.98 11.7 160ct2006, 15:00
J163 72.94 79.4 160ct2006, 15:00
R200 72.94 78.5 160ct2006, 16:00
W460 14.49 15.1 160ct2006, 15:00
W430 12.67 15.6 160ct2006, 15:00
J168 100.10 108 160ct2006, 15:00
R190 100.10 107 160ct2006, 16:00
W450 20.31 23.6 160ct2006, 15:00
W440 4.13 8.5 160ct2006, 11:00
J171 124.56 135.8 160ct2006, 16:00
R160 124.56 135.5 160ct2006, 16:00
W420 13.56 15 160ct2006, 15:00
W410 0.63 0.5 160ct2006, 15:00
J178 138.75 150.4 160ct2006, 16:00
R150 138.75 137.3 160ct2006, 16:00
W370 24.15 29.3 160ct2006, 15:00
W350 20.21 23.6 160ct2006, 15:00
J191 44.36 52.9 160ct2006, 15:00
R110 44.36 51.8 160ct2006, 16:00
W400 40.05 46.1 160ct2006, 15:00
W360 19.50 28.8 160ct2006, 11:00
J183 103.92 124 160ct2006, 15:00
R120 103.92 123.8 160ct2006, 15:00
W380 0.11 0.1 160ct2006, 15:00
W390 25.15 29.1 160ct2006, 15:00
J186 267.95 287.5 160ct2006, 16:00
R100 267.95 286 160ct2006, 16:00
W260 68.18 102.8 160ct2006, 10:00
W340 17.59 18.2 160ct2006, 15:00
J198 85.77 108.4 160ct2006, 10:00
R60 85.77 102.4 160ct2006, 11:00
W330 10.63 11.7 160ct2006, 15:00
W320 2.40 1.9 160ct2006, 15:00
J201 366.77 395.7 160ct2006, 16:00

115



R40 366.77 395.4 160ct2006, 16:00
W300 14.77 23.3 160ct2006, 10:00
W310 0.76 0.9 160ct2006, 15:00
J206 382.30 413.9 160ct2006, 16:00

R30 382.30 408.4 160ct2006, 16:00
W290 35.26 54.4 160ct2006, 10:00
W280 5.92 7.3 160ct2006, 15:00
J211 423.50 459.9 160ct2006, 16:00

R10 423.50 459.9 160ct2006, 16:00
W270 0.45 0.7 160ct2006, 10:00

Outletl 423.96 460.4 160ct2006, 16:00

4.6.3.1.  Design flood discharge for different return periods

The calibrated model is simulated in HEC-HMS for the estimation of maximum flood
discharge for design event return periods of 2-year, 5-year, 10-year, 50-year, and 100-year.
Design storms of 84.48mm, 119.95mm, 145.25mm, 206.5mm, and 234.9mm, which were
given as data input for return periods of 2-year, 5-year, 10-year, 50-year, and 100-year into
Kondaveeti Vagu, the HMS model generated runoff (peak flood discharges) of 107m?/s, 192.4
md/s, 238.3 m3/s, 398.7 m®s, and 460 m%/s magnitudes respectively at the Undavalli outlet.

The user interface of the simulation results of 5-year, 10-year, and 50-year, which shows the

peak discharges, are shown in Fig 4.34 to Fig 4.37.
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Fig 4. 34 Peak discharges corresponding to 5-year return period
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Fig 4. 35 Peak discharges corresponding to 10-year return period
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Fig 4. 36 Peak discharges corresponding to 50-year return period

4.6.3.2.  Sensitivity analysis of HEC-HMS model

Calibration of the hydrologic model could not be done because of the non-availability
of discharge data since Kondaveeti VVagu was ungauged. The sensitivity of the HMS model
for the Kondaveeti Vagu catchment was manually checked for 100-year return period by
varying the percentage of imperviousness of the basin. As the Amaravati region is still under
development, it is assumed that around 60% of the city will be paved surfaces. The
imperviousness of the sub-basins in the capital city region was varied by 10% to determine
the variation of the discharge at the outlet. HEC-HMS model gave different design event flood
discharges for different percentages of imperviousness as given in Table 4.20. With the
increment of the percentage of imperviousness by 10%, an increase of 3 to 6 % in the flood

discharge values were observed. Amaravati is subjected to rapid developments leading to more

impervious cover which will be adding to the existing flooding problems.
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Table 4. 20 Design flood discharge corresponding to different percentage of imperviousness

Imperviousness of sub-catchments Design event flood discharge
(%) (m®/s)
50 443.9
60 460.4
70 487.1

4.6.4. Flood inundation modelling
46.4.1. HEC-RAS model

Hydraulic modelling was performed using HEC-RAS software. For the Amaravati
region, the simulation was carried out with the 100-year rainfall of 230mm. The hydrographs
generated in HEC-HMS for different junctions and the outlet were given as the input for the
unsteady flow data of reservoirs and flow area. The upstream and downstream boundary
conditions are defined for the region. The simulation was run for every hour. Fig. 4.37 shows

the flood inundation in the Amaravati region at three different times of the simulation.
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Fig 4. 37 Flood inundation at different times for 24 hour maximum 100-year rainfall

Low-lying areas like Undavalli, Krishnayapalem, Mangalagiri, Dolas Nagar and
Nalakapeta are mostly inundated. Some regions around Neerukonda reservoir, inundated
including the Thullur regio, are also inundated. For the extreme rainfall event, even the regions

near Vaddamanu and Anathavaram, which are the high elevation regions, showed patches of
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water, giving the caution that not only the low-lying areas but also the higher elevation regions

are also susceptible for flooding.
4.6.4.2.  Simulation for past rainfall event

The HEC-RAS model developed for the Kondaveeti Vagu catchment was used for
simulating the data of the past flood event that occurred in 2013. The accumulated five-day
maximum rainfall event was 321mm. The regions which were mostly inundated were the low-
lying regions like Undavalli, Krishnayapalem, Mangalagiri, Dolas Nagar, Nalakapeta and
Malkapuram. Water was seen accumulating in Thullur region which is at the upstream of the
Kondaveeti Vagu. Flood inundation map is exported to ArcGIS and the area of inundation was
found out to be 54.24 sq km. Fig 4.38 shows the maximum extent of flood inundation for past

5-day maximum rainfall event.
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Fig 4. 38 Maximum extent of flood inundation for past 5-day maximum rainfall event
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4.7. Bias Correction

Bias correction was carried out for the nine grid points in and around the study area
for monthly average and maximum rainfall time series of RCM dataset. Qmap.P, Qmap.S,
CDF and linear scaling transformation are used for the bias correction. Standard error, mean
absolute error, root mean square error and mean square error were calculated for each grid
point of all the six bias corrected RCMs. As the methodology applied to all RCMs were

similar, as an example, results from the CNRM-CM5 RCM dataset are only explained further.

Standard error and mean square error (MSE) calculated for the bias-corrected results
using Qmap.P, Qmap.S, CDF and linear scaling transformation for average and maximum
monthly series are shown in Table 4.21. Highest standard error for monthly average series
using these methods were 0.44, 0.62, 0.71 and 1.52 respectively. Correspondingly, the
maximum MSE values for monthly average series are respectively 9.09, 12.87, 13.61 and
31.54. The lowest values in standard errors calculated for monthly average series are 0.32,
0.43, 0.43 and 0.72 respectively, while the lowest MSE values for monthly average series are
6.60, 8.89, 8.83 and 41.97 respectively. It is evident from the analysis that the linear scaling
technique showed higher values of error compared to the other three methods and hence it can
be concluded that this method is not efficient for correcting bias. Similarly, for maximum
monthly series the standard error and MSE obtained for Qmap.P, Qmap.S and CDF methods
had error values much higher when compared to average monthly series. The highest MSE
value for average monthly series was obtained as 31.54 using linear scaling method, whereas
the lowest MSE value was 6.60 using Qmap.P transformation. Standard error and MSE were
very high for the monthly maximum series, which show that bias correction techniques are

poor for the extreme events.

Fig 4.39 shows the mean absolute error (MAE) calculated for the bias-corrected results
using the four methods for average monthly series for nine grid points. Root mean square error
(RMSE) calculated for the bias-corrected results using these methods for average and
maximum monthly series of nine grid points are shown in Fig 4.40. Higher MAE and RMSE
values were present in the linear scaling transformation method, which show the inability of
linear scaling approach in correcting the bias compared to Qmap.P, Qmap.S transformation
and CDF. Out of these four methods, Qmap.P gave the least MAE and RMSE, and hence it is

the best among the four methods for bias correction.
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The bias correction methods are spatially independent, since the error in each grid
points vary. Due to higher error values for the monthly maximum bias corrected series, bias

correction methods are inadequate in preserving the extremes.

Table 4. 21 Standard error (SE) and mean square error (MSE) for the bias-corrected results
using Qmap.P, Qmap.S transformation, CDF and linear transformation for average and
maximum monthly series

For average monthly series For maximum monthly series
Error | Grid i
Qmap.P Qrgap. CDF s,L(:LnI(ier?g; Qmap.P | Qmap.S CDF
1 0.42 0.43 0.44 0.98 66.91 85.00 90.37
2 0.44 0.50 0.51 1.08 47.17 58.92 61.04
3 0.37 0.53 0.54 1.52 67.84 83.58 120.23
4 0.44 0.46 0.48 0.82 60.08 79.51 83.36
SE 5 0.36 0.44 0.43 1.10 51.03 69.89 62.97
6 0.42 0.62 0.71 1.49 61.71 75.80 112.59
7 0.37 0.44 0.47 0.72 71.98 106.99 135.79
8 0.32 0.43 0.43 0.89 25.86 42.67 42.85
9 0.42 0.61 0.59 1.29 42.55 59.97 61.67
1 8.68 8.96 9.09 20.36 | 1387.62 | 1762.68 | 1873.95
2 9.06 10.29 | 10.64 | 22.40 | 978.14 | 1221.76 | 1265.70
3 7.61 10.96 | 11.26 | 31.54 | 1406.84 | 1733.13 | 2493.14
4 9.09 9.55 0.88 17.01 | 124591 | 1648.78 | 1728.55
MSE 5 7.47 9.08 8.91 22.88 | 1058.33 | 1449.20 | 1305.73
6 8.81 12.87 | 13.61 | 30.99 | 1279.79 | 1571.79 | 2334.71
7 7.75 9.05 9.66 1497 | 1492.66 | 2218.61 | 2815.79
8 6.60 8.89 8.83 18.42 | 536.292 | 884.78 888.64
9 8.76 12.63 | 12.13 | 26.72 | 882.438 | 1243.55 | 1278.75
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Fig 4. 39 Mean absolute error (MAE) for the bias-corrected result using Qmap.P, Qmap.S
transformation, CDF transformation and linear transformation for average monthly series for
nine grid points
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Fig 4. 40 Root mean square error (RMSE) for the bias-corrected result using Qmap.P,

Qmap.S transformation, CDF transformation for average and maximum monthly series of
nine grid points
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4.8. Climate Change Impact on Urban Flood

Bias corrected RCM was used for the analysis of climate change impact. Ensemble of

climate models was made after bias correction. RCM ensemble was done for the six RCM

models with 2 different parameters using multi-model mean method. Historic (1970 — 2005),
RCP 4.5 future 1 (2014-2056), RCP 4.5 future 2 (2057-2099), RCP 8.5 future 1 (2014-2056)
and RCP 8.5 future 2 (2057-2099) are the ensemble RCM time series. Rainfall depths for
different return periods using GEV for historic data (RCM), RCP 4.5 future 1, RCP 4.5 future
2, RCP 8.5 future 1 and RCP 8.5 future 2 were calculated for different probability of
exceedance (P) and shown in Table 4.22. Peak discharges were calculated for the rainfall

corresponding to the four scenarios and shown in Table 4.23. HEC-HMS model was used for

the calculation of peak discharge for different return periods. Peak discharges for different

return periods are shown in the Fig. 4.41. It was found that RCP 8.5 future 1 shows maximum

peak discharge.

Table 4. 22 Rainfall depth for different return periods using GEV for historic data (RCM),
RCP 4.5future 1, RCP 4.5future 2, RCP 8.5 future 1 and RCP 8.5 future 2

Return R)zn(fr?]lrlngiigtrh Rainfall depth Rainfall depth Rainfall depth Rainfall depth
Period| P historic data Xt (mm) for RCP | Xt (mm) for RCP | Xt (mm) for RCP | Xt (mm) for RCP
(YYears) (RCM) 4.5future 1 4.5future 2 8.5 future 1 8.5 future 2
2 10.50 30.142 25.7 28.2 345 334
5 10.80 37.114 36.5 40.2 50.5 49.0
10 10.90 40.99 45.3 50.8 63.0 60.6
20 [0.95 44.236 55.0 63.4 76.5 72.8
Table 4. 23 Peak discharge for different return periods for historic data (RCM), RCP
4.5future 1, RCP 4.5future 2, RCP 8.5 future 1 and RCP 8.5 future 2
Return | Peak Discharge Peak Discharge Peak Discharge Peak Discharge | Peak Discharge
Period | (m%/s) for historic | (m%/s) for RCP (m3/s) for RCP | (m®/s) for RCP 8.5| (m®/s) for RCP
(Years) data (RCM) 4.5future 1 4.5future 2 future 1 8.5 future 2
2 129.9 109.4 120.7 150.6 145.4
5 161.5 158.7 176.1 231.0 223.0
10 180.0 201.5 232.5 315.9 298.7
20 197.0 260.5 319.0 431.0 396.2
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Fig 4. 41 Peak discharge for different return periods

4.9. Urban Flood Mitigation (BMP)
SWMM V5.1 was used to design the different LID scenarios. Biological BMPs,

Structural BMPs and Combination of biological and structural BMPs were the three scenarios
considered. Biological BMPs are Bioretention, Rain Garden and Grass swale. Structural BMPs
considered are permeable pavement, infiltration trench and rain barrel. The introduction of
different LID units is expected to improve the infiltration capability of the selected area by
reducing the surface runoff. The SWMM model was set up using the input data collected from
APCRDA and the use of ArcGIS. 25 sub-basins were obtained after the delineation of the
Kondaveeti Vagu watershed. The longest flow path in the sub-basins, centroid for the sub-
catchments, and centroidal longest flow path for each sub-basin have already been calculated.

As already mentioned, the Kondaveeti Vagu catchment is ungauged, and the maximum
discharge of 460 m3 /s for 100-years return period, at the confluence point of Kondaveeti
Vagu with River Krishna was available from records. Initially, the model is simulated for 100-
year return period for 24-hour maximum rainfall of 234 mm. The simulation for one day
maximum of 100-year return period, the peak discharge at the outlet of the Kondaveeti Vagu
catchment is obtained as 459.6 m3/s. Simulation process displayed the continuity errors for
runoff and flow routing, which show the net flow (outflow-inflow) for the entire drainage

system. If the continuity error is more than 10%, the input parameters need to be changed. Too
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long computational steps or too short conduits cause excess continuity error. In this study,

continuity error obtained was less than 10%.

The SWMM model was developed for the study area as shown in Fig. 4.42. Flow in
the channels is dependent on its slope and dimensions. Runoff hydrographs for sub-catchments
were calculated. The peak discharges were determined at the outlet of each of the sub-

catchment and it was found that the maximum peak runoff was observed at the outlet of sub-

catchment S1.
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Fig 4. 42 SWMM model for Kondaveeti Vagu catchment

From the results from SWMM, it can be seen that, similar to the HEC-HMS results,
the low-lying areas like Undavalli, Krishnayapalem, Mangalagiri, Dolas Nagar and

Nalakapeta were inundated. Some regions around Neerukonda reservoir were also inundated
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including the Thullur region. In the extreme rainfall event, even the regions near Vaddamanu

and Anathavaram, which are the high elevation regions, showed patches of water.

This study mainly concentrated on the results of flood control measures using LID

techniques in the urbanising area of the Amaravati region. Specifically, the effect of six LID

types and their combinations are simulated for a 10-year return period rainfall. The effects on

peak runoff for different LID approaches are shown in Table 4.24 to Table 4. 26.

Table 4. 24 Comparison of runoff (m®/s) of biological BMPs

Sub- No Bioretention % R%m % Gra?s %
catchment LID (md/s) reduction gargen reduction swa'e reduction
(m®/s) (m/s) (m3/s)
S16 12.6 11.9 5.56 12.1 3.97 11.5 8.73
S14 10.1 8.9 11.88 9.5 5.94 9.3 7.92
S10 7.9 7.3 7.59 7.5 5.06 7.2 8.86
S6 28.7 27.1 5.57 26.7 6.97 27.2 5.23
S2 23.4 22.8 2.56 23.1 1.28 22.7 2.99
Table 4. 25 Comparison of runoff (m®/s) of structural BMPs
Sub- No Permeable % Infiltration % Rain %
catchment LID pavement | o4 ction trench reduction barrel reduction
(m®/s) (m®/s) (m/s) (md/s)
S16 12.6 12.4 1.59 12.0 4.76 11.7 7.14
S14 10.1 9.6 4.95 9.4 6.93 9.8 2.97
S10 7.9 7.6 3.80 7.5 5.06 7.8 1.27
S6 28.7 27.3 4.88 27.4 4.53 27.8 3.14
S2 23.4 22.8 2.56 23.2 0.85 22.9 2.14

Table 4. 26 Comparison of runoff (m?/s) of combined BMP

Sub-catchment No LID | Combination % _
(m3/s) (md/s) reduction

S16 12.6 11.8 6.35

S14 10.1 9.1 9.90

S10 7.9 7.2 8.86

S6 28.7 26.9 6.27

S2 234 22.5 3.85

It can be observed that the sub-catchment S14 has the highest percentage reduction in

peak runoff (11.88%) using bioretention structures. Grass swales have the best controlling and
reducing potential to reduce the runoff volume for S16 (8.73%), S10 (8.86%), and S2 (3.85%).
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S2 has the lowest effect on peak runoff using infiltration trench. Based on the results obtained,
it can be concluded that the performance and potential of biological BMPs are higher in
controlling and reducing the runoff volume comparing to those of structural BMPs. Biological
BMPs are environmental friendly and cost effective.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1. Summary

Flood is one of the severe natural disasters, which causes huge damage annually
including loss of human lives. Studies on urban flooding show that the effects of urban
flooding are intensifying as a result of anthropogenic activities as well as climate change
impacts. With the expansion in urbanization, people are relocating to the urban areas at a very
rapid rate. There is an increase in impervious and impenetrable surface due to the infrastructure
development to cater to the needs of the dense urban population. Assessment of the change in
flood characteristics under the context of climate change plays a significant role in managing
the flood risk. Identifying the vulnerable areas associated with the projected changes in climate
allows the local authorities to plan for the future development. This study, therefore, focusses

on the impact of climate change on flood and the mitigation of flood in urbanizing area.

Amaravati city, in the state of Andhra Pradesh, is under rapid development with
increased impervious surfaces due to the construction of infrastructure like new buildings,
roads, path walks, parking lots, etc. Kondaveeti Vagu and Pala VVagu, both flowing through
the city, have seasonal flood extremities every year. Low lying areas are inundated even in a
matter of a few hours during extreme rainfall events. Thus, the study and modelling of the
flood are required for the proper management to reduce the losses as much possible. The relief
from flood risks can be effectively provided when detailed information are obtained about the
frequency, character, and magnitude of the flood in the area.

The maximum of monthly, seasonal and annual trends for rainfall are obtained using
MK1, MK2 and ITA techniques and the trend magnitudes are calculated using Sen's slope
estimator for 15 grid points in the study area. Using the Kolmogorov—Smirnov test, the
normality of maximum monthly and seasonal rainfall data series was checked for the entire
study period. None of the rainfall series used in this study was following a normal distribution.

Results of the MK1, MK2 and Sen's slope approaches are presented for the 15 grid points.
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ITA technique was employed for annual and seasonal rainfall for the period 1961-2018. Trend
detection using the ITA technique was carried out, without any assumptions, to get the sub-
series of the dataset. Results from the ITA technique are compared with those obtained from
MK1 and MK2 tests. Results for monthly maximum trends for rainfall and comparison of
seasonal and annual trends are presented.

The Z statistics of monthly maximum rainfall data obtained from MK1 and MK2 were
calculated. Out of 180 cases, 21 cases (11.6%) displayed significant positive trends in MK1
while 22 cases (12%) displayed significant positive trends in MK2 considering the three
significant levels. In this study, no significant negative trends were observed for monthly
maximum rainfall. For MK1 test, positive significant trends were detected for the months of
January, February, May, August and November, whereas for MK2 test, most of the positive
trends were observed in the months of May, August, November and December. Compared to
MK1 test, MK2 test exhibited similar significant positive trends. From MK1 and MK2 tests,
more significant positive trends were seen in the month of May followed by the months of
August and November.

Rainfall trend showed large variability in ITA technique compared to other two trend
tests (MK1 and MK?2) considered in the study. For annual series, using MK1 and MK2 tests,
trends were detected only for grid point G8, whereas, in the case of ITA technique, trends were
detected for all the grid points. ITA technique will not consider any prior conditions like that
of MK tests, due to which, the graphical ITA technique is more appropriate in detecting
monotonic and non-monotonic trends.

In pre-monsoon season, similar trends were detected by both MKland MK2 tests
compared to ITA technique. But, for the ITA technique, all trends were limited to only the low
phase. In the monsoon season, no trends were noticed for MK1 and MK2 whereas, by ITA
techniques, increasing trends were observed at G4, G7, G8, G13 and G14. During the post-
monsoon season, no trends were detected for all grid points using MK1 and MK2, while
increasing trends were observed for G4, G13 and G14 by ITA technique. In the winter season,
positive trends were detected for all the 15 grid points using MK1 and MK2 tests, whereas
positive trends were noticed for all 15 grid points in low phase using ITA technique. ITA
technique, thus, showed a tendency to detect more trends compared to MK1 and MK2 tests.

The study of stationarity of annual average precipitation series was carried out using
ADF, PP and KPSS tests for the 17-gauge stations. The null hypothesis (HO) was considered
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for the study, when the confidence level is lower than the P-value. PP and ADF tests showed
non-stationarity in the time-series when the test showed null hypothesis HO, while the KPSS
test showed stationarity in the time-series data for null hypothesis HO. A confidence level of
0.05 was considered for the stationarity test in this study. Dickey-Fuller test and Phillips-
Perron test showed stationarity for all the gauged stations except for Penamaluru
corresponding to the maximum P-value of 0.07 whereas the other stations showed relatively
lower P-values. KPSS test showed non-stationarity at Amaravati, Thullur, Pedakurapadu and
Vijayawada Urban gauging stations having the P-value as 0.002, 0.015, 0.023 and 0.002
respectively. Rest of the stations showed stationarity by KPSS test, the P-value ranging from
0.055 to 0.94 corresponding to Penamaluru and Tadikonda stations respectively.

In SNHT, Pettit’s and Buishand's tests, the year of the change points for the annual
average precipitation time-series was obtained. The von Neumann’s test only identified the
presence of the change point. Pettit’s test showed that the annual average precipitation series
were homogeneous for all the gauge stations whereas heterogeneity for annual average
precipitation series was observed by SNHT, Buishand's and von Neumann's tests. The year
2004 can be recognised as the year having the greatest number of change points. In SNHT
test, the change points were identified in the year 2007 and 2009 at Vijayawada Urban and
Pedakurapadu. Similarly, in Buishand’s test, the change points were observed in the year 2004
at two stations, namely, Amravati and Vijayawada Urban and in the year 2009, non-
homogeneity was observed at Pedakurapadu. Data at Amravati and Penamaluru showed non-
homogeneity while performing von Neumann’s test. Two rain gauge stations, i.e., Vijayawada
Urban and Pedakurapadu showed non-homogeneity by SNHT and Buishand’s test. Buishand’s
test and von Neumann’s test showed heterogeneity in Amaravati station.

The comparison of the accuracy of Landsat 8 OLI and Sentinel 2 data, using the error
matrix or confusion matrix, was done for the year 2018. For Landsat and Sentinel data, average
user’s accuracy, average producer’s accuracy and the kappa coefficient were computed.
Comparison of these two data showed that Sentinel 2 had higher accuracy than Landsat 8.

The trend of different indices was calculated for Landsat 8 and Sentinel 2. The trend
of indices in Sentinel showed inconsistency of data. No conclusions could be arrived at from
this. If the NDVI decreases, it can be assumed that the construction activities have resulted in
decrease in vegetation. If the NDVI increases, it can be assumed that plantation was being

done in the area. But that is not the case in the study area. This inaccuracy might be due to the
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reason that the data had not undergone atmospheric correction. Moreover, Sentinel data does
not have Thermal infrared band which makes it impossible to compute NDISI.

Land cover in the study area had changed significantly between the years 2016 and
2019. This is due to the fact that a new capital city was being constructed, converting most of
the cropland into urban and barren land. Landsat 5 TM data was used for the years 1990, 2000,
and 2010, Landsat 8 data for the period 2013 — 2016; and Sentinel 2 data for the period 2016
— 2019. Sentinel data was used due to its high resolution of 10m. The areas under different
classes were computed using supervised classification.

The built-up area increased significantly between the years 2016 and 2019. The
increased built-up area was historically cropland. Significant decrease in cropland and increase
in barren land were noticed during the period from 1990 to 2019, while the vegetation area
did not show much changes during this period. Though the study area is located on the banks
of Krishna River, it does not include any part of it. Artificial canals that were built to divert
the river water into the new capital region, were not detected by the satellites since the data
were for the months April and May. Since Krishna Ris a seasonal river, the canals might be
dry during these months.

Frequency analysis was carried out for the rainfall data for the period from 1961 to
2018. The addition of the rankings of Kolmogorov Smirnov, Anderson Darling and Chi-
Squared was done to find the least sum, considering the rainfall series follow the GEV
distribution which was found as a good fit. The rainfall depths for different return periods
using GEV were calculated. For a 100-year return period, the rainfall depth worked out to be
around 240mm.

Kondaveeti Vagu catchment being ungauged, no water levels or discharge
measurements were available. The only calibration value available was a maximum discharge
of 460 m3 /sec for a return period of 100 years at the confluence point of Kondaveeti Vagu
with River Krishna. Manual calibration was carried out by trial-and-error method to simulate
the historical flood inundation event and to get an estimate of the average Manning’s n value
and percentage of imperviousness for the study reach.

As the Amaravati region is still under development, it is assumed that around 60% of
the city will be paved surfaces. The imperviousness of the sub-basins in the capital city region
was varied in steps of 10% to determine the variation of the discharge at the outlet. HEC-HMS

model gave different design flood discharges for different percentage of imperviousness. With
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every increment of 10% in imperviousness, the increase in flood discharges was found to be
in the range of 3% to 6 %.

Hydraulic modelling was performed using HEC-RAS software. For the Amaravati
region, the simulation is carried out for the 100-year rainfall of 230mm. The hydrographs
generated in HEC-HMS for different junctions and the outlet were given as the input for the
unsteady flow data of reservoirs and flow area. The upstream and downstream boundary
conditions were defined for the region and hourly simulation was run.

Mostly, the low-lying areas like Undavalli, Krishnayapalem, Mangalagiri, Dolas
Nagar and Nalakapeta were inundated. Some regions around Neerukonda reservoir, including
the Thullur region, were also inundated. For the extreme rainfall event, even the regions near
Vaddamanu and Anathavaram which are the high elevation regions showed patches of water,
giving the caution that not only the low-lying areas but also the higher elevation regions were
susceptible for flooding.

The HEC-RAS model developed for the Kondaveeti Vagu catchment was simulated
for the past flood event that occurred in 2013. The accumulated five-day maximum rainfall
was computed to be 321mm. The regions in the catchment which were inundated were the
low-lying region like Undavalli, Krishnayapalem, Mangalagiri, Dolas Nagar, Nalakapeta and
Malkapuram. Water was seen accumulated in Thullur region which is at the upstream of the
Kondaveeti Vagu. Flood inundation map was exported to ArcGIS, from which, the area of
inundation was found out to be 54.24 km?,

RCMs show critical biases in precipitation and therefore, it is mandatory that bias
correction is to be carried out so that they can be used for further research. Six RCMs were
considered in this study. Bias correction techniques were applied to reduce the errors in RCMs.
Four statistical bias correction techniques, namely, linear scaling, cumulative distributive
transformation, quantile mapping using parametric transformation and quantile mapping using
smooth spline methods were used. The bias corrected datasets were compared with observed
datasets using different relative errors, viz., standard error, mean absolute error, root mean
square error and mean square error. Relative errors compare the simulated data with observed
data.

The results showed that quantile mapping using parametric transformation technique
gave minimum error compared to the other three methods. As the linear scaling method was

designed only to correct the mean, its bias correction results are very poor and not satisfactory.
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The most effective bias correction method was the quantile mapping using parametric
transformation method, which integrates information frequency distribution for the observed
and modelled precipitations. It was found that the efficiency of bias correction depended on
the spatial variations since the error was varying at each grid point.

RCM ensemble was done for the six RCM models with 2 different parameters using
multi-model mean method. Historic (1970 — 2005), RCP 4.5 future 1 (2014-2056), RCP 4.5
future 2 (2057-2099), RCP 8.5 future 1 (2014-2056) and RCP 8.5 future 2 (2057-2099) are
the ensemble RCM time series. Rainfall depths for different return periods using GEV for
historic data (RCM), RCP 4.5future 1, RCP 4.5future 2, RCP 8.5 future 1 and RCP 8.5 future
2 were calculated. For the respective rainfall depth, peak discharges were calculated and it was
found that RCP 8.5 future 1 showed maximum peak discharge.

Low Impact Development (LID) is a stormwater management strategy that seeks to
mitigate the impacts of increased runoff and stormwater pollution by managing runoff as close
to its source as possible. LID comprises a set of site design strategies that minimises runoff.
LIDs are small scale structural practices that mimic natural or predevelopment hydrology
through the processes of infiltration, evapotranspiration, harvesting, filtration and detention of
stormwater. These practices can effectively reduce the volume and rate of stormwater flows.
Various LID controls are available for implementation. Each LID control, with their respective
level of implementation, creates different scenarios.

Three LID scenarios were considered for the study, biological BMPs, structural BMPs
and combination of biological and structural BMPs. Biological BMPs are Bioretention, Rain
Garden and Grass swale. Structural BMPs are Permeable pavement, Infiltration trench and
Rain barrel. The three scenarios are simulated for 5-year return period in five sub-catchments
for 50% of the catchment area. Based on the results obtained, it was observed that the
performance and potential of biological BMPs were higher in controlling and reducing the

runoff volume compared to those of structural BMPs.

5.2 Conclusion

The research reported in this thesis contributes towards assessing the impact of climate
change on urban flood and flood inundation model for the study area with mitigation measures
using Best Management Practices. The conclusions from the study are:

e Parametric linear regression analysis of annual precipitation displayed a positive trend

in 53% of the stations and at 30% of the stations, a negative trend was observed. From
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the analysis of extreme monthly rainfall using Sen's slope, it was observed that Sen's
slope had the lowest magnitude in October i.e., nearly -0.08 mm/year whereas the
highest magnitude occurred in May (nearly 0.17 mm/year). MK2 test exhibited similar
significant positive trends compared to MK1 for extreme monthly rainfall. For MK1
and MK2 tests, the extreme rainfall during the winter seasons exhibited significant
positive trends for the 15 grids.

Pettitt's test showed homogeneity in the annual precipitation series at all the stations.
SNHT and Buishand’s tests showed heterogeneity at Pedakurapadu and Vijayawada
Urban stations. Change points were observed more frequently in 2004. von Neumann's
test showed heterogeneity at Amaravati and Penamaluru. ADF test and PP test showed
stationarity at 90% of annual precipitation. 76% of annual time-series showed
stationarity using the KPSS test.

It is observed that ITA technique detected trend better than MK tests. The graphical
representation is a novelty as it shows hidden sub-trends of the dataset series. The ITA
technique overcomes the assumptions of dependency of the dataset, distribution
normality and dataset length.

The construction activities in Amaravati has made sharp changes in the land cover and
land use. The built-up area (urban) increased from 3.41% to 25.2%, most of which
happened between 2016 to 2019. The increase in the values of indices, viz NDVI,
MNDWI, NDISI and NDBI, in the year 2019 may be due to the creation of
Environmental Management Regulatory Authority (EMRA), for the plantation works,
which fucussed on increasing the vegetation.

Frequently inundated regions in the Amaravati city, even with the heavy rainfall for
small durations, are the low-lying areas, viz., Undavalli, Krishnayapalem,
Mangalagiri, Dolas Nagar, Nalakapeta and Malkapuram. For heavy rainfall events,
water fills can be noticed in the upstream region of the study and in the regions around
Ananthavaram reservoir. The flood inundation maps developed can be used for the
planning and management of an early warning system and public awareness.

Quantile mapping using parametric transformation technique gave optimum values for
the bias correction with minimum error compared to the linear scaling, cumulative

distributive transformation and quantile mapping using smooth spline method.
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Rainfall depths for different return periods using GEV for historic data (RCM), RCP
4.5future 1, RCP 4.5future 2, RCP 8.5 future 1 and RCP 8.5 future 2 and the peak
discharges were calculated. It was found out that RCP 8.5 future 1 gave maximum
peak discharge.

The performance and potential of biological BMPs (LID), were higher in controlling
and reducing the runoff volume compared to those of structural BMPs.

5.3. Contribution from the Research Study

Climate change impact on flooding in the study area is analysed. The results can be
used for planning the infrastructure in a developing city considering the effect of
climate change.

The flood inundation maps developed can be used for the planning and management
of an early warning system for the floods and for creation of public awareness.
Mitigation of urban flood using best management techniques, developed in this study,
can reduce the vulnerability in the study area.

The methodology developed in this study can be used for the similar urbanising cities.

5.4. Challenges Encountered

Better resolution DEMs, which would have given improved results for flood
inundation mapping, were not available for the study.

One of the biggest hurdles encountered was the observed flow data not being available
for the Kondaveeti Vagu and tributaries, since these streams were ungauged. The only
calibrated value known at the outlet point that is at the Undavalli was the 100-year

discharge data.

5.5. Scope for future study

The study can be taken forward further by linking the models to weather forecasting

systems to develop real time flood inundation maps.
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