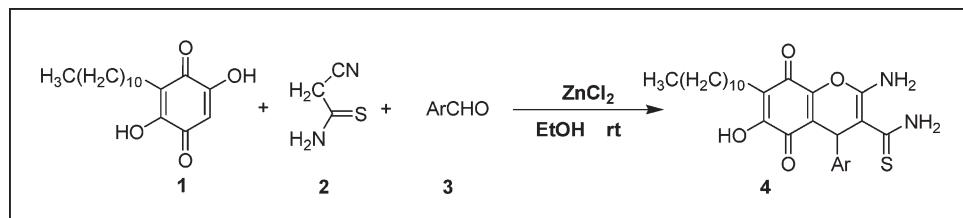


Vakiti Srinivas and Vedula Rajeswar Rao*


Department of Chemistry, National Institute of Technology, Warangal, Andhra Pradesh, India

*E-mail: vrajesw@yahoo.com

Received September 3, 2010

DOI 10.1002/jhet.849

Published online 23 November 2011 in Wiley Online Library (wileyonlinelibrary.com).

An efficient zinc chloride-catalyzed one-pot synthesis of 5,8-dihydro-5,8-dioxo-4H-chromene derivatives have been achieved by the reaction of 2,5-dihydroxy-6-undecyl-1,4-bezoquinone, cyanothioacetamide, and aromatic aldehyde, in EtOH at room temperature. The structures of the products were characterized by IR, ¹H-NMR, mass spectra, and elemental analyses.

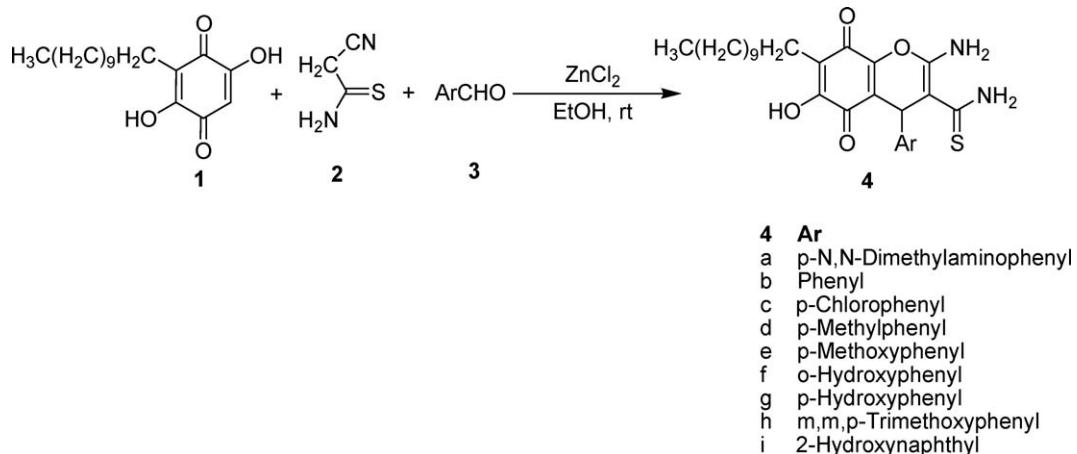
J. Heterocyclic Chem., **49**, 417 (2012).

INTRODUCTION

Mass screening program of natural product by the National Cancer Institute has been identified the quinone moiety as an important pharmacophoric element for cytotoxic activity [1,2]. Compounds containing the quinone group represent an important class of biologically active molecules that are widespread in nature [3]. The chemistry of quinones is largely dependent on the substituent being either on the quinonic or on adjacent rings. This is reflected in their chemical reactivity, especially in heterocyclic quinones [4]. The efficiency of the quinonic compounds in inhibiting cancer cell growth is believed to stem from their participation in key cellular redox mechanisms with consequent generation of highly reactive oxygen species (ROS). The ROS turn out to modify and degrade nucleic acids and proteins within the cells [5,6].

One of the most simple 1,4-benzoquinonic compound isolated from natural sources is embelin (**1**). Compound **1** shows a diversity of relevant biological activities such as chemopreventive effect against DENA/PB-induced hepatocarcinogenesis in Wistar rats [7], antifertility effects [8], and *in vitro* cytotoxic activity against B16 and XC cell lines [9]. In addition, recent studies have shown that embelin is a fairly potent, nonpeptidic, cell-permeable inhibitor of XIAP (X-linked inhibitor of apoptosis protein), and it represents a promising lead compound for designing an entirely new class of anticancer agents that target the BIR3 domain of XIAP [10,11].

From the above facts, we are interested in developing newer synthetic methods for the construction of embelin derivatives. As a part of our continuing interest in the


development of new synthetic methods in heterocyclic chemistry and multicomponent reactions [12,13], herein we describe an efficient synthesis of 5,8-dihydro-5,8-dioxo-4H-chromene derivatives *via* a three-component reaction.

RESULTS AND DISCUSSION

The one-pot, three-component condensation reactions of embelin (**1**) with cyanothioacetamide (**2**) and aromatic aldehydes (**3**) in the presence of ZnCl₂ in EtOH at room temperature afforded corresponding 2-amino-4-(substitutedphenyl)-5,8-dihydro-6-hydroxy-5,8-dioxo-7-undecyl-4H-chromene-3-carbothioamides (**4**) in good yields (Scheme 1).

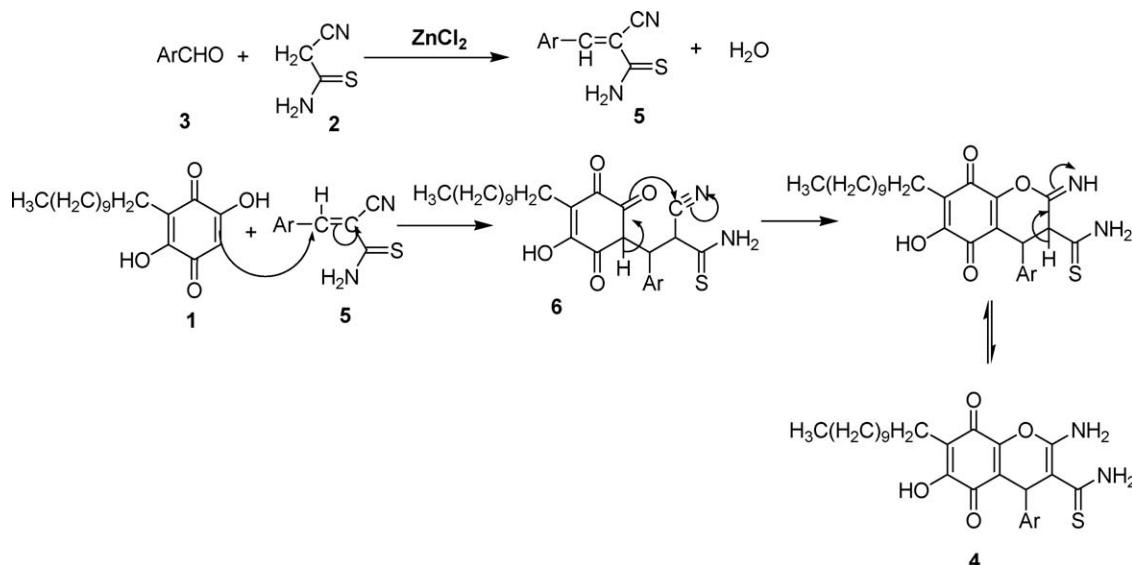
The mechanism of the reaction can be explained by the fact that in the presence of Lewis acid, cyanothioacetamide **2** reacts with aldehyde **3** to afford intermediate **5** (Scheme 2). The intermediate **5** on reaction with embelin can form another intermediate **6**. Compound **6** on cyclization will give the product **4**.

The compound **4a** can also be prepared by alternative stepwise method (Scheme 3). Involving condensation of embelin with **5a** resulted in the formation of **4a**. The compound **5a** was prepared by following the literature procedure [14]. The yields of the products are good in a one-step process (85–93%). Compounds obtained by both the methods were found to be identical by mixed melting points measurements and co-TLC and spectral data. The product **4** was shown to have quinone moiety intact by its behavior toward Zn/AcOH in a reduction and re-aerial oxidation test. The structures of **4a–i** were

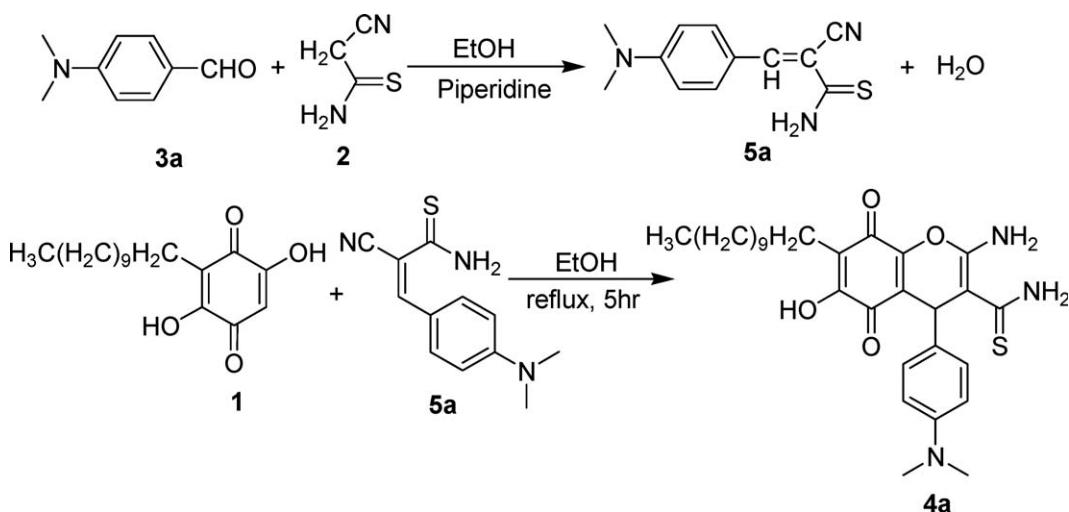
Scheme 1. One-pot reaction of 2,5-dihydroxy-6-undecyl-1,4-bezoquinone, cyanothioacetamide, and aromatic aldehydes.

confirmed from their analytical, IR, ^1H -NMR, and mass spectra.

The mass spectra of these compounds displayed molecular ion peaks at the appropriate m/z values. The ^1H -NMR spectrum of **4a** consists of a triplet for the end CH_3 of alkyl group ($\delta = 0.87$ ppm), a multiplet for $-(\text{CH}_2)_9-$ ($\delta = 1.20\text{--}1.30$ ppm), a triplet for allylic CH_2 ($\delta = 2.35$ ppm), a singlet for the NMe_2 ($\delta = 3.14$ ppm), two doublets for aromatic protons ($\delta = 6.71$ ppm and $\delta = 7.98$ ppm), a singlet for NH_2 ($\delta = 7.35$ ppm) and another singlet to thioamide NH_2 ($\delta = 7.45$ ppm) protons, and a singlet for the CH of pyran ring ($\delta = 8.68$ ppm).


EXPERIMENTAL

Melting points were determined in open capillaries with a “cintex” melting point apparatus, Mumbai, India. Melting points were uncorrected, and CHNS analysis was done by Carlo Erba EA 1108 automatic elemental analyzer. The purity


of the compounds was checked by TLC plates (E.Merek, Mumbai, India). IR spectra (KBr) were recorded on a BrukerWM-4(X) spectrometer (577model). ^1H -NMR spectra were recorded on a Bruker WM-400-MHz spectrometer in δ ppm using TMS as internal standard. The NH protons were exchanged with D_2O . Mass spectra (EI-MS) were determined on a Perkin Elmer (SCIEX API-2000, ESI) at 12.5 eV.

General procedure synthesis of 2-amino-5,8-dihydro-6-hydroxy-5,8-dioxo-4-ary-7-undecyl-4H-chromene-3-carbothioamide (4). A mixture of 2,5-dihydroxy-6-undecyl-1,4-bezoquinone (1 mmol), cyanothioacetamide (1 mmol) and aromatic aldehydes (1 mmol) and ZnCl_2 (100 mg) in ethyl alcohol (10 mL) was stirred at room temperature for 5 h. Then the reaction mixture was cooled and poured into cold water, and the solid separated was filtered off. The crude product was purified by recrystallization from ethanol to give **4**.

Synthesis of 2-amino-4-(4-(dimethylamino)phenyl)-5,8-dihydro-6-hydroxy-5,8-dioxo-7-undecyl-4H-chromene-3-carbothioamide (4a). An equimolar mixture of 2,5-dihydroxy-6-undecyl-1,4-bezoquinone (1 mmol) and 2-cyano-3-(4-

Scheme 2. Mechanism of the reaction.

Scheme 3. Stepwise synthesis of 4a.

(dimethylamino)phenyl)prop-2-enethioamide (**5a**; 1 mmol) was refluxed in ethanol in the presence of piperidine for 3 h. The reaction mixture was cooled, and the solid separated was filtered and recrystallised from ethanol.

2-Amino-4-(4-(dimethylamino)phenyl)-5,8-dihydro-6-hydroxy-5,8-dioxo-7-undecyl-4H-chromene-3-carbothioamide (4a). Brown solid, yield 85%, m.p. 199–200°C; IR (KBr) v: 3288 (NH₂ stretching of CSNH₂), 3152 (NH₂), 1612 (quinone C=O), 1376 (C=S) cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆) (δ ppm): 0.87 (t, 3H, end CH₃), 1.20–1.30 (m, 18H, -(CH₂)₉—), 2.35 (t, 2H, allylic CH₂), 3.14 (s, 6H, NMe₂), 6.71 (d, 2H, *J* = 6.9 Hz, ArH), 7.98 (d, 2H, *J* = 6.67Hz, ArH), 7.35 (bs, 2H, NH₂), 7.45 (bs, 2H, NH₂), 8.68 (s, 1H, CH of pyran ring). EI-MS *m/z* 525 (M⁺); Anal. calcd. for C₂₉H₃₉N₃O₄S: C, 66.26; H, 7.48; N, 7.99; S, 6.10. Found: C, 66.29; H, 7.51; N, 7.94; S, 6.12%.

2-Amino-5,8-dihydro-6-hydroxy-5,8-dioxo-4-phenyl-7-undecyl-4H-chromene-3-carbothioamide (4b). Black solid, yield 89%, m.p. 187–188°C; IR (KBr) v: 3329 (NH₂ stretching of CSNH₂), 3210 (NH₂), 1620 (quinone C=O), 1370 (C=S) cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆) (δ ppm): 0.83 (t, 3H, end CH₃), 1.22–1.30 (m, 18H, -(CH₂)₉—), 2.35 (t, 2H, allylic CH₂), 7.30–7.55 (m, 5H, ArH), 8.18 (s, 1H, CH of pyran ring). Anal. calcd. for C₂₇H₃₄N₂O₄S: C, 67.19; H, 7.10; N, 5.80; S, 6.64. Found: C, 67.16; H, 7.14; N, 5.84; S, 6.61%.

2-Amino-4-(4-chlorophenyl)-5,8-dihydro-6-hydroxy-5,8-dioxo-7-undecyl-4H-chromene-3-carbothioamide (4c). Black solid, yield 90%, m.p. 208–209°C; IR (KBr) v: 3330 (NH₂ stretching of CSNH₂), 3215 (NH₂), 1624 (quinone C=O), 1366 (C=S) cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆) (δ ppm): 0.83 (t, 3H, end CH₃), 1.22–1.30 (m, 18H, -(CH₂)₉—), 2.35 (t, 2H, allylic CH₂), 7.52–7.65 (m, 4H, ArH), 8.45 (s, 1H, CH of pyran ring). Anal. Calcd. for C₂₇H₃₃ClN₂O₄S: C, 62.72; H, 6.43; N, 5.42; S, 6.20. Found: C, 62.70; H, 6.47; N, 5.45; S, 6.24%.

2-Amino-5,8-dihydro-6-hydroxy-5,8-dioxo-4-*p*-tolyl-7-undecyl-4H-chromene-3-carbothioamide (4d). Green solid, yield 91%, m.p. 162–163°C; IR (KBr) v: 3357 (NH₂ stretching of CSNH₂), 3288 (NH₂), 1640 (quinone C=O), 1291 (C=S) cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) (δ ppm): 0.83 (t, 3H, end CH₃), 1.22–1.30 (m, 18H, -(CH₂)₉—), 2.25 (t, 2H, allylic CH₂), 2.46 (s, 3H, *p*-CH₃), 7.24 (d, 2H, ArH), 7.78 (d, 2H,

ArH), 8.05 (s, 1H, CH of pyran ring), 9.68 (bs, 2H, NH₂), 10.05 (bs, 2H, NH₂). Anal. calcd. for C₂₈H₃₆N₂O₄S: C, 67.71; H, 7.31; N, 5.64; S, 6.46. Found: C, 67.74; H, 7.34; N, 5.68; S, 6.48%.

2-Amino-5,8-dihydro-6-hydroxy-4-(4-methoxyphenyl)-5,8-dioxo-7-undecyl-4H-chromene-3-carbothioamide (4e). Light yellow solid, yield 85%, m.p. 176–177°C; IR (KBr) v: 3396 (NH₂ stretching of CSNH₂), 3315 (NH₂), 1641 (quinone C=O), 1257 (C=S) cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆) (δ ppm): 0.84 (t, 3H, end CH₃), 1.22–1.30 (m, 18H, -(CH₂)₉—), 2.35 (t, 2H, allylic CH₂), 3.86 (s, 3H, *p*-OCH₃), 7.14 (d, 2H, *J* = 6.6Hz, ArH), 7.97 (d, 2H, *J* = 6.3Hz, ArH), 8.06 (s, 1H, CH of pyran ring), 9.48 (bs, 2H, NH₂), 9.98 (bs, 2H, NH₂). Anal. calcd. for C₂₈H₃₆N₂O₅S: C, 65.60; H, 7.08; N, 5.46; S, 6.25. Found: C, 65.63; H, 7.00; N, 5.44; S, 6.28%.

2-Amino-5,8-dihydro-6-hydroxy-4-(2-hydroxyphenyl)-5,8-dioxo-7-undecyl-4H-chromene-3-carbothioamide (4f). Brown solid, yield 89%, m.p. 189–190°C; IR (KBr) v: 3435 (NH₂ stretching of CSNH₂), 3291 (NH₂), 1611 (quinone C=O), 1359 (C=S) cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆) (δ ppm): 0.85 (t, 3H, end CH₃), 1.20–1.30 (m, 18H, -(CH₂)₉—), 2.35 (t, 2H, allylic CH₂), 7.40–7.48 (m, 2H, ArH), 7.78–7.80 (m, 1H, ArH), 7.98 (d, 1H, *J* = 6 Hz, ArH), 8.98 (s, 1H, CH of pyran ring), 9.80 (bs, 2H, NH₂), 10.30 (bs, 2H, NH₂). Anal. calcd. for C₂₇H₃₄N₂O₅S: C, 65.04; H, 6.87; N, 5.62; S, 6.43. Found: C, 65.00; H, 6.85; N, 5.65; S, 6.47%.

2-Amino-5,8-dihydro-6-hydroxy-4-(4-hydroxyphenyl)-5,8-dioxo-7-undecyl-4H-chromene-3-carbothioamide (4g). Green solid, yield 93%, m.p. 171–172°C; IR (KBr) v: 3422 (NH₂ stretching of CSNH₂), 3242 (NH₂), 1612 (quinone C=O), 1369 (C=S) cm⁻¹; ¹H-NMR (400 MHz, DMSO-*d*₆) (δ ppm): 0.84 (t, 3H, end CH₃), 1.18–1.30 (m, 18H, -(CH₂)₉—), 2.28 (t, 2H, allylic CH₂), 6.96 (d, 2H, *J* = 6Hz, ArH), 7.95 (d, 2H, *J* = 6.6Hz, ArH), 8.10 (s, 1H, CH of pyran ring), 9.48 (bs, 2H, NH₂), 9.95 (bs, 2H, NH₂). Anal. calcd. for C₂₇H₃₄N₂O₅S: C, 65.04; H, 6.87; N, 5.62; S, 6.43. Found: C, 65.10; H, 6.89; N, 5.65; S, 6.40%.

2-Amino-5,8-dihydro-6-hydroxy-4-(3,4,5-trimethoxyphenyl)-5,8-dioxo-7-undecyl-4H-chromene-3-carbothioamide (4h). Yellow solid, yield 91%, m.p. 197–198°C; IR (KBr) v: 3393 (NH₂

stretching of CSNH_2), 3260 (NH_2), 1633 (quinone $\text{C}=\text{O}$), 1335 ($\text{C}=\text{S}$) cm^{-1} ; $^1\text{H-NMR}$ (400 MHz, $\text{DMSO}-d_6$) (δ ppm): 0.83 (t, 3H, end CH_3), 1.22–1.30 (m, 18H, $-(\text{CH}_2)_9-$), 2.35 (t, 2H, allylic CH_2), 3.85 (s, 3H, OCH_3), 3.91 (s, 6H, OCH_3), 7.44 (s, 2H, ArH), 8.15 (s, 1H, CH of pyran ring), 9.64 (bs, 2H, NH_2), 10.17 (bs, 2H, NH_2). Anal. calcd. for $\text{C}_{30}\text{H}_{40}\text{N}_2\text{O}_7\text{S}$: C, 62.91; H, 7.04; N, 4.89; S, 5.60. Found: C, 62.74; H, 7.00; N, 4.86; S, 5.64%.

2-Amino-5,8-dihydro-6-hydroxy-4-(2-hydroxynaphthalen-1-yl)-5,8-dioxo-7-undecyl-4H-chromene-3-carbothioamide (4i). Brown solid, yield 92%, m.p. 177–178°C; IR (KBr) v: 3405 (NH_2 stretching of CSNH_2), 3306 (NH_2), 1689 (quinone $\text{C}=\text{O}$), 1343 ($\text{C}=\text{S}$) cm^{-1} ; $^1\text{H-NMR}$ (400 MHz, $\text{DMSO}-d_6$) (δ ppm): 0.82 (t, 3H, end CH_3), 1.10–1.23 (m, 18H, $-(\text{CH}_2)_9-$), 2.31 (t, 2H, allylic CH_2), 7.74–7.80 (m, 2H, ArH), 7.85–7.90 (m, 1H, ArH), 8.13 (d, 1H, ArH), 8.32 (d, 1H, ArH), 8.60 (d, 1H, ArH), 9.81 (s, 1H, CH of pyran ring), 9.95 (bs, 2H, NH_2), 10.38 (bs, 2H, NH_2). Anal. calcd. for $\text{C}_{31}\text{H}_{36}\text{N}_2\text{O}_5\text{S}$: C, 67.86; H, 6.61; N, 5.11; S, 5.84. Found: C, 67.88; H, 6.58; N, 5.14; S, 5.82%.

CONCLUSIONS

We find a novel zinc chloride-catalyzed one-pot method for the synthesis of 5,8-dihydro-5,8-dioxo-4H-chromene derivatives. This method has an advantage of one-step, easy work-up, milder reaction conditions, and good yields.

Acknowledgments. The authors thank the University Grants Commission New Delhi (F.No. 32-201/2006 (SR)) for financial support.

REFERENCES AND NOTES

- [1] Driscoll, J. S.; Hazard, G. F.; Wood, H. B. *Cancer Chemother Rep Part 2* 1974, 4, 1.
- [2] Liu, K. C.; Li, J.; Saky, S. *Mini-Rev Med Chem* 2004, 4, 1105.
- [3] Dewick, P. M. *Medicinal Natural Products*, 2nd ed.; Wiley: Chichester, UK, 2002.
- [4] Tisler, M. In *Advances in Heterocyclic Chemistry*; Katritzky, A. R., Ed.; Academic Press: London, 1989; Vol. 45, p 37.
- [5] Waris, G.; Ahsan, H. *J Carcinog* 2006, 5, 14.
- [6] Shiah, S. G.; Chuang, S. E.; Chau, Y. P.; Shen, S. C.; Kuo, M. L. *Cancer Res* 1999, 59, 391.
- [7] Sreepriya, M.; Bali, G. *Fitoterapia* 2005, 76, 549.
- [8] Wango, E. O. *Acta Biol Hung* 2005, 56, 1.
- [9] Podolak, I.; Galanty, A.; Janeckoz, Z. *Fitoterapia* 2005, 76, 333.
- [10] Nikolovska-Coleska, Z.; Xu, L.; Hu, Z.; Tomita, Y.; Li, P.; Roller, P. P.; Wang, R.; Fang, X.; Guo, R.; Zhang, M.; Lippman, M. E.; Yang, D.; Wang, S. *J Med Chem* 2004, 47, 2430.
- [11] Chen, J.; Nikolovska-Coleska, Z.; Wang, G.; Qiu, S.; Wang, S. *Bioorg Med Chem Lett* 2006, 16, 5805.
- [12] Rajeswar Rao, V.; Vijaya Kumar, P. *Synth Commun* 2006, 36, 2157.
- [13] Srinivas, V.; Rajeswar Rao, V. *J Chem Res* 2009, 11, 679.
- [14] Tahani, M.; Mutairi, A.; Hassan, M.; Hazimi, A.; Fatma, E. M.; Bahi, E. *J Saudi Chem Soc* 2009, 13, 199.