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ABSTRACT: A center-etched single-mode fiber is designed as a
vibration senor to monitor the vibrations of a simply supported beam.
The sensor works on transmission power loss due to the mode volume
mismatch and flexural strain of the fiber due to the bending in the fiber
with respect to the bending of the beam. The sensor has high linear
response to axial displacement of about 0.8 mm with sensitivity of 32
mV/10 pm strain. The simple design, small size, immune to
electromagnetic interference (EMI), and flexible length are all added
advantages that may find a place in industry to monitor the vibrations of
the beam structures and bridges. © 2012 Wiley Periodicals, Inc.
Microwave Opt Technol Lett 55:75-79, 2013; View this article

online at wileyonlinelibrary.com. DOI 10.1002/mop.27240

Key words: optical fiber; etched fiber; simply supported beam;
vibration sensor; health condition monitoring

1. INTRODUCTION

Now-a-days, the structural beams are used in all branches of en-
gineering and science, mainly for civil, mechanical, nuclear
power plants, opto-chemical monitoring, and industrial struc-
tures. Simply supported beams are one of the important struc-
tures in real life. The dynamic vibration response of a beam
with time and frequency analysis gives enough information
about the structural imperfections [1, 2]. Generally, in real time,
the forces are nonperiodic and or suddenly released forces [3].
The conventional structural health-monitoring systems do not
respond immediately for the damages and also they are affected
by electromagnetic waves. Conversely, fiber optic sensing sys-
tems are not affected by electromagnetic waves and the material
of the sensor is anticorrosive. Fiber optic sensors have been
shown to be capable of measuring a variety of parameters
including bending with high sensitivity and stable even at high
temperatures [4, 5].

The aim of the present work is to design an inexpensive fiber
optic vibration sensor to monitor the dynamic response of the
rectangular simply supported beam with symmetric overhang.
The sensor works on the principle of intrinsic intensity modula-
tion corresponds to a force applied at the center of the beam,
where etched portion of the sensing fiber is attached. The system
is tested for the applied and suddenly released forces. The sen-
sor has advantages of simple design, flexible length, and
immune to electromagnetic interference (EMI), which enables to
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Figure 1 (a) Geometry of the simply supported beam and (b) cross
section of the beam

replace the electronic sensors to avoid the electrical damages,
easily imbed in composite structures and small in size.

2. THEORY OF SIMPLY SUPPORTED BEAM

A simply supported beam of thickness ““h,” width “b,” and
length of ““/” with symmetric overhang of “m” is considered
and carried out the experiments to measure the vibration of the
beam using fiber optic vibration sensor. The geometry of the
beam is shown in Figure 1.

The effects of shearing, rotatory deformations are ignored as
the cross-sectional dimensions are constant and small in compar-
ison to its length. Here, the transverse vibration of the beam is
considered as a one degree problem [6-8]. The lateral displace-
ment of the beam along the length for concentrated force or
load applied at the center is expressed as [9]:

y

Fx (3P
4

l
_ _ 42 —
=128 x) f0r0<)c<2 (D

F , N2 P 5 [
=— +— for — . 2
y 121(x 1 1 3lx 0r2<x<l 2)

The bending of the beam at the center where the force or
load applied is given as:

Fo(n
Ymax = E (Z) . (3)

The free transverse vibration of the simply supported beam
corresponds to concentrated load at the center and is expressed
as [10]:

* 2FP nm nxm
y(x, 1) = sin (—) sin (—) cos(wpt) 4)
nz::l n*mtEl 2 [

where w,, is the natural frequency of the overhang beam and is

given by
2n\* |EI
n == — 5
" (S) Ap ®

where E, I, p, and A are the modulus of elasticity, moment of
inertia, mass density, and cross-sectional area of the beam,
respectively.
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When the force is applied to center of the beam and it is
released suddenly, the vibration of the beam undergoes a
damped motion following a near step and giving the overshoot
that slowly decays exponentially toward zero of the amplitude
of vibration due to the structural damping of the beam and is
given by [11]

X 2FP .<mr
sin

. /nmx .
ya(x, 1) = 2 pr —> sin <T) cos(wat) exp(Ewyt) (6)

2

where wy and ¢ are the damping frequency and the structural
damping coefficient of the beam and are expressed as

o ymax
wi=wa\/1 — & and &=-———m% )
VAT + Vi

3. ETCHED FIBER AS A SENSOR

An unetched fiber is less sensitive to macrobending when com-
pared with an etched fiber. Thus, to enhance the sensitivity for
macrobending, the fiber is chemically etched at the center.
When the fiber is stretched, the reduction in the cross-sectional
area leads to change in refractive index due to the photoelastic
effect.

The change in core radius and index leads to a change in
mode volume proportional to the induced tensile strain [12].
Therefore, the smaller cross-section and refractive index changes
of the etched fiber results a larger strain and mode volume mis-
match than that of an unetched fiber. For etched fiber, the re-
fractive index of the cladding layer is higher than that of the
surrounding air and the whole fiber can be regarded as a multi-
mode fiber because of the strong reflection and recoupling with
the propagating light within the core [13]. When the etched fiber
experience a macrobending, the mode volume mismatch
between the etched and the unetched portions of fiber causes
transmission power loss due to the flexural strain (field strength).
The mode volume mismatch increases as the macrobending of
the fiber increases and the intensity of light received by the
photo detector decreases within the limits of bending.

In general, two well-known methods to reduce the fiber di-
ameter are D-shaping and chemical etching. Among them,
chemical etching method is well controllable and is a easy tech-
nique. The general telecommunication fiber of 9/125 um core/
cladding is wet etched by the chemical method at the middle of
the fiber. The protective plastic coating of length 1 mm is
stripped off and then immersed in 40% of hydrofluoric acid so-
lution for 30 min, which results in the fiber diameter to be
remained at 50 pum. The etching is monitored in real time by
measuring the transmitted power at 1540.32 nm FBG peak, and
the power reduces rapidly when the evanescent field is reached.
Once the etching process is terminated, the fiber is cleaned by
distilled water and ethanol to release the remaining hydrofluoric
acid and then dried under vacuum [14, 15]. Figure 2 shows the
optical microscope photograph of the unetched and etched parts
of the fiber.

4. EXPERIMENT

The schematic of the experimental setup is shown in Figure 3. It
consists of a spring steel beam with / = 308 mm, b = 25 mm,
and & = 0.5 mm, and it is overhung on two rigid bases with m
= 6.4 mm, a broad band source of 1550 nm, a circulator, a
FBG of peak wavelength 1540.32 nm at room temperature, a
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Figure 2 The unetched and etched parts of the fiber. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com]

matched photo detector with transimpedance amplifier circuit,
and a data acquisition system. A center-etched fiber is attached
at the center of the beam with an adhesive. The light couple
from the broad band source is transmitted from the first node to
the second node of the circulator and then through the FBG.

An index matching gel is used to minimize the noise level
and reflection from the end of the fiber. The reflected peak of
the FBG is transmitted from node 2 to node 3 and then through
the etched fiber.

The load is applied at the center of the spring steel beam in
terms of the bending, where the etched fiber is attached. The
axial bending is applied to the beam in steps of 50 pum and
measured the response of the sensor as shown in Figure 4. The
spectral response characteristic of the sensor for different lateral
displacements is as shown in Figure 5. The sensor has high lin-
ear response to axial displacement of 0.8 mm with sensitivity of
32 mV/10 pum strain.

5. RESULTS AND DISCUSSION

The beam is subjected to bending periodically with the stepper
motor attached a cam with some offset and recorded the
response of the sensor with the data acquisition system shown in
Figure 6. The offset portion in Figure 6 shows the stability of
the signal. The sensor is tested for the vibration of the beam for
applying the force at the center and released suddenly as shown
in Figure 7. The exponential decay of the amplitude of vibration
of the beam after releasing of force is agreed with the theoreti-
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Figure 4 The sensor response for axial displacement of the beam at
the center. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com]

cal response. In Figure 7, from the points a to b, the beam is
excited by the near step force and then it overshoots to under-
damped motion due to the structural damping and slowly it
comes to zero amplitude of vibration with the time. The fast
Fourier transform (FFT) of time domain signal gives the fre-
quency of vibration of the beam and it is found to be 17 Hz,
which is matched with theoretical value from Eq. (7). The time
and frequency response of the beam gives the sufficient informa-
tion to know the health condition of the beam. The sensor is
also tested for the suddenly released step force applied repeat-
edly and the response is as shown in Figure 8. As the length of
the sensor plays an insignificant role in power loss, it is recom-
mended for real-time health-monitoring systems.

6. CONCLUSION

A simple fiber optic vibration sensor was designed and demon-
strated to monitor the health condition of the simply supported
beam with symmetric overhang. The sensor shows high linear
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Figure 3 The schematic experimental setup of the etched vibration sensor. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com]
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Figure 5 The optical spectrum of the fiber at different axial displace-
ments of the beam. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com]
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[Color figure can be viewed in the online issue, which is available at
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Figure 7 Response of the sensor for suddenly released force at the
center of the beam. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com]
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Figure 8 Repeatedly applied force to the beam and response of the
sensor. [Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com]

response of 0.8 mm axial displacement with sensitivity of 32
mV/10 um strain. The sensor was tested for forced vibrations of
the beam such as suddenly released forces and periodic force,
which would be more realistic and appropriate for real field.
The time response of the beam was recorded and measured the
frequency response using FFT. This gives enough information
about the state of the beam and failures. The sensitivity of the
sensor can be changed and it depends on the diameter of the
etched fiber by reducing the clad diameter using chemical etch-
ing method. The sensor has its own advantages such as simple
design and analysis, economical, flexible length, and small size.
These advantages enable the sensor for remote monitoring of
the beam-like structures.
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ABSTRACT: In this study, the compact broadband printed planar
monopole antenna is presented for wireless communication devices
applications, which is designed to work in 2.4-4.2 and 4.8-5.9 GHz in
which it is suitable for Wimax, WLAN, WiFi, and Bluetooth. The ratio of
impedance bandwidth of the presented antenna to the central frequency
bands of 3.3 and 5.3 GHz is as high as 1.8:1 (BW% = 54.5 and 20.6%,
respectively). The total volume of the presented antenna is 45 (L) x 40
(W) x 04 (H) mn’, and the antenna gain is 3.0-6.2 dBi in the resonant
frequency bands. The experimental results in general agree with the
simulated data by high-frequency structure simulator. © 2012 Wiley
Periodicals, Inc. Microwave Opt Technol Lett 55:79-82, 2013; View
this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27272

Key words: Wimax; WiFi; WLAN, antenna gain, monopole

1. INTRODUCTION

Antenna acts as an important role in wireless communication sys-
tem to transmit and receive electromagnetic (EM) emission energy.
Furthermore, the characteristics of compact, low profile, easy fabri-
cation, wideband, and low specific absorption rate are attractive for
wireless communication applications. Planar inverted-F antennas
(PIFAs) meet the feature of compact, but they still occupy a quite
large space due to the three-dimensional (3D) structures of feeding
and shorting pins [1-7]. Planar antenna, in contrast to PIFAs, is a
good choice due to no 3D structures, which is applicable to be fab-
ricated into the devices of which the space is limited.

Several research literatures about the planar antenna with
various feeding structures have been proposed. Wrapped and
folded planar monopole antennas with planar feeding structures
are presented [8, 9], which have the characteristics of wideband,
omnidirectional patterns, and compact size, but they still occupy
a large space. Planar monopole antennas with side-feeding struc-
ture [10] and/or trapezoidal feeding structure [11] are presented,
which have the characteristic of compact size, but increase the
manufacturing difficulties and cost.

Here, the presented antenna has the quite simple configura-
tion that is made by the twofold: (1) A patch prototype is con-
ducted to determine the lower resonant band of 2.4 GHz; then,
cut and/or modify the patch antenna to form a shape of capital
C, which is no compromise of return loss. (2) A planar conduct-
ing strip is added inside the radiator of capital C shape to induce
the higher resonant frequency band of 5 GHz by mutual cou-
pling. An open-end stub is applicable for tuning the impedance
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Figure 1 Original prototype configuration of patch antenna for the
lower resonant frequency band of 2.4 GHz

matching covered the specified bands as referred to the modifi-
cation concept of nonsymmetrical parallel short circuit [12].

The total volume of the presented antenna is 45 (L) x 40 (W)
x 0.4 (H) mm®, which the detailed geometry is illustrated in Sec-
tion 2. The characteristics of the far-field omnidirectional radia-
tion patterns and antenna gain are attainable and the experimental
results in general agree with the simulated data by high-frequency
structure simulator (HFSS), which will be illustrated in Section 3.

2. ANTENNA DESIGN AND CONFIGURATION

A material flame retardant 4 (FR4) with the relative permittivity
(&) of 4.4 and the dielectric loss tangent (tan J) of 0.02 is adopted
to be the substrate structure of the presented antenna, of which the
volume is 45 (L) x 40 (W) x 0.4 (H) mm°. The feeding coplanar
waveguide is adopted due to having the good characteristics of
easier getting the impedance matching to increase the impedance
bandwidth [13, 14]. As shown in Figure 1, an original patch proto-
type is made by equation as (1) referred to Ref. 15 for the lower
resonant frequency band of 2.4 GHz; where ¢ denotes the velocity
of light (3 x 10® m/s), L and W denote the length and width of a
radiator element, and f; denotes the resonant frequency.

- C
fo AL+ W) M

The design condition of one-quarter wavelength is adopted to
make a compact antenna and a trial simulation is adopted in
HFSS to make an optimizing configuration. Therefore, the
dimension of (L, + W,) of the patch prototype is 28.14 mm
approximately for 0.223-wavelength at 2.4 GHz. Then, cut and/
or modify the original patch prototype to be a formation of capi-
tal C shape that is no compromise of S;; in the lower resonant
frequency band. As shown in Figure 2, it illustrates the optimiz-
ing geometry of the presented antenna. As the denoted W, it is
directly related to the performance of Sy, in the lower frequency
band of 2.4 GHz. Besides, a planar printed conducting strip (L)
is added inside the radiator of capital C shape to induce the
higher resonant frequency band of 5 GHz by mutual coupling.
Definition of the original open-end stub W, it means that the
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