
Multimodal Pattern-Oriented Software Architecture for
Self-Configuration and Self-Healing in Autonomic

Computing Systems

Vishnuvardhan Mannava
∗

Department of Computer Science and
Engineering

K L University
Vaddeswaram, 522502
Andhra Pradesh, India

vishnumannava@acm.org

T. Ramesh
Department of Computer Science and

Engineering
National Institute of Technology

Warangal, 506004
Andhra Pradesh, India
rmesht@nitw.ac.in

ABSTRACT
Because of the diverse nature of software systems, it is un-
likely that systems will be developed using a purely service
or component programming paradigms. Therefore, the abil-
ity to combine the strength of various programming paradigms
and use them in a complementary manner becomes essential.
As far as we know, there are no studies on composition of de-
sign patterns and pattern languages for autonomic comput-
ing domain. The work presented in the paper is concerned
with composition of existing design patterns which are taken
from various programming paradigms that are used for de-
veloping of the self-configuration and self-healing character-
istics of the autonomic computing systems. In this paper we
propose multimodal pattern-oriented software architecture
with composition of Worker Object, Look-Up, Row Data
Gateway Database access, Adaptation Detector, Case-Based
Reasoning, Leader/Followers,and Observer design patterns
using Java Web Services (JWS), JUDDI service repository,
and Java Aspect Components (JAC) Frame work by Pro-
viding multimodality among the application working modes
at various levels. We have also focused on the Data-Mining
Association Rule Based Learning concept to introduce new
service as composition of two or more services and thereby
reducing the number of client requests to handle.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Patterns; D.2.10 [Software
Design]: Methodologies

Keywords
Autonomic Computing System, Design Patterns, Aspect-
Oriented Programming Design Pattern, Aspect-Oriented Pro-
gramming (AOP), Remote Method Invocation (RMI), Java
Aspect Components (JAC), Feature-Oriented Programming
(FOP).

∗Part-time Research Scholar, Department of Computer Sci-
ence and Engineering, National Institute of Technology,
Warangal, INDIA. email: vishnumannava@gmail.com.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCSEIT-12, October 26-28, 2012, Coimbatore, [Tamil Nadu, India]
Copyright 2012 ACM 978-1-4503-1310-0 /12/10 ...$10.00.

1. INTRODUCTION
The most widely focused elements of the autonomic com-

puting systems are self-* properties. So for a system to be
self-manageable they should be self-configuring, self-healing,
self-optimizing, self-protecting and they have to exhibit self-
awareness, self-situation and self-monitoring properties [3].
The vision of autonomic computing [20] is to cut down the
configuration, operational and maintenance costs of a dis-
tributed system by enabling systems to provide the self-
reconfiguration, self-manage properties. So in order to achieve
the vision of an autonomic computing system, it requires a
system to be able to dynamically adapt to its environment
and most of the adaptations that are used in an autonomic
system would tend to be crosscutting in nature. Different
programming paradigms have been introduced for enhancing
the dynamic behavior of the programs. Few among them are
the Aspect oriented programming (AOP) and Feature ori-
ented programming (FOP) with both of them having the
ability to modularize the crosscutting concerns, where the
former is dependent on aspects ,advice and later one on the
collaboration design and refinements.
Design patterns yields better-quality software within reduced
time frames. When designing software two or more patterns
are to be composed to solve a bigger problem. Pattern com-
position has been shown as a challenge to applying design
patterns in real software systems. composite patterns rep-
resent micro architectures that when glued together could
create an entire software architecture. Thus pattern compo-
sition can lead to ready-made architectures from which only
instantiation would be required to build robust implemen-
tations [2]. A composite design patterns shows a synergy
that makes the composition more than just the sum of its
parts [21]. The AspectJ which is mainly concerned about the
creation of the Aspect-Oriented Programs, and the AspectJ
is a language that defines new keywords. In AOP the cross-
cutting concerns are handled in separate modules known as
aspects. And it is very popular programming to separate
the crosscutting concerns from the general Object Oriented
Code. So by this type of separation of the main concerns
into aspectual modules, we have the power of modularizing
the crosscutting concerns as the separate modules. We can
attain the dynamic reconfiguration in the applications with
the help of dynamic crosscutting up to some extent.
There are other Frameworks out there in the market that
provide the dynamic reconfiguration in run-time, one among
them is the Java Aspect Component (JAC). JAC [16] pro-
vides an API that allows you to define aspects, Pointcuts,
and advice code. When it comes to the aspect weaving mech-
anisms, AspectJ Weaves at compile time or at load time.

382

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2393216.2393281&domain=pdf&date_stamp=2012-10-26

Whereas the JAC weaves aspects at run-time, which leads
to more adaptable programs because aspects can be dynam-
ically added and removed at run-time.
The Aspect Configuration is an essential part when pro-
gramming with JAC. So this feature is not provided by the
AspectJ. The Aspect-Configuration File plays a very cru-
cial role in the development reusable aspects in JAC. The
concept of Aspect Configuration File exists for both J2EE
and the JAC, but there is a difference in the way that they
both deal with the configuration process. A set of param-
eters is associated with the persistence, Transaction, nam-
ing, access-control service. When it come to J2EE these
parameters are fixed and provided by the servers and cant́
be changed. With JAC we can choose precisely the config-
uration parameters that we provide to provide.
Each and every aspect defined with JAC is associated with
an Aspect Configuration File that actually saved with an
.acc extension. This file is loaded at run-time when the as-
pect is instantiated and this file can be modified and reloaded
while programming is running. So with this the configura-
tion of the program is then dynamically adapted.
The aspect-configuration file provides the current values for
the definition of the pointcut. These values can be changed
without recompiling the aspect. Reloading the aspect con-
figuration file into JAC at run time causes the pointcut that
is associated with the aspect and the traced join points to
change. Each JAC application is associated with a .jac file.
This is file provides the information about the entry point
of an application and the aspects that need to be initially
woven.
We use the Autonomic Computing System model introduced
by Ramirez in [18] for the development of an application that
provides the reconfiguration among the service providing as-
pects in a server.
Self-Healing plays a crucial role when the server goes down
or there is a dropdown in the service provided by a server
due to over load of requests received from clients. So in order
to overcome this drawback we have provided the self-healing
capability with the help of Java Aspect Components (JAC),
Java Web Services (JWS) and JUDDI Service Repository.

2. RELATED WORK
In this section we present some works that deal with dif-

ferent autonomic systems design. There are number of pub-
lications reporting the adaptive nature of the systems where
changes occur depending upon the environments in which
they are deployed. They provide the ability to monitor, to
make decisions and to reconfigure at run-time.
In Rasche and Poize paper [19] they will analyze the timing
behavior of the implemented dynamic reconfiguration algo-
rithm in order to allow for predictable execution times. They
describe how complex component-based real-time applica-
tions can be adapted to changing environmental conditions,
continuously meeting all tasks deadlines during dynamic re-
configuration.
In Olivier Aubert, Antoine Beugnard [1] they proposed an
Adaptive Strategy Design Pattern that can be used to an-
alyze or design self-adaptive systems. It makes the signifi-
cant components usually involved in a self-adaptive system
explicit, and studies their interactions. They show how the
components participate in the adaptation process, and char-
acterize some of their properties.
In M.Vishnuvardhan and T.Ramesh paper [8] discuss apply-
ing the Adaptive Monitoring Compliance Design Pattern for
autonomic systems. The authors of the paper uses adaptive
design pattern called adaptive sensor factory have been pro-
posed to make the monitoring infrastructure of the adaptive

system more dynamic by fusing the sensor factory pattern,
observer and strategy patterns. This pattern will determine
the type of sensor that suits best for monitoring the client.
Harald Psaier et al. [17] they introduce a self-healing ap-
proach enabling recovery mechanisms to avoid degraded or
stalled systems. There presented work extends the notion
of self-healing by considering a mixture of human and ser-
vice interactions observing their behavior patterns. They
present the design and architecture of the VieCure frame-
work supporting fundamental principles for autonomic self-
healing strategies. They validate their self-healing approach
through simulations. The paper [9] they have proposed a de-
sign pattern for Autonomic Computing System which is de-
signed with Aspect-oriented design patterns and they have
also focused on the amalgamation of the Feature-oriented
and Aspect-oriented software development methodology and
its usage in developing a self-reconfigurable adaptive system.
The paper [15] they have proposed a system for dynamically
configuring communication services. Server will invoke and
manage services based on time stamp of service. The sys-
tem will reduce work load of sever all services in executed
by different threads based on time services are executed,
suspended and resumed. The paper [13] they have pro-
posed an adaptive reconfiguration compliance pattern for
autonomic computing systems that can propose the recon-
figuration rules and can learn new rules at runtime. The
authors in paper [9] have mainly concentrated on provid-
ing the adaptability to the application at runtime by using
Aspect-Oriented Programming. So here we would like to
focus on one drawback that the authors may face with As-
pectJ. AspectJ when compared to Java Aspect Components
(JAC) will weaves the aspects at compile time or at load
time. Whereas JAC weaves aspects at run time, which leads
to a behavior of more adaptable programs, because the as-
pects with JAC have the capability to be dynamically added
and removed at run-time. With this we want to convey that
we would like to enhance the adaptable nature of the de-
sign pattern proposed in paper [9] by applying Java Aspect
Components (JAC) Framework.
In Vishnuvardhan Mannava, and T. Ramesh paper [12] dis-
cuss applying Autonomic Design Patterns for software ar-
chitectures. They harvested the patterns and applied it on
unstructured peer to peer networks [14] and Web services en-
vironments using Feature-Oriented Programming (FOP)and
Aspect-Oriented Programming (AOP) [10].In [11] is pre-
sented a SOA based composition of web service based on
user demand.

At the same time we have developed a multimodal design
pattern which will address the problems in both distributed
environment and among the components present with in the
server environment. So, we have provide a design pattern
with an amalgamation of Java Aspect Components (JAC),
Aspect-Oriented Programming and Feature-Oriented Pro-
gramming (FOP). Our Proposed design pattern will decide
which type of service providing module have to be invoked
either Distributed or with in server type of configuration
module have to be invoked.

3. PROPOSED MULTIMODAL PATTERN-
ORIENTED SOFTWARE ARCHITECTURE

In our proposed design pattern we mainly concentrate
on the reconfiguration phase which plays the major role
for providing the autonomic Self-Configuration, Self-Healing
strategies. For this purpose we will provide with a simple
design of the proposed KLConfig Architecture that provides
the fundamental requirements to attain the self-healing and

383

self-configuration capability with in the server components
and in distributed environment. In order to understand our
work easily we will provide with a design view of the Multi-
modal Layered Architecture of our pattern in Figure 1.

Figure 1: The Multimodal Layered Architecture

Our work is divided into five modules. Each module pro-
vides the design pattern oriented approach to solve the Self-
Configuration and Self-Healing problems and we will dis-
cuss about each and every Module in depth with the help
of Class diagrams in following sections. When we combine
all these modules it will result to a total complete KLConfig
Architecture as shown in Figure 2. Every class diagram is
represented by the separate blocks to indicate every module
in our proposed KLConfig Architecture. The Modules are:

• Service Access Module
• Distributed Computing Self-Healing Module
• Monitoring Module
• Decision-Making Module
• Reconfiguration Module

3.1 Multimodal Layered Architecture
The proposed Multimodal Layered Architecture is divided

into two levels. Level 1 mainly concenrate upon provid-
ing the self-healing and self-configuration among the com-
ponents present within the server environment. This task is
accomplished using the KLConfig Architecture. So inorder
to perform the reconfiguration and healing we will make use
of four modules, they are Service Access Module, Monitoring
Module, Decision-Making Module, Reconfiguration Module.
So here all these four modules are requiered for the purpose
of providing both the self-healing and self-configuration in
the appliaction/system. Initially when a service is not avil-
able in the server then the observer in the monitoring module
will take care of informing the adpatation detector pattern
in monitoring phase to do some reconfiguration work in-
order to load the unloaded service Java Aspect Components
(JAC) into serverś memory. This adaptation detector pat-
tern will trigger an event to the Leader/Followers pattern
in the Decision-Making phase to handle the event of loading
the new service Java Aspect Component (JAC) code into
server. Then the Leader/Follower will accept the event and
it will select a Leader among the already pregenrated pool of
threads with the help of Leader Election Distributed Com-
puting Algorithm. In each and every thread the Case-based
Reasoning pattern will be running which will select an recon-
figuration plan by applying some rules to the events it got as
input and then it will decide which among the set of plans
is suitable for the reconfiguration of the application/system.
So once a perfect plan is selected then the plan will result
to the genration of Aspect Configuration File (ACF) which
contains a single line describing unloaded serviceś Aspect
Component code name and so with the help of the Java
Aspect Components (JAC) Framework we can dynamically
load the Aspect weaving code of the service into the serverś
main memory in runtime resulting to the reconfiguration of
the application/system.
When it comes to Level 2 in our Multimodal Layered Ar-

chitecture here we will use the Distributed Computing Self-
Healing Module, it will mainly concentrate upon the self-
healing of the application/system in terms of distributed

environment. Here when the server got an error specify-
ing that a particular thread have been failed to invoke the
service to fulfill the clients request then the observer pat-
tern will access the UDDI repository of the services that
contains the WSDL files of the services that are provided
by the different servers in the distributed environment. The
server will access the WSDL of the required service and then
access the web service that is provided by the neighboring
server in the distributed environment and then return the
result of this service it gets from the neighboring server to
the client that requested the service. In this way a trans-
parency is maintained to the client when performing the self-
healing operation in a distributed environment with the help
of JUDDI services repository and Java Web Services (JWS).

3.2 Service Access Module
First Module is for efficient access of services at the servers

we have used the design patterns for providing the reliable
form of services to clients. Initially the Client will request
the Centralized Service Repository to check for the availabil-
ity of the service it is interested in. Then the Centralized
Service Repository will check with the available services in
its Repository (any database) with the help of Row Data
Gateway Database access pattern for efficient database ac-
cess. If the requested service is provided by a server in re-
mote location somewhere in the network, then it will check
whether it is currently activated by the respective service
provider. If the field ”Availability” is set to TRUE value
then the Centralized Service Repository will return the sta-
tus of the service as available and the Remote Object Ref-
erence through which the client can access the service from
the remote location through Stubs in RMI. If the service is
Inactive that is set to FALSE then it will send the message
as ”Service currently not available” to the client (refer Fig-
ure 3).
So once the client come to know the availability of service
then initiates a connection with the remote VM containing
the remote object, Marshals (writes and transmits) the pa-
rameters to the remote VM, it does not wait for the result of
the method invocation instead it assigns the clients request
to a new thread, which will take care of waiting for the re-
sult to be returned from the server, and so the client can
do some other work instead of waiting for the result. This
is what we have used in our work to provide Asynchronous
RMI mechanism instead of using synchronous RMI mecha-
nism. Then the thread will Unmarshals (reads) the return
value or exception returned and then finally return the value
to the caller.
Then at the server side the Skeleton will perform the initially
Unmarshals (reads) the parameters for the remote method
(remember that these were marshaled by the stub on the
client side), then Invokes the method on the actual remote
object implementation, Marshals (writes and transmits) the
result (return value or exception) to the caller (which is then
unmarshalled by the stub).

For providing the efficient service access to the clients we
are providing the Service Access Module setup as show in
the below class Diagram refer Figure 3.

3.3 Monitoring Module
In this module we mainly concentrated upon the self-

healing of the applications should be down after unexpected
withdrawal of a service or shutdown of the application. Here
in our KLConfig Architecture, we can see the use of design
patterns to support the self-healing capability for the sys-

384

Figure 2: The proposed Design pattern and the sim-
ple design of KLConfig Architecture

Figure 3: The Service Access Module is represented
as a Class Diagram

tem. When a client request for a service, the service may or
may not be available in the servers memory at present time
and it have to be loaded into the main memory of the server
to handle the request of the client. Most of the time all the
services are not loaded into the server all at a time, but only
the services that are under current use are only get loaded
into the memory. With this type of practice one can expect
a high end server performance with high processing speed
and at the same time the rate of getting hang-up or crash-
ing of the server due to overloaded tasks will be completely
reduced. So with the help of the JAC type of frame works
only the services that are currently under requirement in the
server to fulfill the client requests get loaded as the Aspect
components.
This Module works suitable to a server side environment.

Initially when the server gets a request it will invoke the
observer [5] pattern to check whether the aspect weaving
code to fulfill this service is already available at the main-
memory of the server. If the program is well in a swing and
already ready for the server to serve the clients request no
need to worry at all. But if the service is not available at
the server side at present in the main memory, then it is the
time to provide some self-reconfiguration capability in the
system to load the unavailable service into the memory of
server without stopping the server from doing already run-
ning transactions.
To do this task initially the observer will store all the infor-

mation regarding the requested services by the same client
into a Requested Services History either the service avail-
able in server’s main memory or not. After that the Ob-
server pattern will invoke the Adaptation Detector design
pattern to generate an appropriate event that best matches
appropriate handler in the Leader/Followers pattern for the

service requirements given as input to the adaptation detec-
tor pattern by the observer pattern. Then the event gets
generated from the adaptation detector pattern and which
intern is given as input to the Case-Based reasoning design
pattern.
In order to provide the Self-Configuration and Self-Healing
between Server components, we are providing the Monitor-
ing Module setup as show in the below Class Diagram refer
Figure 4.

Figure 4: The Monitoring Module is represented as
a Class Diagram

3.4 Decision-Making Module
We are using the Leader/Followers design pattern in which

a pool of threads will be already created, where each thread
have to handle an event generated by the adaptation detec-
tor pattern. So in this pattern only one thread will act as
a leader at any time and all the others will act as followers
and they will be sleeping until there chance comes to become
leader. Once the leader thread gets an event to handle then
it will inform the other followers to elect their new leader
among themselves again with the help of Leader-Election
Distributed Algorithm (Refer Figure 5). So here in each
and every thread in this pool the Case-Based Reasoning de-
sign pattern will be running, Which intern gives the solution
with a New Reconfiguration plan for a particular event that
has been generated at that time. So here each and every
thread in the leader/followers pattern will handle the same
kind of event or different kind of event. For example here
in our case we want the unloaded service to be loaded into
the memory, so to do that we need the perfect reconfigura-
tion plan from the case-based reasoning deign pattern. Here
the plan is given as a new Aspect Configuration File that
actually saved with an .acc extension. This file is loaded at
run-time when the aspect is instantiated and this file can
be modified and reloaded with the requested service while
programming is running. So with this the configuration of
the program is then dynamically adapted. In order to pro-
vide the Self-Configuration and Self-Healing between Server
components, we are providing the Decision-Making Module
setup as show in the below Class Diagram refer Figure 5.

3.5 Reconfiguration Module (Self-Healing Ca-
pability)

We can also provide the self-healing capability with the
help of JAC (Java Aspect Components). When the server
is filled up with some services and there is no space for the
new service to get into then it will lead to failure in pro-
viding the requested service, even that requested service is
available in repository, but no space in server to load it. So
in order to overcome like this situation, the observer pattern
will set timers for the already loaded services in the servers
main memory, after the timer expires the observer will check
for the count value that the service has be accessed and the

385

Figure 5: The Decision-Making Module is repre-
sented as a Class Diagram

last time the service was accessed and also loaded. It will
send this data to the adaptation detector pattern to check
if there is a need to remove this service from the memory.
If ”yes” then this pattern will generate a trigger event and
this will be given as input to the case-based reasoning pat-
tern to select a perfect plan (Aspect Configuration File) to
deactivate the service from the main memory of the server
and give chance to the new service to get in. So like this we
can achieve the self-healing capability in the system.
The Class Diagram Representation of Reconfiguration Phase
of the Architecture can be seen in Figure 6.

Figure 6: The Reconfiguration Module is repre-
sented as a Class Diagram

3.6 Distributed Computing Self-Healing Mod-
ule

Here we want to discuss a situation that when we are
performing the Reconfiguration, there may be a possibility
that all the services that are currently loaded in the main
memory of the server are under processing the transactions
and there is no chance of removing any of the services from
the server to load a new Service Java Aspect Component or
there may be a possibility that the task assigned to the server
thread has been failed or Maximum count of the threads that
can be assigned for processing the client requests have been
reached its threshold value. Then under that circumstances
there must be a quick remedy for such failure happening
transactions, so in order to provide self-healing for those un-
completed transactions we have to use the Distributed Com-
puting methodology. Here what we do is, initially when the
server is run out of its performance or when all the services
in the servers main memory are used for longer transactions
then we have to make sure that the server is not congested
with the clients requests. To overcome this we will be us-

ing the services that are provided by the other servers in
the distributed environment and this could be done with
the help of Java Web Services like JAX-WS or REST-FULL
web services (refer Figure 7). When a server want to ac-
cess a service then it will first check the JUDDI repository
to get the perfect WSDL file that is well matched to the
output that service providing server will result to the given
input parameters of the service requesting server. Once a
perfect match is found then the server will get the WSDL
details about that service providing neighboring server and
then it will generate a WSDL request accordingly and send
it to the service providing server to process the clients re-
quest on behalf of it. Once the processing of the request
is completed then the result is send back to the respective
requested server, which intern return the result back to the
client that requested it to provide the service. So with this
method of self-healing from failures we can provide maxi-
mum transparency to the client from knowing the problem
at the server and providing him with sure service guarantee.

Figure 7: The Distributed Computing Self-Healing
with JWS

4. THE PROPOSED ALGORITHMS FOR SELF-
CONFIGURATION AND SELF-HEALING

4.1 Self-Reconfiguration Algorithm
Require: Monitoring of all currently available services.

Require: Listening to client Requests.

(variables)

Boolean flag<-false

Integer threads<-10

Boolean participate<-false

String plan<-NULL

Integer Timer

Integer Threshold<-10000ms

String ServiceName<-clientRequest

Struct leaderThread

Integer leaderID

Event event

Probe integerIDofthread

Selected electedleaderID

(1) when a client Requests for service in server

(2)ServiceName<-clientRequest

(3)send to flag=OBSERVER(ServiceName)

(4)if flag=TRUE

(5)then IGNORE //Means service is already

loaded in memory no need of reconfiguration.

(6)else send to flag=RECONFIGURATION(ServiceName)

386

(7)if flag=TRUE

(8)execute print ”Reconfiguration Successful,

(9)service loaded successfully”

(10)check for any Association Rule

(11)Based Generated Event

(12)Event=AssociationRuleLearning();

(13)if Event!=NULL

(14)execute generate(Event)

(15)CheckIfServiceLoaded Action OBSEVER(ServiceName)

(16)for i=1 to sizeof(Listalreadyloaded)

(17)if ServiceName = Listalreadyloaded[i];

(18)setTimer(ServiceName)

(19)return TRUE

(20)LogTransactions(ServiceName)

(21)else

(22)return FALSE

(23)LogTransactions(ServiceName)

(24)endif

(25)Self-Configuration Action

RECONFIGURATION(ServiceName)

(26)LogTransactions(ServiceName)

(27)flag<-compare(ServiceName,Threshold)

(28)if flag=TRUE

(29)flag=generate(Trigger)

(30)if flag=TRUE

(31)return TRUE

(32)Trigger Action generate(Event)

(33)poolofThreads[Threads]

(34)LeaderThread.leaderID=LeaderElection(poolofThreads)

(35)leaderThread.event=Event

(36)plan=RunleaderThread(leaderThread)

(37)flag=DispatchplanTOJAC(plan,ServiceName)

(38)if flag=TRUE

(39)execute print ”Service Loaded Successfully”

(40)else

(41)execute print ”ERROR in loading” (42)return flag

(43)LeaderElect Action LeaderElection(poolofThreads)

(44)participant<-false // becomes true

(45)when pool of threads is participating

(46)when a thread wakes up to participate in leader election

(47)sendPROBE(i) to right neighbor

(48)participate<-true

(49)when a PROBE(k) message arrives

(50)from the left neighbor poolofThreads

(51)if participant=false then execute step [43] first

(52)if i>k then

(53)discard the PROBE

(54)else if i<k then

(55)forward PROBE(k) to right neighbor

(56)else if i=k then

(57)declare I is leader

(58)circulate Selected(x) message arrives from left neighbor

(59)if x!= I then

(60)vote x as the leader and forward message to right neighbor

(61)else do not forward the selected message

(62)return selected (i)

(63)RunLeader Action RunLeaderThread(leaderThread)

(64) selectaplanfor(leaderThread.Event)

(65) return Plan

(66) JACReconfig Action DispatchPlanToJAC(plan)

(67) if plan!=NULL then

(68) ApplyJACFramework(plan,ServiceName)

(69) endif

(70) setTimer(ServiceName)

(71) Return TRUE

4.2 Self-Healing Algorithm
Require: Monitoring of all currently

available services.

Require: Listening to client Requests.

Boolean flag<-false

Boolean participate<-false

String ServiceName<-clientRequest

String ServiceName1<-NULL

Boolean modify<-false

String WSDL<-NULL

(1)when a client Requests for service in server

(2)ServiceNamëıČ§clientRequest

(3)send to flag=OBSERVER(ServiceName)

(4) if flag=TRUE

(5) then IGNORE

//Means service is already loaded

in memory no need of reconfiguration.

(6) else

(7) if ServerMemory=FULL

(8) then execute self-heal()

(9) flag=RECONFIGURATION(ServiceName)

(10)if flag=TRUE

(11) execute print ”service loaded successfully”

(12)heal Action self-heal(ServiceName)

(13)ServiceName1= getserviceNametoRemove()

(14)if ServiceName1=NULL

(15) then switchtodistributedMode()

(16)else

(17)flag=ApplyJACFrameworktoheal(ServiceName)

(18)endif

(19)if flag=TRUE return TRUE

(20)healing Action ApplyJACFrameworktoheal(ServiceName)

(21)Boolean modify=

modifyAsoectConfigurationFile(ServiceName)

(22)if modify=TRUE

(23)then execute print ”the selfheal is perfect”

(24)return TRUE

(25)DistributedComputing Action SwitchtodustributedMode()

(26)WSDL= finda serviceinUDDI(ServiceName)

(27)if WSDL!=NULL then

(28) invoke the service at WSDL

(29)else

(30)search for new invoke again find

a service in UDDI(ServiceName)

(31)endif

5. DESIGN PATTERN TEMPLATE
To facilitate the organization, understanding, and appli-

cation of the proposed design patterns, this paper uses a
template similar in style to that used in [18].

5.1 Pattern Name
Multimodal Pattern Oriented Software Architecture for

Self-Healing and Self-Configuration.

5.2 Classification
Reconfiguration Design Pattern.

5.3 Intent
Systematically applies the Design Patterns to a distributed

Computing System to provide reliable access to the services
at remote servers and for providing the dynamic reconfigu-
ration using KLConfig Architecture.

5.4 Context
Our design pattern may be used when:
• The service that you want to access is on a remote

system and you need to invoke it with the help of
design patterns and efficient access to database using
database access related patterns.

387

• When required to perform the reconfiguration at the
server side between the Java Aspect components present
with in a server or distributed in a network.

• To perform the dynamic reconfiguration without much
delay.

• To provide the self-healing capability to our applica-
tion to load unavailable services.

5.5 Proposed Pattern Structure
A UML class diagrams for the proposed design Pattern

can be found as different Modules in Figures 3 and 4.

5.6 Participants
• Client: It is Responsible for the purpose of accepting

the client request and then generating a request for the
checking of availability of a service in the Centralized
Service Reference. If the return result is true then
the service is available at a particular server and it
will receive the Reference object to access that service
through RMI.

• Centralized Service References (LookupService):
It is responsible for the purpose of finding whether the
required service is available at any server by checking
in its Data base repository using Row Data Gateway.
Here each and every server will store the details of
the services it provides in the Data Base Repository
through Centralized Service Reference. Each and ev-
ery server will provide the entry values in the data
repository for Name of the service, Reference Object
to access it, and Availability status of it currently.

• Row Data Gateway: is responsible for the purpose
of providing the efficient access to the database using
Centralized Service References.

• Data Base Repository: it is the database where all
the information about a service that is available at the
server is provided in form of attributes in a database.

• Worker Object Pattern (AspectCode): it is the
design pattern responsible for the purpose of handling
the requests from the multiple clients in separate worker
object threads. So that the Centralized Service Repos-
itory will not be going into a waiting state to handle
another client request until the first client is serving is
completed.

• Server: It is responsible for accepting the client re-
quests and then invoking the observer to check that
the service is available with the server to weave the
aspect component code to fulfill the service requested.

• Observer: This is responsible for the purpose of check-
ing whether the service is already loaded into the server′s
main memory and if not then it will invoke the Adapta-
tion detector pattern to load the service into the main
memory with the help of JAC framework.

• Health Indicator: This class is responsible for the
propose of checking whether there is a need to generate
an event and to check that whatever the timer details
of a particular service are send by the observer will be
checked by the threshold value and if there is a need
to remove that service form the servers main memory
then the event will be triggered by this class which will
be given as input to the case-based reasoning class.

• Handle Set: This class is responsible for waiting for
an event to occur and selects a handler from the avail-
able thread handlers in the pool of threads.

• Thread Set: This class is a collection of the threads
where each thread is responsible for handling different
events that′s get generated either from a Association
Rule based learning or from Adaptation Detector pat-
tern.

• Event Handle: This class is responsible for providing
the perfect reconfiguration plans to be implemented
to attain the self-healing capability. This is achieved
with the help of case-based reasoning pattern. This
pattern is running in every thread in the thread pool
and any event that is dispatched to any one of this
threads, then that thread will provide use with a best
reconfiguration plan or self-healing plan or new service
(composite service) insertion plan at run time with the
help of Aspect Configuration File of JAC (Java Aspect
Components).

• Trigger: is the class that takes output of the adap-
tation Detector pattern as the input of the case-based
reasoning pattern. Here then it will pass it on to the
inference engine to check for the available plans.

• Inference Engine: this will select a perfect plan with
the help of the fixed Rules class and will use the output
of this class as the perfect decision to implement a
self-healing or self-reconfiguration or new composite
service injection.

• Decision: This class is responsible for providing the
perfect Aspect configuration File to which will lead to
more adaptable programs because aspects can be dy-
namically added and removed in a Java Aspect Com-
ponent (JAC).

5.7 Consequences
• With the help of this design pattern we can efficiently

access the services in the remote locations very com-
fortably by using database access pattern.

• With the help of our proposed KLConfig Architecture,
we can achieve the Dynamic Reconfiguration among
the java Aspect components in an Autonomic com-
puting system.

5.8 Related Design Patterns
• Divide and Conquer Design Pattern [18]: This

pattern can be used to determine the specific sequence
of steps required to safely perform a reconfiguration.
Whenever a step requires that a component be re-
moved, it can be carried out by the Component Re-
moval [18] Pattern.

• Architecture-Based Design Pattern [18]: This
design pattern can be used to represent a system and
its reconfiguration plans as architectural models. Mod-
els that satisfy the adaptation requirements indicate
how the system should be reconfigured.

6. CONCLUSION AND FUTURE WORK
In this paper we have proposed a design pattern which

provides the efficient service access for the clients using the
look-up design pattern and row data gateway design pat-
terns by Asynchronous RMI model of distributed comput-
ing. In this work we have mainly concentrated on provid-
ing the Self-Reconfiguration, Self-Healing properties of the
autonomic computing system with the help of both object
oriented and aspect oriented design patterns. We have pro-
posed simple framework design called KLConfig Architec-
ture which mainly uses the JAC to provide the dynamic as-
pect code insertion and deletion at run-time. There is a huge
scope for the future work; we aim to implement the same

388

design pattern for the service composition using the Service
Oriented Architecture (SOA). And also we are studying how
to apply the same logic of reconfiguration of the components
in a Peer-to-Peer based distributed system.

7. RESULTS AND DISCUSSION
Numbers of GoF Design patterns are usually applied in a

composed form with each other in many applications, and it
was abstracted from pattern realizations in several real sys-
tem implementations [4]. However, none of the researchers
have given the metrics upon pattern compositions [6]. In
the literature Nelio Cacho at al. [2] presented the measure-
ment results for the 62 compositions, but the evaluation of
compositions involving not more than two patterns. Most
of these compositions are documented through the GoF pat-
tern catalogue. It is seen that the application of both design
metrics and design patterns is geared to a common purpose,
namely the elimination of bad design practices. Formally it
is proved that non pattern form of software design is less
efficient compared to pattern form in terms of design met-
rics [6]. However, we collected metrics using Analyst4j1 an
Eclipse IDE plug-in and compared the non pattern form
of the proposed composite patterns with the corresponding
pattern form. we can infer that pattern form of the proposed
composite patterns code is good it agrees with the results
in [7] [2].

8. ACKNOWLEDGMENTS
This work has been supported in part by Faculty Research

Allowance Program from K L University (Koneru Lakshma-
iah Education Foundation), India.

9. REFERENCES
[1] O. Aubert and A. Beugnard. Adaptive strategy design

pattern, 2001.

[2] N. Cacho, C. Sant’Anna, E. Figueiredo, A. Garcia,
T. Batista, and C. Lucena. Composing design
patterns: a scalability study of aspect-oriented
programming. In Proceedings of the 5th international
conference on Aspect-oriented software development,
pages 109–121. ACM, 2006.

[3] S. Dobson, R. Sterritt, P. Nixon, and M. Hinchey.
Fulfilling the vision of autonomic computing. IEEE
Computer, 43(1):35–41, 2010.

[4] J. Dong, Y. Zhao, and Y. Sun. A matrix-based
approach to recovering design patterns. Systems, Man
and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, 39(6):1271–1282, 2009.

[5] R. J. E. Gamma, R. Helm and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, United States, 1995.

[6] B. Huston. The effects of design pattern application
on metric scores. Journal of Systems and Software,
58(3):261–269, 2001.

[7] R. Lincke, J. Lundberg, and W. Löwe. Comparing
software metrics tools. In Proceedings of the 2008
international symposium on Software testing and
analysis, pages 131–142. ACM, 2008.

[8] V. Mannava and T. Ramesh. A novel adaptive
monitoring compliance design pattern for autonomic
computing systems. In ACC (1), volume 190 of
Communications in Computer and Information
Science, pages 250–259. Springer, 2011.

[9] V. Mannava and T. Ramesh. An aspectual feature
module based adaptive design pattern for autonomic
computing systems. In Intelligent Information and
Database Systems, volume 7198 of Lecture Notes in

1http://www.codeswat.com

Computer Science, pages 130–140. Springer Berlin /
Heidelberg, 2012.

[10] V. Mannava and T. Ramesh. An aspectual feature
module based adaptive design pattern for autonomic
computing systems. In Proceedings of the 4th Asian
conference on Intelligent Information and Database
Systems - Volume Part III, ACIIDS’12, pages
130–140, Berlin, Heidelberg, 2012. Springer-Verlag.

[11] V. Mannava and T. Ramesh. Composite design
pattern for feature-oriented service injection and
composition of web services for distributed computing
systems with service oriented architecture.
International Journal of Web & Semantic Technology
(IJWesT), 3(3):73–84, 2012.

[12] V. Mannava and T. Ramesh. Multimodal
pattern-oriented software architecture for
self-optimization and self-configuration in autonomic
computing system using multi objective evolutionary
algorithms. In Proceedings of the International
Conference on Advances in Computing,
Communications and Informatics, ICACCI ’12, pages
1236–1243, New York, NY, USA, 2012. ACM.

[13] V. Mannava and T. Ramesh. A novel adaptive
re-configuration compliance design pattern for
autonomic computing systems. Procedia Engineering,
30(0):1129 – 1137, 2012. International Conference on
Communication Technology and System Design 2011.

[14] V. Mannava and T. Ramesh. A novel approach for
developing jxta peer-to-peer computing systems using
aspect-oriented programming methodologies. In
Proceedings of the International Conference on
Advances in Computing, Communications and
Informatics, ICACCI ’12, pages 421–427, New York,
NY, USA, 2012. ACM.

[15] V. Mannava and T. Ramesh. A service
administrationădesign pattern for dynamically
configuring communication services in autonomic
computing systems. In Intelligent Information and
Database Systems, volume 7196 of Lecture Notes in
Computer Science, pages 53–63. Springer Berlin /
Heidelberg, 2012.

[16] R. Pawlak, J.-P. Retaillé, and L. Seinturier.
Foundations of AOP for J2EE Development
(Foundation). Apress, Berkely, CA, USA, 2005.

[17] H. Psaier, F. Skopik, D. Schall, and S. Dustdar.
Behavior monitoring in self-healing service-oriented
systems. In COMPSAC, pages 357–366, 2010.

[18] A. J. Ramirez and B. H. Cheng. Applying adaptation
design patterns. In Proceedings of the 6th international
conference on Autonomic computing, ICAC ’09, pages
69–70, New York, NY, USA, 2009. ACM.

[19] A. Rasche and A. Polze. Dynamic reconfiguration of
component-based real-time software. In Proceedings of
the 10th IEEE International Workshop on
Object-Oriented Real-Time Dependable Systems,
WORDS ’05, pages 347–354, Washington, DC, USA,
2005. IEEE Computer Society.

[20] P. Soule. Autonomics Development: A
Domain-Specific Aspect Language Approach.
Autonomic Systems. Springer Verlag, 2010.

[21] T. Taibi. Formalizing design patterns composition. the
IEE-Proceeding Software, 153(3):127–136, 2006.

389

