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The Soret and Dufour effects on mixed convection flow and heat and mass
transfers from an exponentially stretching surface in a quiescent fluid-saturated
non-Darcy porous medium is studied. Stretching velocity, wall temperature, and wall
concentration are assumed to have specific exponential function forms. The governing
partial differential equations are transformed into ordinary differential equations using
similarity transformations and then solved numerically using an implicit finite differ-
ence scheme known as the Keller-box method. The present results are found to be in
excellent agreement with previously published work on various special cases of the
problem. The influence of buoyancy, Soret and Dufour numbers, and Darcy and
non-Darcy parameters on the convective transport in the boundary layer region is
analyzed. Also, the numerical values of the skin friction, heat, and mass transfer
coefficients for different values of governing parameters are also tabulated. © 2013
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1. Introduction

The study of flow, heat, and mass transfer in the boundary layer of a continuously stretching
surface with a given temperature and concentration distributions moving in an otherwise quiescent
fluid medium has attracted the attention of researchers for the past few decades due to its numerous
industrial and engineering applications. In particular, an extradite from a die is drawn and simultane-
ously stretched into a sheet, which is then solidified through quenching or gradual cooling by direct
contact with water. Annealing and thinning of copper wires is another example. In all these cases, the
quality of the final product depends on the rate of heat transfer at the stretching surface. Both the
kinematics of stretching and the simultaneous heating or cooling during such processes has a decisive
influence on the quality of the final products. After the pioneering works of Sakiadis [1], several
researchers [2—-5] discussed the problem of boundary layer flow of a stretching surface to obtain the
thermal and kinematic behavior by considering the different forms of stretching velocity. There has
been a renewed interest in convective heat and mass transfer in porous media due to diverse
applications, such as thermal insulation, extraction of crude oil and chemical catalytic reactors, etc.
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A detailed review of convective heat transfer in Darcian and non-Darcian porous medium can be
found in the book by Nield and Bejan [6]. Several authors, Layek et al. [7] and Hayat et al. [8] to
mention but few, have studied the convective heat and mass transfer over a different surface
geometries in a fluid-saturated porous media.

In practical situations, the flow over a continuous material moving through a quiescent fluid
is induced by the movement of the solid material and by thermal buoyancy. Therefore, these two
mechanisms, surface motion and buoyancy force, will determine the momentum and thermal transport
processes. The thermal buoyancy force arising due to the heating or cooling of a continuously moving
surface, under some circumstances, may alter significantly the flow and thermal fields and thereby
the heat transfer behavior in the manufacturing process. By considering the effect of buoyancy, Ali
and Al-Yousef [9] analyzed mixed convection heat transfer from a uniformly stretching vertical
surface with general power function form for stretching velocity of the wall and with surface
suction/injection. Partha et al. [10] presented a similarity solution for mixed convection flow and heat
transfer from an exponentially stretching surface by considering viscous dissipation effect in the
medium. They showed that the buoyancy and viscous dissipation have significant influence on the
non-dimensional skin friction and heat transfer coefficient. Recently, Pal [11] performed an analysis
to describe mixed convection heat transfer in the boundary layers on an exponentially stretching
continuous surface with an exponential temperature distribution in the presence of a magnetic field,
viscous dissipation, and internal heat generation/absorption.

The Soret effect (thermal diffusion), the occurrence of a diffusion flux due to a temperature
gradient, and the Dufour effect (diffusion-thermo), the occurrence of a heat flux due to a chemical
potential gradient, become very significant when the temperature and concentration gradients are very
large. Generally these effects are considered as second-order phenomenon and may become signifi-
cant in areas such as hydrology, petrology, geosciences, etc. The importance of these effects in
convective transport in clear fluids has been studied by Eckert and Drake [12], Dursunkaya and Worek
[13], and Kafoussias and Williams [14]. El-Aziz [15] investigated the combined effects of thermal-
diffusion and diffusion-thermo on MHD heat and mass transfer over a permeable stretching surface
with thermal radiation. Ahmed [16] discussed free convective heat and mass transfer of an incom-
pressible, electrically conducting fluid over a stretching sheet in the presence of suction and injection
with thermal-diffusion and diffusion-thermo effects. A study has been carried out to analyze the
combined effects of Soret and Dufour on unsteady MHD non-Darcy mixed convection over a
stretching sheet embedded in a saturated porous medium in the presence of thermal radiation, viscous
dissipation, and first-order chemical reaction by Pal and Mondal [17].

Thus, motivated by the above investigations and applications mentioned, the purpose of the
present work is to investigate the Soret and Dufour effects on mixed convection heat and mass transfer
from an exponentially stretching surface in a quiescent fluid-saturated non-Darcy porous medium.
The free stream flow, wall temperature, and wall concentration are given specific forms of profiles
which permit a similarity solution. The Keller-box method given in the works of Cebeci and Bradshaw
[18] and Na [19] is employed to solve the non-linear system in the problem. The effects of the mixed
convection parameter, Forchheimer number, Darcy number, Soret and Dufour numbers. and also
X-location are examined and are displayed through graphs. Also, the effects of skin friction, the heat
and mass transfer coefficient, are illustrated in tabular form for various parameters. The results are
compared with relevant results in the existing literature and are found to be in good agreement.
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Nomenclature
B:  buoyancy ratio
b: Forchheimer constant (geometrical)
C:  concentration
Cy  skin friction coefficient
Cy:  concentration parameter of the stretching surface
C,:  concentration susceptibility
C,:  specific heat capacity (isobaric)
C,: wall concentration
C.: ambient concentration

solutal diffusivity
Darcy number
 Dufour number

Fs:  Forchheimer number

F:  reduced stream function
8

Avlioliv)
g >

gravitational acceleration
Gr: thermal Grashof number
k:  thermal conductivity
K,: permeability of porous medium
K. thermal diffusion ratio
L:  characteristic length of the plate
local Nusselt number
Pr:  Prandtl number
Re: Reynolds number
local Reynolds number
Ri:  mixed convection parameter
Sc: Schmidt number

Sh,: local Sherwood number
S, Soret number

T:  temperature

T,: mean temperature

T,: temperature parameter of the stretching surface
wall temperature

T.: ambient temperature

U,: characteristic velocity

uy:  velocity parameter of the stretching surface
free stream velocity

u, v: velocity components in x and y directions

X:  X-location

x,y: coordinates along and normal to the plate

Greek Letters

o thermal diffusivity
Br. Be:  coefficients of thermal and solutal expansion
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similarity variable

porosity

dimensionless temperature
dimensionless concentration
dynamic viscosity
kinematic viscosity

density of the fluid

wall shear stress

stream function

€sfRSERONS

Subscripts

wall condition
ambient condition
concentration

temperature
Superscript
differentiation with respect to 1
2. Mathematical Formulation

Consider a steady, two-dimensional, laminar flow, and mixed convection heat and mass
transfer from an impermeable plane vertical wall stretching with velocity u,,(x), temperature distri-
bution 7,,(x), and concentration distribution C, (x) embedded in a stable, quiescent incompressible
fluid-saturated non-Darcy porous medium of constant temperature 7., and concentration C,, as shown
in Fig. 1. The x-axis is directed along the continuous stretching surface and points in the direction of
motion and the y-axis is perpendicular to it. Assume that the fluid and the porous medium have
constant physical properties. The fluid flow is moderate and the permeability of the medium is low
so that the Forchheimer flow model is applicable and the boundary effect is neglected. The fluid and

Fig. 1. Physical model and coordinate system.
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the porous medium are in local thermodynamical equilibrium. In addition, the Soret and Dufour effects
are considered.

Assuming that the Boussinesq and boundary layer approximations hold and using the
Darcy—Forchheimer model and Dupuit—Forchheimer relationship [6], the governing equations for the
viscous fluid-saturated non-Darcy porous medium in the presence of Soret and Dufour effects [14]
are given by

ou_ ov_, (0
ox Oy

2
L300 Y O o (5 (- )+ po(C-C ) u D o)
e\ x o) € K, K,

or or o’T DK, o°C
U—+V—=0 —5+—— =
Ox oy oy- CsCp, Oy°

3)

oC oC __9C DK, o’T

U—+v—=D —F+—

ox Oy o T, o

where u and v are the velocity components in x and y directions, respectively, 7 is the temperature, C
is the concentration, g is the acceleration due to gravity, p is the density, v is the kinematic viscosity,
W is the dynamic coefficient of viscosity, b is the Forchheimer constant, K is the permeability, € is
the porosity, 3, is the coefficient of thermal expansion, B is the coefficient of solutal expansions, o
is the thermal diffusivity, D is the solutal diffusivity of the medium, Cj is the specific heat capacity,
C is the concentration susceptibility, 7,, is the mean fluid temperature, and K is the thermal diffusion
ratio. The last two terms on the right-hand side of Eq. (2) stand for the first-order (Darcy) resistance
and second-order porous inertia resistance, respectively. The last term on the right-hand side of the
energy equation (3) and diffusion equation (4) signifies the Dufour or diffusion-thermo effect and the
Soret or thermal-diffusion effect, respectively.

“

The boundary conditions are
u:uw(‘x)’v:07T :Tw (X)’C :Cw(x) at y = O (Sa)
u=0,T=7,,C=C, as y—>o (5b)
where the subscripts w and e indicate the conditions at the wall and at the outer edge of the boundary

layer, respectively.

The stretching velocity u,(x), exponential temperature distribution 7,,(x), and exponential
concentration distribution C, (x) are defined as

u,(x)= uoe% (6)
T.(x)=T, +(T,~T,)e’ @)

C.(x)=C, +(C,~C,)e* ®)

where 1, is the velocity parameter of the stretching surface, and 7}, is the parameter of the temperature
distribution whereas C is the parameter of the concentration distribution in the stretching surface.
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In view of the continuity equation (1), defining the stream function y such that

_ov ., _ oy ©)

oy ox

substituting Eq. (9) in Eqgs. (2)—(4) and then using the following local similarity transformations

u

* /S x
n :Eleéﬂ W= JZvRe” &L S()
2 L 1o

x/ x/
T(x,y)=T, +(T,~T,)e’* 0(),C(x,¥) = C, +(C, — C, )’ ¢(17)

the governing equations become

1 1 R 2 v, 2Fs ., (11)

I s L "_n 12 2R 3X/2 O+ B _ X 20

R T Y O A At

Pie”+f<9'—f'9+Df¢"=o (12)
r

si¢"+f #-f'¢+S,0"=0 (13)
C

where the primes indicate partial differentiation with respect to M alone, L is the characteristic length
of the plate, X =x/L is the X-location, Gr = g;E:BT(TO — TM)L3/V2 is the thermal Grashof number,
Re = uyL/v is the Reynolds number, Da = Kp/L? is the Darcy number, Fs = b/L is the Forchheimer
number, Ri = Gr/Re? is the mixed convection parameter, which represents the ratio of buoyancy
forces to the inertia forces and is used to delineate the free, forced, and mixed convection regimes.
When Ri = 0, the flow becomes a forced convection flow and when Ri is large, the flow becomes a
free convection flow. B=B(Cy— C..)/B{T, — T..) is the buoyancy ratio, Pr=v/o. is the Prandtl
number, Sc = v/D is the Schmidt number, Df =DK(Cy— C.)/CsCp(Ty — T.,) is the Dufour number,
and S, = DKAT,-T.)/vI,(C,— C.,) is the Soret number.

A close look at Eq. (11) reveals that, in mixed convection due to viscous fluid, the velocity
profile is not similar because the x-coordinate cannot be eliminated from this equation. Although local
non-similarity solutions have been found for some boundary layer flows dealing with viscous fluid,
the technique is hard to extend in this case. Thus, for ease of analysis, it was decided to proceed with
finding local similarity solutions for the governing equation, Eq. (11). That is, taking X =x/L and
then one can still study the effects of various parameters on different profiles at any given X-location.

Boundary conditions (5) in terms of £, 6, and ¢ become
n=0: =0, f'=L0=1¢=1 (14a)
n—oo: f'=0,0=0,=0 (14b)

The wall shear stress, heat and mass transfers, respectively, acting on the surface in contact
with the ambient fluid of constant density are given by

16} oT oC
T, = #Eé{j . 4,(x)= —k[gj and ¢,,(x) = —D(gl
y=0 y=0 y=0
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where k is the thermal conductivity.

The non-dimensional skin friction C;=2t,,/p U2, the local Nusselt number Nu, = xq, (x)/
k(T,(x)— T.,), and local Sherwood number Sk, = xq,,(x)/D(C, (x) — C.,) where U, is the characteristic
velocity, are given by

C,Re, =\2X f"(0), \/]% :-\/% 0'(0) and \/% :g¢'(0) (15)

where Re, = u, (x)x/V is the local Reynolds number based on the surface velocity.

3. Numerical Procedure

The system of non-linear ordinary differential Eqs. (11)—(13) together with the boundary
conditions (14) are locally similar and solved numerically using the Keller-box implicit method
discussed in Refs. 18 and 19. This method has been proven to be adequate and give accurate results
for boundary layer equations. The method has the following four main steps:

Reduce the system of Egs. (11) to (13) to a first order system;
Write the difference equations using central differences;

Linearize the resulting algebraic equations by Newton’s method and write them in matrix-
vector form;

Use the block-tridiagonal-elimination technique to solve the linear system.

This method has a second-order accuracy, is unconditionally stable, and is easily programmed,
thus making it highly attractive for production use. A uniform grid was adopted, which is concentrated
towards the wall. The calculations are repeated until some convergent criterion is satisfied and the
calculations are stopped when &ff <1075, 80, <1078, and 8¢; < 107%. In the present study, the
boundary conditions for n at oo are replaced by a sufficiently large value of n where the velocity,
temperature, and concentration approach zero. In order to see the effects of step size (An) we ran the
code for our model with three different step sizes as An = 0.001, An = 0.01, and An = 0.05 and in
each case we found very good agreement between them on different profiles. After some trials we
imposed a maximal value of 1 at e of 15 and a grid size of An as 0.01.

4. Results and Discussion

In the present study we have adopted the following default parameter values for the numerical
computations: Pr= 1.0, Sc =0.22, Re =200, € = 0.6, and B = 0.5. These values are used throughout
the computations, unless otherwise indicated.

In the absence of mixed convection parameter Ri, Forchheimer number Fs, Soret number S,
and Dufour number Dy withB=0,e=1, Da — o, and Sc — 0 for different values of Prandtl number
Pr, the results have been compared with the special case of Magyari and Keller [2] and found to be
in good agreement, as shown in Table 1.
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Table 1. Comparison between Wall-Temperature Gradient 8°(0) Calculated by the Present Method
and that of Magyari and Keller [2] for Ri = Fs =S, = Df: B=0,Da— >,e=1,and Sc —» 0

Pr | Magyari and Keller [2]  Present

0.5 -0.59434 -0.59438
1.0 -0.95478 -0.95478
3.0 -1.86908 -1.86908
5.0 -2.50014 -2.50015
8.0 -3.24213 -3.24218
10.0 -3.66038 -3.66043

Figure 2 shows the dimensionless velocity profile for various values of the mixed convection
parameter Ri for fixed values of Fs, Da, S,, Dy, and X-location. The mixed convection flow governing
parameter is positive when the buoyancy is aiding the external flow (aiding flow) and is negative
when the buoyancy is opposing the external flow. It reveals that as the value of Ri increases, the
dimensionless velocity rises. Compared with the limiting case of Ri = 0.0 (i.e., pure forced convec-
tion), the velocity is more for an aiding flow and the velocity is less for an opposing flow. As Ri
increases, the buoyancy effects increase and hence the fluid flow accelerates. Figure 3 illustrates the
dimensionless temperature for different values of Ri. The results indicate that the dimensionless
temperature reduces with the increase of Ri. The temperature in the case of mixed convection is less
for an aiding flow and more for an opposing flow compared to that of pure forced convection. This
is due to the fact that when Ri (i.e., buoyancy effects) increases, the convection cooling effect increases
and hence the temperature reduces. The effect of mixed convection parameter Ri on the dimensionless
concentration is depicted in Fig. 4. It is clear that the concentration of the fluid decreases with the
increase of mixed convection parameter Ri.

The dimensionless velocity distribution for different values of Forchheimer number Fs with
Da=0.1,Ri=1.0,S,=2.0, Df= 0.03, and X = 3.0, is depicted in Fig. 5. Since F's represents the inertial
drag, an increase in the Forchheimer number increases the resistance to the flow and so a decrease in

1.0

$=2.0,0=0.03, X=3.0, Fs=1.0, Da=1.0

§=2.0,0=0.03, X=3.0, Fs=1.0, Da=1.0

0.8

0.6+

0.4

0.2

0.0

Fig. 2. Velocity profiles for various values of Fig. 3. Temperature profiles for various values
Ri. of Ri.
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1.0
§=20,0,70.03, X=3.0, Fs=1.0, Da=10 10 Ri=10. 520 D=003 X=30.Da=01
N . ] P e HTEE i -
W\ ——Ri=-05 B
0.8 \.\,\ _____ Ri=-01 o,ml Fs=0.0
\,‘ N e Ri=05 3
06 K ‘T\ e Ri=30 i ——==F5=1.0
\'\7 '-‘_\
b AR
04 N f
0.2 NN N
00 : : ———
0 3 6 9 12 15 8 9 12
n n
Fig. 4. Concentration profiles for various Fig. 5. Velocity profiles for various values of
values of Ri. Fs.

the fluid velocity ensues. Here Fs = 0 represents the case where the flow is Darcian, i.e., inertial effects
are neglected and so the velocity is maximum in this case due to the total absence of inertial drag.
The dimensionless temperature for different values of the Forchheimer number for fixed values of
Da, Ri, S,, Dy, and X-location, is displayed in Fig. 6. An increase in the Forchheimer number Fs
increases temperature values, since as the fluid is decelerated, energy is dissipated as heat and serves
to increase temperatures. As such the temperature is minimized for the lowest value of Fs and
maximized for the highest value of Fs as shown in Fig. 6. Figure 7 exhibits the dimensionless
concentration for different values of the Forchheimer number for fixed values of Da, Ri, S,, Dy and
X-location. As the Forchheimer number increases, the concentration boundary layer thickness
increases. The increase in the non-Darcy parameter reduces the intensity of the flow but enhances the
thermal and concentration boundary layer thicknesses.

1.0
Ri=1.0, $§=2.0, D=0.03, X=3.0, Da=0.1

Fs=0.0
----- Fs=0.3
------- Fs=0.7
-——-Fs=1.0

6
9 12
n n
Fig. 6. Temperature profiles for various values Fig. 7. Concentration profiles for various
of Fs. values of Fs.
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Ri=10,572.0,D=0.03, X=3.0, Fs=0.5 Ri=1.0, $=2.0, D=0.03, X=0.5, Fs=0.5
Da=0.01 Da=0.01
----- Da=0.1 Da=0.1
------- Da=0.5 Da=0.5
——————— Da=1.0 ———-Da=1.0
f ]
6 ° 12 10
n n
Fig. 8. Velocity profiles for various values of Fig. 9. Temperature profiles for various values
Da. of Da.

Figures 8 to 10 illustrate the influence of Darcy number Da on the velocity, temperature, and
concentration profiles. Figure 8 indicates that a rise in Da (which implies a rise in permeability, K,)
enhances the velocity of the fluid in the boundary layer. Hence the viscous fluid is increased with a
rise in Da. With increasing permeability the porous matrix structure becomes less and less prominent
and in the limit of infinite Da values (i.e., 1/Da - Ref — 0and Fs/Da(f’)*> — 0), the porosity vanishes
and the present problem reduces to a purely free convective heat and mass transfer in a viscous fluid.
Forchheimer drag is clearly inversely proportional to Da (and velocity gradient) for constant Fs. The
dimensionless temperature for different values of Darcy number for Fs = 0.5, Ri = 1.0, S, = 2.0, D=
0.03, and X = 0.5, is depicted in Fig. 9. It is seen that the temperature of the fluid decreases with the
increase in the Darcy number. Figure 10 illustrates the non-dimensional concentration for various
values of the Darcy number for Fs=0.5,Ri=1.0, S, = 2.0, Df= 0.03, and X =0.5. It can be seen from
the figure that concentration decreases with the increase in the Darcy number.

1.0 1.0

Ri=1.0, §=2.0, D=0.03, X=0.5, Fs=0.5 X=0.5, Ri=1, Fs=0.5, Da=0.1
\ = = =
05 _t} Da=0.01 ——S8=20&D=0.03
\ “1t | === $=02&D=0.3
------- 8,20.08 & D,=0.75
el W N\ |7——be=to b | e $=0.03&D=2.0
o f
0.4
0.24
0.0
0 15
n n
Fig. 10. Concentration profiles for various Fig. 11. Velocity profiles for various values of
values of Da. S, and Dy
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1.0
X=0.5, Ri=1, Fs=0.5, Da=0.1 X=0.5, Ri=1, Fs=0.5, Da=0.1
os ——S=2.0&D=0.03 o5 ——5=208&D=0.03
R S $,=0.2&D=0.3 T N N S,=0.2 & D=0.3
------- $,=0.08 & D=0.75 -1+ §,20.08 & D=0.75
------- $=0.03 & D=2.0 06 . - $,=0.03 & D=2.0
0 ¢ R
0.4 ‘i)\
0.2 .
B , 0.0 .
9 12 15 0 3 15
n n

Fig. 12. Temperature profiles for various
values of S, and Dy

Fig. 13. Concentration profiles for various
values of S, and Dy

The effects of Soret S, and Dufour D; numbers on the velocity, temperature, and concentration
profiles in the presence of various physical parameters such as mixed convection, Darcy, and
non-Darcy parameters, etc., are depicted in Figs. 11-13. The velocity and temperature profiles
increase but the concentration profile decreases with increasing the Soret number S, (or decreasing
with the Dufour number D)) more effectively near the surface of the stretching sheet, as seen from
Figs. 11-13 for fixed values of other parameters. Thus it is concluded from Figs. 11-13 that the
velocity, temperature, and concentration distributions are severely affected by the Soret and Dufour
effects, especially the thermal boundary layer thickness which increases while the concentration
boundary layer thickness decreases with an increase in the Dufour number (or simultaneously
decreasing the Soret number). It should be mentioned that the profiles of concentrations are found to
be more sensible to the changes with Soret number S, and Dufour number D, respectively. Thus, it
is evident that the effects are obviously playing an important role under a mixed convection flow for
molecular diffusion through porous medium in the presence of Soret and Dufour effects. Therefore,
we understand that the influences of thermal-diffusion as well as the diffusion-thermo effects are
extremely effective in the study of mixed convection problems.

In Figs. 14-16, the effects of the X-location on the dimensionless velocity, temperature, and
concentration are presented for fixed values of Fs, Da, Ri, S,, and Df. From Fig. 14, it is noticed that
the velocity decreases with an increase in the value of X-location in the momentum boundary layer.
It is clear from Fig. 15 that the thermal boundary layer thickness increases with the increase of
X-location but with a significant effect near the stretching sheet. It can be seen from Fig. 16 that the
solutal boundary layer thickness of the fluid increases with the increase of X and also found a
significant effect within the boundary layer.

The variations of £7(0), —0’(0), and —¢’(0), which are proportional to the local skin-friction
coefficient and rate of heat and mass transfers are shown in Table 2 for different values of the physical
parameters involved in the problem. The effect of mixed convection parameter Ri with fixed values
of Fs, Da, S,, Dy, and X-location in both cases of opposing and aiding flows are shown in this table.
A rapid growth in the non-dimensional skin friction coefficient is noticed with the mixed convection
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Ri=1.0, SV:Z_O, D‘:0.0S, Fs=0.5, Da=0.1 ' Ri=1.0, S=2.0, D=0.03, Fs=0.5, Da=0.1
—X=01

8 10
n n
Fig. 14. Velocity profiles for various values of Fig. 15. Temperature profiles for various
X. values of X.

parameter Ri. The reason is that an increase in the buoyancy effect in a mixed convection flow leads
to an acceleration of the fluid flow, which increases the local skin friction factor. Also, it is seen that
the heat and mass transfer rates increase in both the cases of opposing and aiding flows with the
increasing values of Ri. Hence the mixed convection parameter has an important role in controlling
the temperature and concentration. The effect of the Forchheimer number Fs on the skin friction
coefficient £”(0) and heat and mass transfer rates is represented in Table 2. It is observed that the skin
friction coefficient and heat and mass transfer rates decrease as F's increases. In Table 2, the effect of
the Darcy number Da, on the skin friction coefficient f”(0) and heat and mass transfer rates is
displayed. It depicts that the skin friction coefficient and heat and mass transfer rates increase as Da
increases. Table 2 illustrates that, for fixed values of Fs, Da, S,, Dy and Ri, the skin friction and heat
and mass transfer coefficients are reducing with the increasing values of X-location. The values of
skin-friction coefficient, local Nusselt number, and local Sherwood number are tabulated in Table 2
for various values of the Soret number and Dufour number. Finally, the effects of the Dufour and
Soret number on the local skin-friction coefficient and the rate of heat and mass transfer are shown

Fig. 16. Concentration profiles for various values of X.
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Table 2. Effects of Skin Friction, Heat, and Mass Transfer Coefficients for Varying Values of Ri,
Fs, Da, §,, Df, and X

R Fs Da S D, X [f(0) =-600) —¢(0)

-0.5 1.0 1.0 2.0 0.03 3.0 | -1.88352 0.83621 -0.07217
-0.1 1.0 1.0 2.0 0.03 3.0 -1.87820 0.84517 -0.06185
05 10 1.0 20 0.03 3.0 | -1.87145 0.85286 -0.05345
30 1.0 1.0 20 0.03 3.0 | -1.84676 0.87161 -0.03528
50 1.0 1.0 2.0 0.03 3.0 | -1.82852 0.88192 -0.02654
1.0 00 0.1 20 0.03 3.0 | -1.64338 0.88619 -0.04730
1.0 03 01 20 0.03 3.0 -2.25135 0.81091 -0.04960
1.0 07 0.1 2.0 0.03 3.0 | -2.87295 0.74350 -0.05081
1.0 1.0 0.1 2.0 0.03 3.0 ]-3.26318 0.70583 -0.05323
1.0 05 0.01 2.0 0.03 0.5 | -6.44295 0.60236 -0.00084
1.0 05 0.1 20 0.03 0.5 | -2.33645 0.88385 0.015940
1.0 05 05 20 0.03 0.5 | -1.54153 0.97319 0.029360
1.0 05 1.0 2.0 0.03 0.5 | -1.41584 0.98860 0.031920
1.0 05 0.1 20 0.03 3.0 | -2.58060 0.77403 -0.04950

1.0 05 0.1 1.6 0.0375 3.0|-2.58068 0.77255 0.009810
1.0 05 01 12 0.05 3.0 | -2.58076 0.77033 0.069120
1.0 05 0.1 1.0 0.06 3.0 | -2.58079 0.76867 0.098780

1.0 05 01 0.8 0075 3.0]|-2.58083 0.76626 0.128460
1.0 05 0.1 05 0.12 3.0 | -2.58088 0.75933 0.173030
1.0 05 01 02 030 3.0 [ -2.58086 0.73251 0.217900
1.0 05 0.1 0.1 0.60 3.0 ] -2.58076 0.68820 0.233390
1.0 05 0.1 20 0.03 0.1 ]-2.15210 0.92793 0.034330
1.0 05 01 20 0.03 0.5 | -2.33645 0.88385 0.015940
1.0 05 0.1 2.0 0.03 1.0 | -2.46268 0.84320 -0.003810
1.0 05 0.1 2.0 0.03 3.0 | -2.58060 0.77403 -0.049500

in this table. The behavior of these parameters is self-evident from Table 2 and hence is not discussed
for brevity.

5. Conclusions

In this paper, a boundary layer analysis for mixed convection heat and mass transfer from an
exponentially stretching vertical surface in a viscous fluid-saturated non-Darcy porous medium in the
presence of Soret and Dufour effects is analyzed. Using the similarity variables, the governing
equations are transformed into a set of set of ordinary differential equations where a numerical solution
has been presented for different values of parameters. Compared with the pure forced convection, the
velocity is more for the aiding flow and less for the opposing flow in the mixed convection. Also, the
temperature and concentration distributions in the case of mixed convection are less for an aiding
flow and more for an opposing flow compared to that of pure forced convection. Further, an increase
in the mixed convection parameter Ri, enhances the skin friction coefficient, non-dimensional heat,
and mass transfer coefficients in the boundary layer. An increase in the Forchheimer number Fs
decreases velocity but increases the temperature and concentration distributions, heat and mass
transfer rates, and the local skin friction factor. In the case of Darcy number Da, velocity, skin friction,
and heat and mass transfer coefficients increase while the temperature and concentration distributions
decrease with the increasing values of Da. The velocity, temperature profiles, and local mass transfer
rate increase in the concentration profile but the local heat transfer rate increases with an increase in
the value of the Dufour number (or simultaneous decrease in the Soret number). The skin-friction
coefficient increases and then decreases with an increase in the value of the Dufour number (or
simultaneous decrease in the Soret number). The velocity and wall temperature distribution are
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enhanced but wall concentration distribution, skin friction coefficient, and the rate of heat and mass
transfers are reduced with enhancing in the value of the X-location in the boundary layer.
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