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Abstract

Abiofluid dynamics mathematical model is developed to study peristaltic flow of non-Newtonian physiological liquid in a
two-dimensional asymmetric channel containing porous media as a simulation of obstructed digestive (intestinal) transport. The
fractional Oldroyd-B viscoelastic rheological model is utilized. The biophysical flow regime is constructed as a wave-like
motion and porous medium is simulated with a modified Darcy-Brinkman model. This model is aimed at describing the diges-
tive transport in intestinal tract containing deposits which induce impedance. A low Reynolds number approximation is em-
ployed to eliminate inertial effects and the wavelength to diameter ratio is assumed to be large. The differential transform
method (DTM), a semi-computational technique is employed to obtain approximate analytical solutions to the boundary value
problem. The influences of fractional (rheological material) parameters, relaxation time, retardation time, amplitude of the
wave, and permeability parameter on peristaltic flow characteristics such as volumetric flow rate, pressure difference and wall
friction force are computed. The present model is relevant to flow in diseased intestines.
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Volumetric flow rate in the wave frame

Nomenclature 4
0 Wave number

h Transverse vibration of the upper wall Ratio of upper wall wave amplitude to upper
hy Transverse vibration of the lower wall ¢ channel half width
by Upper half-width of the channel Ratio of lower wall wave amplitude to upper
b, Lower half-width of the channel 2 channel half width
a Amplitude of upper wall ¢ Phase difference
a, Amplitude of lower wall u Viscosity
& Axial displacement a, p Fractional parameters
u Axial velocity w Stream function
v Transverse velocity ) Porosity of porous medium
n Transverse coordinate 1 Wavelength

Pressure ~
l; . Reynolds number T_ s }: Shear stress, rate of shear strain
c Wave velocity A, A, Material constants
K Permeability parameter p Fluid density
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1 Introduction

The muscular layers of the digestive tract comprise
smooth muscle tissue, which triggers peristaltic and
segmentation movements. Peristalsis propels a small
mass of digestive contents called a bolus along the
length of digestive tract. In intestines, over a period of
time, digestive deposits may harden and cause obstruc-
tions. In severe cases, such as acute distention of the
bowel, serious ailments may result, where normal
transport is dangerously impeded. Numerous gastroen-
terological medical researchers have investigated a
range of such phenomena including Elman'"), Grassi ez
al? (who employed sonography), Farrel™, Rommel ez
al™ and Kishi et al.”, the latter examining specifically
Bouveret’s syndrome. It has been suggested in recent
studies that mathematical models of flows in obstructed
systems may be mimicked using a porous media hy-
drodynamics approach. Indeed there are a large number
of simulation techniques available in the literature which
may be aimed at analysing impedance effects of various
models, such as Darcy models, Darcy-Brinkman models,
Darcy-Forchheimer models'®, and tortuosity models'”.
These techniques may employ randomised Sierspinski
carpet approaches, multi-scale effects™, poroelasticity[g]
and spatially periodic effects'.. In the context of peri-
staltic propulsion in porous media, several studies have
been communicated. Kothandapani and Srinivas!'"! in-
vestigated analytically peristaltic flow in an inclined
asymmetric channel containing a porous medium, de-
scribing porous media drag effects on trapping for si-
nusoidal, triangular, square and trapezoidal waveforms.
Mekheimer and Abd Elmaboud!'? studied the peristaltic
flow in an annular porous regime, as a model of an en-
doscope, observing that pressure rise has an inverse
nonlinear relationship with permeability and that bolus
magnitude increases with permeability. El Shehawey

(8] obtained perturbation solutions for

and Husseny
peristaltic pumping by a sinusoidal traveling wave in a
porous medium channel with wall suction. They found
that the mean axial velocity and backflow increase with
greater permeability parameter and that fluid motion is
non-symmetric. Further studies were communicated by
Mekheimer!' for inclined channels and Srinivas and
Gayathri" for heat transfer effects. These models''' !
considered the transport fluid to be Newtonian and es-

sentially creeping flow approximations of the Na-

vier-Stokes equations with moving boundaries. The
rheological nature of digestive fluids including chyme
has been established for many decades, and is elaborated
among other physiological fluids by Skalak et al.'®. A
number of models have therefore emerged to analyse the
peristaltic flows of non-Newtonian fluids with a diverse
array of constitutive models. These included Ostwald-de

Waele pseudoplastic/dilatant models for duodenal

flows!'”, Carreau models'™ for bile flows, couple stress

[19]

models for chime transport in small intestines" -, and

micropolar models?”. Another aspect of biorheology is

viscoelasticity!*'!

which features in the dynamics of
many gastric fluids, blood, synovial fluid, efc. A reduced
viscosity is known to be associated with a drop in tensile
stresses in a viscoelastic fluid with progression in time,
which aids relaxation of the liquid and contributes to a
decrease in bulk viscosity of the fluid, as elaborated by
Norouzi ef al.”®. Recent studies of viscoelastic peri-

staltic flow include Tripathim]

who considered gener-
alized Oldroyd-B fluids, Yasmin et al.** who employed
the Johnson-Segalman model, Tripathi et al.*>’ who
utilized the Jeffrey model for oesophagus and Tripathi et
al® who considered slip flows with generalized
Oldroyd-B fluids. These articles however ignored po-
rous media aspects. Recently, several attempts to model
non-Newtonian peristaltic flows in porous media have
been made. These include Alemayehu and Radhakrish-
namacharya®” who considered hydrodynamic disper-
sion in micropolar peristaltic flow in a permeable me-
dium and Mekheimer®® who used the Reiner-Rivlin
second order diff erential model for peristaltic
rheological flow in a porous conduit. Tripathi and

] studied transient peristaltic flow of generalized

Bég
Maxwell fluids through a porous medium, presenting
solutions with the homotopy perturbation method. They
showed that the size of the trapped bolus is weakly ele-
vated with greater permeability of the porous medium,
but diminished with increasing wave amplitude ratio.
This study also noted that relaxation time of the vis-
coelastic fluid has a different influence on different
pumping regions of the flow. Further studies addressing
non-Newtonian peristaltic porous media hemodynamics
include Alemayehu and RadhakrishnamacharyaBo] and
Tripathi®®" (employing couple stress fluids).

In computational viscoelasticity, a popular trend in
recent years has been the fractional derivative model of
viscoelastic fluids. This generally entails a classical
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differential equation which is modified by replacing the
time derivative of an integer order with the so-called
Riemann-Liouville fractional calculus operator. This
generalization allows one to define precisely non-integer
order integrals or derivatives. Oldroyd™> developed a
viscoelastic model to study rheological behavior of
materials. This model may also be generalized in the
form of a fractional Oldroyd model using fractional
calculus. In view of the relevance of fractional models of

33351 have in-

viscoelastic fluids, a number of authors!
vestigated flow behavior of viscoelastic fluids with
fractional Oldroyd-B model, through different geome-
tries and with various wall surface conditions. In these
investigations, closed-form solutions for the velocity
field and the associated shear stress have been presented
using mathematical transforms e.g. Laplace, Fourier,
Weber, Hankel, efc.

semi-computational approaches also are available for

Many computational and
solving nonlinear boundary value problems in peristaltic
biorheology. One example is the Differential Transform
Method (DTM) which was first proposed by Zhou®® to
solve linear and non-linear initial value problem in
electric circuit analysis. This approach provides excel-

37 in accommo-

lent versatility and enhanced accuracy'
dating differential equation systems and also achieved
accelerated computation times compared with other
methods. In the present study, the DTM is implemented
to obtain more accurate solutions for non-Newtonian
fractional viscoelastic Oldroyd-B flow in an asymmetric
channel containing porous media. Mathematical soft-
ware is used to obtain graphical solutions for the influ-
ence of the geometric and rheological parameters. The
current work is relevant to simulation of obstructed di-
gestive (intestinal) transport“’s], where the debris in the
gastric tract is modelled using a Darcy-Brinkman porous
media drag force model, valid for low Reynolds number
(viscous-dominated) transport.

2 Mathematical model

2.1 Geometric model for peristaltic flow channel

The two-dimensional non-Newtonian biofluid
peristaltic flow in an infinite asymmetric channel having
width b,+b, is considered which is shown in Fig. 1.An
asymmetric flow regime is produced by choosing the
peristaltic wave train, travelling with velocity ¢ along the

walls to have different amplitudes (a,, a,) and phase (¢).

This amounts to a ‘moving boundary’ problem. The
upper and lower walls of the asymmetric channel (see

Fig. 1) are respectively modelled using the relations.

h=b +a, sin(%(f —cf)j
] - : M
h=-b,—a, sin(f(g—cf)ﬂpj

where A, & c, f are the wavelength, axial coordinate,
wave velocity and time, respectively. The phase differ-
ence ¢ varies in the range 0<¢<m. When ¢=0, a sym-
metric channel with waves out of phase can be described
and forg=n, the waves are in phase.

2.2 Modified Darcy-Brinkman model for porous
medium

The well-known Darcy law states that, in the flow
of a Newtonian fluid through a porous medium, the
pressure gradient caused by the friction drag is directly
proportional to the velocity. Recently, based on the local
volume averaging technique and the balance of forces
acting on a volume element of viscoelastic fluids in
porous media, Tan and Masuoka® developed a modi-
fied Darcy-Brinkman model for viscoelastic fluid flows
in porous media. Xue and Nie®™ further generalized this
model for generalized Maxwell fluid flows in porous
media. The Darcy-Brinkman model™®” for generalized
Oldroyd-B fluids takes the form:

z0 0° = 07 )

[1+/11 &TJR =—%[l+ﬂf&7ju, )
where R, o, K , U, p and /ﬂ,/@ designate the Darcy
resistance, porosity of porous medium, permeability,
axial velocity, viscosity and material constants. a, S are
the fractional parameters (0<a<f<1).

tn

13

»ld

T

Fig. 1 Geometry of asymmetric porous medium channel.
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2.3 Fractional Oldroyd-B model for biofluid
The constitutive equation for fractional Oldroyd-B

fluids™” is given by

2, 0% ). =, 07 ).
( afa]ﬁﬂ(lﬂfa?ﬂ]% 3)

where 7, y are shear stress and rate of shear strain, re-

spectively.

2.4 Fractional Oldroyd-B model for biofluid
The governing equations of motion for generalized
Oldroyd-B fluid™” through a porous medium are

p 0T 07,
p| Lialas|a=-L, 78, T +R,
o o¢ on

ot ot
£+u£+v£ v=— a—li+ L T’"’+Rq
or o0& 07 on o0& on

. (4)

where p, v, 77, p and Rg, R, are the fluid density,

transverse velocity, transverse coordinate, pressure, and
components of Darcy resistance, respectively. We in-
troduce the following non-dimensional parameters

g n ct cA, cl,
= =) t:_a ﬂ’ :_91 = s
=1y 2T T
i |
hy=—=1+ ¢ sin2n(& —t),

~ ~ ~7 2

¢2=a_25b=b_2u=£av=Lap=pbl 5
b, b, c co HcA

r DT Re PO 5 B Wf.
e y7, A’ b,

&)
where Re and K are Reynolds number and permeability
parameter, respectively. Substituting the values of Darcy
resistance and shear stress from Egs. (2) and (3) into
Eq. (4) and using the non-dimensional parameters from
Eq. (5), applying the long wavelength and low Reynolds
number approximations, Eq. (4) effectively reduces to

a B 2
1+/11‘"a— op _ 1+/12"’a— 8142
ot* ) o¢é ot? )\ on

L + Al 2 o’ ", a_p=o_
K at? on

(6)
The boundary conditions are
u=0at n="rh, @)
u=0at n=h,, 3
op
— = at t =0. 9
o¢ Py ©)

2.5 Analysis
Integrating Eq. (6) with respect to # and using
Egs. (7) and (8), the axial velocity is obtained as

u=
B a 1
Ce"”+Ce”"’—i 1+27 aﬁ 1+2{‘a—a a_p’( 0
IS ot ot” )o&
, 1
where k£ =—,
K
C =

I oY
— |1+ = | [1+ 47
el ) (1o

a ap e*khz _efkh] s
o j%[zsinhk(hl —hz)J
2

L p ﬁ 3 op o _ ot
k2(1”7 6tﬁJ ( th Jag[zsmhk(h h)}

The volumetric flow rate is defined as

9

Q:Tudn, (11)

which, by virtue of Eq. (10), reduces to Eq. (12).

The transformations between a wave frame (X, )
moving with velocity ¢ and the fixed frame (&,7) are
given by

f=E—ct, y=f, U=i—-c, V=17, (13)
where (U ,17) and (i,7) are the velocity components in

the wave and fixed frame, respectively.

hy)—2

0= l 1+/1ﬁ6 1+1188 6_chos.hk(h1—
k» ot” ksmhk(hl_hz)

Py PE:

+h1_h2]9 (12)
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The volumetric flow rate in the wave frame is given
by

quUdyzfr(u—l)dn, (14)

ha ha

which, on integration, yields

q=Q+h —h. (15)

Averaging volumetric flow rate along one time pe-
riod, we get

Q=det=f(q+hl—hz)dr, (16)

which, on integration, yields
Q=q+1+b=Q+1+b+h,—h, (17)
From Egs. (12) and (17), we obtain

6"[5_PJ+L5_P_

o\ ox Al Ox

. _ (18)
k(4 50" Q—1-b+h—h;

—_ +ﬂ/2_

Af 0t” )| 2coshk(h—hy)—2

ksinhk (1 — h,) th=hy
3 Solution by differential transform method
(DTM)

DTMP®! uses Taylor series expansions to derive
differential Differential
boundary conditions is converted into a recurrence

transforms. transform of
equation that finally leads to the solution of a system of
algebraic equations. DTM is different from the tradi-
tional higher order Taylor series method, the latter re-

quiring symbolic computation and thereby causing
greater computational expense for large orders. However,
DTM obtains a polynomial series solution by means of
an iterative procedure. It is an alternative procedure for
obtaining analytic Taylor series solution of differential
equations. With this method, it is possible to obtain
highly accurate results or exact solutions for differential
equations. DTM has a strong advantage in that it can be
applied directly to differential equations without re-
quiring linearization, discretization or perturbation. An-
other important advantage is that this method reduces
the size of computational work compared with other
approaches. DTM was initially employed in electrical
circuit analysis in the mid-1980s. It has re-emerged as a
powerful tool in nonlinear mechanics and has demon-
strated excellent stability and adaptability for biomedical
transport phenomena. In the context of biomechanical
engineering, it has been employed to study many com-
plex systems of nonlinear differential equations. Let us
consider the following differential equation

0% A

CPACINNNS _q 94
#qe =T T ()

ot”

where, f(x,t)= P

ox
_ Q—l—b‘l‘}h—hz
and A= Sk —h) -2 :

+ —
ksinhk(h,— 1) ha =

with initial condition
S(x,0)=0. (20)

According to DTM, we can construct the following

iteration formula for Eq. (19).

L(ka+a+l) R pOlka+p)
e Fk”(x)+ﬂlaF}{(x) AS(ka)+ A, ra=p)
__I(ka+D) | 1 pOlka+p)

or E(+1(x)_F(ka+a+l){ AaFk(x)+A5(ka)+Aiz ) }, (21)

where, Fj.1(x) is the DTM of the f{(x,7) with respect to ¢,

1, k=0
and (k)= 0. k0"

From initial condition Eq. (20), we write

F(x)=0, (22)

Substituting Eq. (22) into Eq. (21) and by
straightforward iterative steps, we get the following Fj(x)
(fork=0,1,2,...,n)values

A s O(f)
) [MZ F(l—m}’ =
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F,(x) -4 {1 +,12ﬂ M}

T A T 2a+l) )

(24)
+AM{5(Q) Y M}

I'2a+1) r(1-p)

SRS TR

AT Ba+1) ra-p

. T(a+)) {5(04)%2”5(“'3)} 25)
AT (3a+1) ra-p

o r(2a+1){5(2a)”2ﬂ 5(2a+,8)}
T'Ga+l) r(1-p)

Fi(x)= 4

_ s O(B)
AT (da+1) r(1-p)

2F(a+l) {5((1)“2[, 5(a+ﬂ)}
224 (4o +1) r(1-p) 2

—AM[5(2a)+if M}
A T(4a+1) r'(1-p5)

+AM{M)W M}
I'(da+1) r(1-p)

{Hﬂ,z

)

and so on.
Then the inverse differential transformation of the
set of values F(x) gives approximate solution as

f,0e0=3""  F(x)1°, 27)

Consequently, the exact solution may be obtained
by using

f(x,0)=lm f, (x,?). (28)
The pressure difference across one wavelength (Ap)

and friction force across one wavelength at the upper
wall (F) and the lower wall (F3) are defined as

Ap='([2—§dx, (29)
F:j‘h _P g, (30)
] 0 ' oox ’

FZ=J;h2[—Z—ijdx. 31)

4 Numerical results and discussion

We now consider DTM solutions obtained using

Mathematica for a range of value of the key dimen-
sionless parameters e.g. fractional parameters, perme-
ability, etc. Computations are illustrated in Figs. 2a—2i to
Figs. 4a—4i, and in all cases, pressure rise or frictional
forces is plotted on the ordinate and averaged volumetric
flow rate on the abscissa.

Figs. 2a—2i depict the variation of pressure rise (Ap)

with the averaged flow rate O for respectively different

values of ratio of upper wall wave amplitude to upper
channel half width (¢=a,/b,), ratio of lower wall wave
amplitude to upper channel half width (¢=a,/b,), lower
to upper channel half width ratio (b= b,/b;), Oldroyd
rheological material constants (4;, 4), fractional vis-
coelastic parameters (a, f valid for 0<a<f<1) at fixed
dimensionless time (#=0.1). In all these plots, the per-
meability of the porous medium (K) is high. This cor-
responds to a sparsely packed porous regime which is
representative of weak obstructions present in gastric
tracts> 2%,

Fig. 2a demonstrates an inverse linear relationship
between pressure and averaged flow rate. However
pressure rise is clearly elevated with increasing values of
¢, implying that as upper wall wave amplitude is en-
hanced (or upper channel half width decreased), pressure
generated in the peristaltic propulsion is also increased.
Physically this implies that stronger peristaltic waves or
a constriction in the channel width accentuate pressure

231 and

rise which will agree with actual observations
other mathematical studies such as Yasmin ez al.”*!. In
Fig. 2b, a similar pattern is observed to Fig. 2a, namely
the pressure rise is boosted with an increase in ¢, values
i.e., as lower wall wave amplitude is elevated (or upper
channel half width lowered), an escalation is generated
in pressure rise in the flow. An increase in phase dif-
ference (¢) also results in a rise in pressure (Fig. 2¢). In

all three afore-mentioned plots, the O-Ap profiles re-

main parallel for all values of averaged flow rate O i.e.,

there is no cross-over. Conversely in Fig. 2d, although
pressure rise is increased generally with greater values
of width ratio (b= b,/b;) at much higher flow rates, the
trend is reversed and thereafter pressure rise is depleted
with increasing flow rate and increasing width ratio.
Maxi-mum Ap corresponds to zero volumetric flow rate
and width ratio. Fig. 2e reveals that with increasing of
Oldroyd first material parameter (relaxation time),
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Fig. 2(b) Plot of Ap vs. O for various

values of ¢ and 5=0.8, #=0.5, ¢=mn/2,
=1, =1, K=1, a=1, =1, =0.1.
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Fig. 2(c) Plot of Ap vs. O for various

values of ¢ and 5=0.8, ¢#=0.5, $=0.5,
M=1, =1, K=1, o=1, =1, =0.1.
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Fig. 2(d) Plot of Ap vs. O for various
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Fig. 2(g) Plot of Ap vs. Q for various

values of K and »=0.8, #=0.5, $,=0.5,
¢=n/2, 11=1, 2o=1, o=1, =1, =0.1.

difference magnitudes are boosted at higher flow rates;
however when a critical flow rate is attained, the con-
trary behavior is witnessed. Evidently the rheology as
reflected in the material parameter, 1;, exerts a
non-negligible influence on pressure-flow response. On
the other hand, Fig. 2f demonstrates that a strong in-
crease in the second Oldroyd material parameter, A,
generates no tangible modification in pressure rise-flow
rate profile. Fig. 2g shows that the effect of decreasing
permeability in the regime is to significantly elevate
pressure rise in the channel, at low volumetric flow rates.
This is attributable to the corresponding increase in ob-

Fig. 2(¢) Plot of Ap vs. O for various

values of 4; and 5=0.8, #=0.5, $=0.5,
¢=n/2, \=1, K=1, a=1, =1, t=0.1.

Fig. 2(h) Plot of Ap vs. O for various

values of a and 5=0.8, ¢,=0.5, $=0.5,
¢=n/2, 1=1, =1, K=1, =1, +=0.1.
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=3 i
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-0.0%

Fig. 2(f) Plot of Ap vs. O for various

values of 4, and 5=0.8, $=0.5, $=0.5,
¢=n/2, =1, K=1, a=1, =1, t=0.1.

D Ap =02
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Fig. 2(i) Plot of Ap vs. Q for various

values of £ and 5=0.8, ¢,=0.5, $=0.5,
¢=n/2, \i=1, 2p=1, K=1, 0=1, =0.1.

structions present in the channel as K decreases. Lower
permeability implies a greater concentration of debris in
the gastric tract and vice versa for higher permeability.
In the absolute limit of infinite K, all solid particles
vanish and the regime is purely fluid. A very different
response however is computed at higher volumetric flow
rates. For this scenario, increasing permeability serves to
infact depress pressure rise in the regime. Figs. 2h and 2i
illustrate the pressure-flow rate profiles for various
values of the first and second fractional parameters, a
and p. Greater values of a significantly boost pres-
sure rise for lower volumetric flow rates, whereas
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Fig. 3(g) Plot of Fry vs. O for various

values of K and 5=0.8, #=0.5, $,=0.5,
¢=n/2, 1,=1, 2o=1, o=1, =1, =0.1.

the converse response is apparent at higher flow rates.
Clearly however increasing values of second fractional
parameter S, does not affect the O -Ap distributions. In
this case the same pressure rise values occur for all flow
rates and they are maximized at zero flow rate.

Figs. 3a-3i depict the distributions of upper chan-
nel wall friction force (shearing force) (Fr;) with the
averaged flow rate Q again for respectively different
values of ratio of upper wall wave amplitude to upper
channel half width (¢=a,/b,), ratio of lower wall wave
amplitude to upper channel half width (¢=a,/b;), lower
to upper channel half width ratio (b= b,/b;), Oldroyd

Fig. 3(h) Plot of Fr, vs. Q for various

values of a and 5=0.8, ¢,=0.5, $=0.5,
=12, =1, =1, K=1, =1, t=0.1.

Fig. 3(i)) Plot of Fr, vs. O for various

values of £ and 5=0.8, ¢,=0.5, $=0.5,
¢=n/2, \i=1, 2=1, K=1, 0=1, =0.1.

rheological material constants (4, 4), fractional vis-
coelastic parameters (a, f valid for 0<a<p<l) also at
t=0.1. In all the graphs, there is a generic rise in friction
force, (Fr|) with increasing volumetric flow rate. The
relationship is also linear. Fig. 3a shows that Fr; is
strongly increased with increasing values of ¢ Higher
upper wall wave amplitude is clearly assistive to the rate
of propulsion in the channel which accelerates flow and
boosts the shearing force on the upper wall. In Fig. 3b,
the reverse response is computed and friction force is
observed to diminish with an increase in ¢, values, i.e.,

as lower wall wave amplitude is elevated (or upper
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Fig. 4(a) Plot of Fr, vs. O for various

values of ¢ and 5=0.8, $=0.5, ¢=n/2,
M=1, =1, K=1, a=1, =1, t=0.1.

Fig. 4(b) Plot of Fr, vs. O for various

values of ¢ and 5=0.8, #=0.5, ¢=mn/2,
=1, =1, K=1, a=1, =1, t=0.1.

Fig. 4(c) Plot of Fr, vs. O for various

values of ¢ and 5=0.8, ¢#=0.5, $=0.5,
M=1, =1, K=1, a=1, =1, =0.1.
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Fig. 4(d) Plot of Fr, vs. Q for various

values of b and ¢=0.5, $=0.5, ¢=n/2,
=1, =1, K=1, o=1, =1, =0.1.
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Fig. 4(g) Plot of Fr, vs. O for various
values of K and 5=0.8, ¢=0.5, $=0.5,
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Fig. 4(e) Plot of Fr, vs. O for various

values of 1; and 5=0.8, ¢=0.5, $=0.5,
¢=n/2, \=1, K=1, a=1, =1, t=0.1.

O g, 0

Fig. 4(f) Plot of Fr, vs. O for various

values of 1, and 5=0.8, ¢=0.5, $=0.5,
¢=n/2, =1, K=1, a=1, =1, t=0.1.
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Fig. 4(h) Plot of Fr, vs. O for various

values of a and 5=0.8, ¢#=0.5, $=0.5,
=2, =1, 1,=1, K=1, =1, +=0.1.

Fig. 4(i) Plot of Fr, vs. O for various

values of £ and 5=0.8, ¢#=0.5, $=0.5,
=n/2, 2,=1, =1, K=1, o=1, t=0.1.

channel half width lowered) the upper wall shearing
force is reduced. Fig. 3¢ shows that an increase in phase
difference (@) markedly depletes the friction force Fr.
In Figs. 3a—3c the Q-Ap profiles are sustained as par-
allel to each other for all values of averaged flow rate O,
i.e., there is no cross-over. However in Fig. 3d, although
friction force is enhanced with larger values of width
ratio (b= by/b,), after a critical flow rate (approximately
0.2), the opposite effect is observed and friction force is
seen to be depressed with increasing flow rate and in-
creasing width ratio. Fig. 3e shows that as Oldroyd first
material parameter, 11, is increased, for lower flow rates,

upper wall friction force values are initially decreased;
however beyond a critical flow rate is attained, the re-
sponse is reversed. Overall a strong influence on friction
force is associated with the material parameter, A,.
Conversely Fig. 3f shows that despite a large elevation in
the second Oldroyd material parameter, 4, the upper wall
friction force is unaffected at any flow rate. Inspection of
Fig. 3g demonstrates that generally (except for very low
flow rates), an increase in permeability parameter, K,
serves to markedly enhance upper wall friction force.
With increasing permeability, the peristaltic flow re-
ceives less impedance from obstructions and is acceler-
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ated, manifesting in a greater shearing at the upper wall,
i.e., higher friction forces. Figs. 3h and 3i show respec-
tively that with higher values of first fractional parame-
ter, a (except for extremely low flow rates), the upper
wall friction force is depressed significantly, whereas
with any change in second fractional parameter, £, the
friction force profiles remain unaltered.

Figs. 4a—4i present the profiles of lower channel
wall friction force (shearing force) (Fr;) with the aver-

aged flow rate Q again for respectively different values

of ratio of upper wall wave amplitude to upper channel
half width (¢,=a,/b,), ratio of lower wall wave ampli-
tude to upper channel half width (¢=a,/b,), lower to
upper channel half width ratio (b= b,/b,), relaxation and
retardation time constants (4, 4,), fractional viscoelastic
parameters (a, f valid for 0<a<f<1) also at = 0.1. In all
the graphs, there is an overall decrease in friction force

(Fr,) with increasing volumetric flow rate (Q). The

relationship although linear is the opposite of that ob-
served in Figs. 3a-3i for the upper wall friction force,
Fry. Fry (Fig. 4a) is strongly increased with increasing
values of ¢ However in Fig. 4b, the opposite effect is
seen and lower wall friction force decreases with an
increase in ¢ values. Fig. 4c demonstrates that rising
phase difference (@) weakly enhances the friction force

Fr, In Figs. 4a—4c the O -Ap plots remain parallel to each

other for all values of averaged flow rate O i.e., there is

no cross-ovet, as observed earlier in Figs. 2a—2c¢ and
Figs. 3a-3c. However in Fig. 4d, despite an initial rise in
lower wall friction force with greater width ratio (b=
b,/by), at higher flow rates, the friction force is lowered
with increasing flow rate and increasing width ratio. Fig.
4e shows that as relaxation time, 41, is increased at lower
flow rates, lower wall friction force values are slightly
enhanced whereas subsequently beyond a critical flow
rate, they are massively reduced. The effect of the ma-
terial parameter, 4; on lower friction force is strong.
Conversely in Fig. 4f, the second Oldroyd material pa-
rameter, A, (retardation time) has no effect on lower
friction force. From inspection of Fig. 4g, it is apparent
that generally (except for very low flow rates), an in-
crease in permeability parameter, K, serves to markedly
elevate the lower wall friction force, and this is as de-
scribed earlier a result of peristaltic flow acceleration
with greater permeability. Figs. 4h—4i show respectively

that with greater first fractional parameter, o (except for
extremely low flow rates), the lower wall friction force
is strongly lowered, whereas with any modification in
second fractional parameter, f3, the friction force profiles
are as with pressure rise (Fig. 2i) or upper wall friction
force (Fig. 31) not affected.

5 Conclusion

A theoretical and numerical study of peristaltic
flow of non-Newtonian biofluids in a two-dimensional
asymmetric channel containing porous media has been
presented, motivated by modelling obstructed digestive
(intestinal) transport. The fractional viscoelastic
Oldroyd-B rheological model has been employed to
simulate biorheological characteristics and a modified
Darcy-Brinkman model for the effect of the porous me-
dia impedance. The differential transform method
(DTM), a semi-numerical technique has been utilized to
derive approximate analytical solutions to the boundary
value problem. Mathematica software is employed to
evaluate solutions for various parametric effects i.e.,
fractional (rheological material) parameters, relaxation
time, retardation time, amplitude of the wave, and per-
meability parameter on peristaltic flow characteristics
such as volumetric flow rate, pressure difference and
wall friction force. The present model is relevant to flow
in diseased intestines. DTM computations have shown
that with increasing Oldroyd first material parameter
(relaxation time), pressure difference magnitudes and
upper and lower wall friction force are strongly influ-
enced whereas they are not affected with second
Oldroyd material parameter (retardation time). Also
except for very low flow rates, larger permeability pa-
rameter has been shown to strongly elevate upper and
lower wall friction force, owing to an accelerating effect
on the peristaltic propulsion regime, respectively. The
first fractional parameter is also found to have a major
influence on pressure rise and friction forces whereas the
second fractional parameter exerts no discernible effects.
Other interesting flow characteristics have been revealed
of relevance to diseased gastric transport. The present
study should serve to provide a good benchmark for
further investigations into intestinal propulsion flows
with obstructions. A major endeavor is underway to
utilize commercial CFD codes e.g. ADINA-F to simu-
late such problems in three dimensions with more so-
phisticated and realistic geometrical characteristics. The
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results of such investigations will be communicated

imminently.
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Appendix-1

The DTM computational algorithm is validated using well known He’s homotopy perturbation method (HPM).
Consider the equation

f 1 o
+—f=A+1—(4),0<a<l, Al
ot” /ﬁf‘f & azﬁ( ) “ S

with initial condition
f(x,00=0. (A2)
According to the HPM, we construct the following homotopy
of +| 1 o’
—=h|——f+ A+ —(4)], A3
ot” {ﬂff zaﬁ()} (A3)

where the homotopy parameter / is considered as a small parameter ( 4 €[0,1] ). Now applying the classical per-
turbation technique, we can assume that the solution of Eq. (A1) can be expressed as a power series in p as given

below

f=fovhf+ o+ n i S+, (A4)
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when & — 1, Eq. (A3) corresponds to Eq. (A1) and Eq. (A4) becomes the approximate solution of Eq. (A1). Substi-
tuting Eq. (A4) in Eq. (A3) and comparing the like powers of 4, we obtain the following set of linear differential

equations
n': Dify =0, (AS5)
;“Dafz—lf +A+/1ﬁi(,4) (A6)
. tJ1 /’ila 0 2 a[ﬂ >
-, 1
h - sz‘zz__ajfla (A7)
A
o 1
W Difs=——/s> (A8)
A
. 1
h o Difs=—— 1> (A9)
A
and so on.

The method is based on applying the operator J; (the inverse operator of Caputo derivative p; ) on both sides

of the Egs. (A5—-A9), then we obtain the components f,, n>0.
Finally, we approximate the analytical solution f{x,f) by the truncated series:

f(x,t)=]lvi£r30¢N(x,t), (A10)
where:
@N(x,t)zﬁfn(x,t). (A11)

The above series solutions generally converge very rapidly. A classical approach of convergence of this type of
series is already presented in literature.

Table 1 Comparison table of DTM and HPM results of Ap for various values of ¢ and 0 and b=0.8, $=0.5, g=n/2,2,=1,2,=1, K=1, o1,
A, =1

APy Ap iy Ap i Ap iy
#=0.5 0.095120425 0.095138017  0.017230189  0.017241089
#=0.6  0.137151649  0.137180157  0.050937477  0.050901749
#=0.7 0.197820059  0.197800173  0.099989816  0.099918943
#=0.8 0.286952040  0.286981045 0.172686734  0.172616284
$=0.9 0.421794668  0.421800179  0.283663418  0.283601837

Table 2 Comparison table of DTM and HPM results of Ap for various values of ¢, and O and 5=0.8, $,=0.5, ¢=n/2, 1,;=1, 1,=1, K=1, o=1,
A, =1

0=0.1 0=03
Ap iy Apipy Ap o Ap iy
$=0.5 0.056175307  0.056538905 —0.021714927  —0.021920528
$=0.6  0.094044563  0.094105739 0.007830390 0.007739266
$=0.7 0.148904937  0.148038278 0.051074694 0.051295380
$=0.8 0229819387  0.229245290 0.115554081 0.115648438
$=0.9 0.352729043  0.352629403 0.214597793 0.214385630






