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Abstract 
A biofluid dynamics mathematical model is developed to study peristaltic flow of non-Newtonian physiological liquid in a 

two-dimensional asymmetric channel containing porous media as a simulation of obstructed digestive (intestinal) transport. The 
fractional Oldroyd-B viscoelastic rheological model is utilized. The biophysical flow regime is constructed as a wave-like 
motion and porous medium is simulated with a modified Darcy-Brinkman model. This model is aimed at describing the diges-
tive transport in intestinal tract containing deposits which induce impedance. A low Reynolds number approximation is em-
ployed to eliminate inertial effects and the wavelength to diameter ratio is assumed to be large. The differential transform 
method (DTM), a semi-computational technique is employed to obtain approximate analytical solutions to the boundary value 
problem. The influences of fractional (rheological material) parameters, relaxation time, retardation time, amplitude of the 
wave, and permeability parameter on peristaltic flow characteristics such as volumetric flow rate, pressure difference and wall 
friction force are computed. The present model is relevant to flow in diseased intestines. 

Keywords: peristaltic transport, fractional Oldroyd-B model, porous medium, differential transform method, asymmetric 
channel, obstructed digestive flow 
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Nomenclature 

hB1 B Transverse vibration of the upper wall 
hB2 B Transverse vibration of the lower wall 
bB1 B Upper half-width of the channel 
bB2 B Lower half-width of the channel 
aB1 B Amplitude of upper wall 
aB2 B Amplitude of lower wall 
ξ Axial displacement 
u Axial velocity 
v Transverse velocity 
η Transverse coordinate 
p Pressure 
Re Reynolds number 
c Wave velocity 
K Permeability parameter 

q Volumetric flow rate in the wave frame 
δ Wave number 

φB1 B 

Ratio of upper wall wave amplitude to  upper 
channel half width 

φB2 B 

Ratio of lower wall wave amplitude to upper 
channel half width 

φ Phase difference 
μ Viscosity 
α, β Fractional parameters 
ψ Stream function 
ϕ Porosity of porous medium 
λ Wavelength 
τ , γ  Shear stress, rate of shear strain 

1λ , 2λ Material constants 
ρ Fluid density    
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1  Introduction 

The muscular layers of the digestive tract comprise 
smooth muscle tissue, which triggers peristaltic and 
segmentation movements. Peristalsis propels a small 
mass of digestive contents called a bolus along the 
length of digestive tract. In intestines, over a period of 
time, digestive deposits may harden and cause obstruc-
tions. In severe cases, such as acute distention of the 
bowel, serious ailments may result, where normal 
transport is dangerously impeded. Numerous gastroen-
terological medical researchers have investigated a 
range of such phenomena including ElmanP

[1]
P, Grassi et 

al.P

[2]
P (who employed sonography), FarrelP

[3]
P, Rommel et 

al.P

[4]
P and Kishi et al.P

[5]
P, the latter examining specifically  

Bouveret’s syndrome. It has been suggested in recent 
studies that mathematical models of flows in obstructed 
systems may be mimicked using a porous media hy-
drodynamics approach. Indeed there are a large number 
of simulation techniques available in the literature which 
may be aimed at analysing impedance effects of various 
models, such as Darcy models, Darcy-Brinkman models, 
Darcy-Forchheimer modelsP

[6]
P, and tortuosity modelsP

[7]
P. 

These techniques may employ randomised Sierspinski 
carpet approaches, multi-scale effectsP

[8]
P, poroelasticityP

[9]
P 

and spatially periodic effectsP

[10]
P. In the context of peri-

staltic propulsion in porous media, several studies have 
been communicated. Kothandapani and SrinivasP

[11]
P in-

vestigated analytically peristaltic flow in an inclined 
asymmetric channel containing a porous medium, de-
scribing porous media drag effects on trapping for si-
nusoidal, triangular, square and trapezoidal waveforms. 
Mekheimer and Abd ElmaboudP

[12]
P studied the peristaltic 

flow in an annular porous regime, as a model of an en-
doscope, observing that pressure rise has an inverse 
nonlinear relationship with permeability and that bolus 
magnitude increases with permeability. El Shehawey 
and HussenyP

[13]
P obtained perturbation solutions for 

peristaltic pumping by a sinusoidal traveling wave in a 
porous medium channel with wall suction. They found 
that the mean axial velocity and backflow increase with 
greater permeability parameter and that fluid motion is 
non-symmetric. Further studies were communicated by 
MekheimerP

[14]
P for inclined channels and Srinivas and 

GayathriP

[15]
P for heat transfer effects. These modelsP

[11–15]
P 

considered the transport fluid to be Newtonian and es-
sentially creeping flow approximations of the Na-

vier-Stokes equations with moving boundaries. The 
rheological nature of digestive fluids including chyme 
has been established for many decades, and is elaborated 
among other physiological fluids by Skalak et al.P

[16]
P. A 

number of models have therefore emerged to analyse the 
peristaltic flows of non-Newtonian fluids with a diverse 
array of constitutive models. These included Ostwald-de 
Waele pseudoplastic/dilatant models for duodenal 
flowsP

[17]
P, Carreau modelsP

[18]
P for bile flows, couple stress 

models for chime transport in small intestinesP

[19]
P, and 

micropolar modelsP

[20]
P. Another aspect of biorheology is 

viscoelasticityP

[21]
P which features in the dynamics of 

many gastric fluids, blood, synovial fluid, etc. A reduced 
viscosity is known to be associated with a drop in tensile 
stresses in a viscoelastic fluid with progression in time, 
which aids relaxation of the liquid and contributes to a 
decrease in bulk viscosity of the fluid, as elaborated by 
Norouzi et al. P

[22]
P. Recent studies of viscoelastic peri-

staltic flow include TripathiP

[23]
P who considered gener-

alized Oldroyd-B fluids, Yasmin et al.P

[24]
P who employed 

the Johnson-Segalman model, Tripathi et al.P

[25]
P who 

utilized the Jeffrey model for oesophagus and Tripathi et 
al.P

[26]
P who considered slip flows with generalized 

Oldroyd-B fluids. These articles however ignored po-
rous media aspects. Recently, several attempts to model 
non-Newtonian peristaltic flows in porous media have 
been made. These include Alemayehu and Radhakrish-
namacharya P

[27]
P who considered hydrodynamic disper-

sion in micropolar peristaltic flow in a permeable me-
dium and MekheimerP

[28]
P who used the Reiner-Rivlin 

second order diff erential model for peristaltic 
rheological flow in a porous conduit. Tripathi and 
BégP

[29]
P studied transient peristaltic flow of generalized 

Maxwell fluids through a porous medium, presenting 
solutions with the homotopy perturbation method. They 
showed that the size of the trapped bolus is weakly ele-
vated with greater permeability of the porous medium, 
but diminished with increasing wave amplitude ratio. 
This study also noted that relaxation time of the vis-
coelastic fluid has a different influence on different 
pumping regions of the flow. Further studies addressing 
non-Newtonian peristaltic porous media hemodynamics 
include Alemayehu and RadhakrishnamacharyaP

[30]
P and 

TripathiP

[31] 
P(employing couple stress fluids). 

In computational viscoelasticity, a popular trend in 
recent years has been the fractional derivative model of 
viscoelastic fluids. This generally entails a classical 
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differential equation which is modified by replacing the 
time derivative of an integer order with the so-called 
Riemann-Liouville fractional calculus operator. This 
generalization allows one to define precisely non-integer 
order integrals or derivatives. OldroydP

[32]
P developed a 

viscoelastic model to study rheological behavior of 
materials. This model may also be generalized in the 
form of a fractional Oldroyd model using fractional 
calculus. In view of the relevance of fractional models of 
viscoelastic fluids, a number of authorsP

[33–35]
P have in-

vestigated flow behavior of viscoelastic fluids with 
fractional Oldroyd-B model, through different geome-
tries and with various wall surface conditions. In these 
investigations, closed-form solutions for the velocity 
field and the associated shear stress have been presented 
using mathematical transforms e.g. Laplace, Fourier, 
Weber, Hankel, etc. Many computational and 
semi-computational approaches also are available for 
solving nonlinear boundary value problems in peristaltic 
biorheology. One example is the Differential Transform 
Method (DTM) which was first proposed by ZhouP

[36]
P to 

solve linear and non-linear initial value problem in 
electric circuit analysis. This approach provides excel-
lent versatility and enhanced accuracyP

[37]
P in accommo-

dating differential equation systems and also achieved 
accelerated computation times compared with other 
methods. In the present study, the DTM is implemented 
to obtain more accurate solutions for non-Newtonian 
fractional viscoelastic Oldroyd-B flow in an asymmetric 
channel containing porous media. Mathematical soft-
ware is used to obtain graphical solutions for the influ-
ence of the geometric and rheological parameters. The 
current work is relevant to simulation of obstructed di-
gestive (intestinal) transportP

[1–5]
P, where the debris in the 

gastric tract is modelled using a Darcy-Brinkman porous 
media drag force model, valid for low Reynolds number 
(viscous-dominated) transport. 

2  Mathematical model 

2.1  Geometric model for peristaltic flow channel  
The two-dimensional non-Newtonian biofluid 

peristaltic flow in an infinite asymmetric channel having 
width b1+b2 is considered which is shown in Fig. 1.An 
asymmetric flow regime is produced by choosing the 
peristaltic wave train, travelling with velocity c along the 
walls to have different amplitudes (a1, a2) and phase (φ). 

This amounts to a ‘moving boundary’ problem. The 
upper and lower walls of the asymmetric channel (see 
Fig. 1) are respectively modelled using the relations. 

1 1 1

2 2 2

2πsin ( )
,

2πsin ( )

h b a ct

h b a ct

ξ
λ

ξ ϕ
λ

⎫⎛ ⎞= + −⎜ ⎟ ⎪⎝ ⎠ ⎪
⎬

⎛ ⎞⎪= − − − +⎜ ⎟⎪⎝ ⎠⎭

              (1) 

where λ, ξ, c, t  are the wavelength, axial coordinate, 
wave velocity and time, respectively. The phase differ-
ence φ varies in the range 0≤φ≤π. When φ=0, a sym-
metric channel with waves out of phase can be described 
and forφ=π, the waves are in phase. 
 
2.2  Modified Darcy-Brinkman model for porous 

medium  
The well-known Darcy law states that, in the flow 

of a Newtonian fluid through a porous medium, the 
pressure gradient caused by the friction drag is directly 
proportional to the velocity. Recently, based on the local 
volume averaging technique and the balance of forces 
acting on a volume element of viscoelastic fluids in 
porous media, Tan and Masuoka[38] developed a modi-
fied Darcy-Brinkman model for viscoelastic fluid flows 
in porous media. Xue and Nie[39] further generalized this 
model for generalized Maxwell fluid flows in porous 
media. The Darcy-Brinkman model[40] for generalized 
Oldroyd-B fluids takes the form: 

1 21 1 ,R u
t tK

α β
α β

α β

μφλ λ
⎛ ⎞ ⎛ ⎞∂ ∂
+ = − +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

              (2) 

where R, ϕ, K , u , μ and 1λ , 2λ  designate the Darcy 
resistance, porosity of porous medium, permeability, 
axial velocity, viscosity and material constants. α, β are 
the fractional parameters (0<α≤β≤1). 
 

a2

a1

b2

h2

η

b1

h1

λ
 

Fig. 1  Geometry of asymmetric porous medium channel. 
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2.3  Fractional Oldroyd-B model for biofluid 
The constitutive equation for fractional Oldroyd-B 

fluidsP

[40]
P is given by 

1 21 1
t t

α β
α β

α βλ τ μ λ γ
⎛ ⎞ ⎛ ⎞∂ ∂
+ = +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

,               (3) 

whereτ , γ  are shear stress and rate of shear strain, re-
spectively. 
 
2.4  Fractional Oldroyd-B model for biofluid 

The governing equations of motion for generalized 
Oldroyd-B fluidP

[40]
P through a porous medium are 

,

pu v u R
t

pu v v R
t

ξξ ξη
ξ

ηξ ηη
η

τ τ
ρ

η ηξ ξ ξ
τ τ

ρ
η η ηξ ξ

∂ ∂ ⎫⎛ ⎞∂ ∂ ∂ ∂
+ + = − + + + ⎪⎜ ⎟∂ ∂ ∂∂ ∂ ∂⎝ ⎠ ⎪

⎬∂ ∂⎛ ⎞∂ ∂ ∂ ∂ ⎪+ + = − + + +⎜ ⎟ ⎪∂ ∂ ∂ ∂∂ ∂⎝ ⎠ ⎭

(4) 

where ρ, ν ,η , p  and RBξB, RBηB are the fluid density, 

transverse velocity, transverse coordinate, pressure, and 
components of Darcy resistance, respectively. We in-
troduce the following non-dimensional parameters 

1 2
1 2

1

1
1 1

1

2 1
2 2 1

1 1
2

2 2 1
2

1 1

1 1 1
2

1

, , , , ,

1 sin 2π ( ),

sin(2π ( ) ), , ,

, , , , ,

, Re , , .

c cctt
b

h
h t

b

h a
h b t

b b

a b pbu vb u v p
b b c c c

b cb b KK
c b

λ λξ ηξ η λ λ
λ λ λ λ

φ ξ

φ ξ φ φ

φ
δ μ λ

τ ρ δ ϕτ δ
μ μ λ

⎫
= = = = = ⎪

⎪
⎪
⎪= = + −
⎪
⎪
⎪= = − − − + = ⎬
⎪
⎪
⎪= = = = =
⎪
⎪
⎪= = = =
⎪⎭

 

(5) 
where Re and K are Reynolds number and permeability 
parameter, respectively. Substituting the values of Darcy 
resistance and shear stress from Eqs. (2) and (3) into  
Eq. (4) and using the non-dimensional parameters from 
Eq. (5), applying the long wavelength and low Reynolds 
number approximations, Eq. (4) effectively reduces to 

2

1 2 2

2

1 1
,

1 1 , 0 .

p u
t t

pu
K t

α β
α β

α β

β
β

β

λ λ
ξ η

λ
η

⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
+ = + ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎪

⎬
⎛ ⎞∂ ∂ ⎪− + =⎜ ⎟ ⎪∂ ∂⎝ ⎠ ⎭

 

(6) 
The boundary conditions are 

10u at hη= = ,                                   (7) 

20u at hη= = ,                                   (8) 

0 0 .p p a t t
ξ

∂
= =

∂
                                 (9) 

 
2.5  Analysis 

Integrating Eq. (6) with respect to η and using  
Eqs. (7) and (8), the axial velocity is obtained as 

1

1 2 2 12

1 1 1 ,k k

u

pC e C e
k t t

β α
η η β α

β αλ λ
ξ

−

−

=

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
+ − + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

(10) 

where 2 1k
K

= , 

2 1

1
1

2 12
1 2

1 1 1
2sinh ( )

kh kh

C

p e e
k t t k h h

β α
β α

β αλ λ
ξ

− − −

=

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ −
+ + ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, 

2 1

2
1

2 12
2 1

1 1 1 .
2sinh ( )

kh kh

C

p e e
k t t k h h

β α
β α

β αλ λ
ξ

−

=

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ −
+ + ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

The volumetric flow rate is defined as 
1

2

d
h

h

Q u η= ∫ ,                                   (11) 

which, by virtue of Eq. (10), reduces to Eq. (12). 
The transformations between a wave frame ( ,x y ) 

moving with velocity c and the fixed frame ( , )ξ η are 
given by 

, , ,x ct y U u c V vξ η= − = = − = ,       (13) 

where ( ),U V  and ( ),u v  are the velocity components in 

the wave and fixed frame, respectively. 

1
1 2

1 1 22
2 1 2

1 2cosh ( ) 21 1 ,
sinh ( )

p k h hQ h h
k kk t t h h

β α
β

β αλ λ
ξ

−

∂ ⎛ ⎞∂ − −⎛ ⎞ ⎛ ⎞∂ ∂= + + + −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠
                                             (12) 
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The volumetric flow rate in the wave frame is given 
by 

1 1

2 2

d ( 1)d
h h

h h

q U y u η= = −∫ ∫ ,                   (14) 

which, on integration, yields 

2 1.q Q h h= + −                             (15) 

Averaging volumetric flow rate along one time pe-
riod, we get 

1 1

1 2
0 0

d ( )dQ Q t q th h= = + −∫ ∫ ,                (16) 

which, on integration, yields 

2 11 1Q q b Q b h h= + + = + + + − ,           (17) 

From Eqs. (12) and (17), we obtain 

( )
( )

1

2
1 2

2
1 21

2 1
1 2

1

11 .
2cosh 2

sinh

a

a a

a

p p
x xt

Q bk h h
k h ht

h hk k h h

β
β

β

λ

λ
λ

∂ ∂⎛ ⎞∂ + =⎜ ⎟∂ ∂ ∂⎝ ⎠
⎛ ⎞
⎜ ⎟

− − + −⎛ ⎞∂ ⎜ ⎟+⎜ ⎟⎜ ⎟− −∂⎝ ⎠ + −⎜ ⎟⎜ ⎟−⎝ ⎠

  (18) 

3  Solution by differential transform method 
(DTM) 

DTMP

[36]
P uses Taylor series expansions to derive 

differential transforms. Differential transform of 
boundary conditions is converted into a recurrence 
equation that finally leads to the solution of a system of 
algebraic equations. DTM is different from the tradi-
tional higher order Taylor series method, the latter re-

quiring symbolic computation and thereby causing 
greater computational expense for large orders. However, 
DTM obtains a polynomial series solution by means of 
an iterative procedure. It is an alternative procedure for 
obtaining analytic Taylor series solution of differential 
equations. With this method, it is possible to obtain 
highly accurate results or exact solutions for differential 
equations. DTM has a strong advantage in that it can be 
applied directly to differential equations without re-
quiring linearization, discretization or perturbation. An-
other important advantage is that this method reduces 
the size of computational work compared with other 
approaches. DTM was initially employed in electrical 
circuit analysis in the mid-1980s. It has re-emerged as a 
powerful tool in nonlinear mechanics and has demon-
strated excellent stability and adaptability for biomedical 
transport phenomena. In the context of biomechanical 
engineering, it has been employed to study many com-
plex systems of nonlinear differential equations. Let us 
consider the following differential equation 

2
1

( , ) 1 ( , )f x t Af x t A
t t

α β
β

α α βλ
λ

∂ ∂
+ = +

∂ ∂
,           (19) 

where, ( , ) pf x t
x
∂

=
∂

 

and 1 2

1 2
2 1

1 2

1 ,2cosh ( ) 2
sinh ( )

Q b h hA k h h h hk k h h

− − + −
=

− −
+ −

−

 

with initial condition 

( , 0) 0.f x =                               (20) 

According to DTM, we can construct the following 
iteration formula for Eq. (19). 

1 2
1

( 1) 1 ( )( ) ( ) ( )
( 1) (1 )k k

k kF x F x A k A
k

β
α

Γ α α δ α βδ α λ
Γ α λ Γ β+

+ + +
+ = +

+ −
            

or 1 2
1

( 1) 1 ( )( ) ( ) ( )
( 1) (1 )k k

k kF x F x A k A
k

β
α

Γ α δ α βδ α λ
Γ α α λ Γ β+

⎡ ⎤+ +
= − + +⎢ ⎥+ + −⎣ ⎦

，   (21) 

where, FBk+1B(x) is the DTM of the f(x,t) with respect to t, 

and 
1, 0

( )
0, 0

k
k

k
δ

=⎧
= ⎨ ≠⎩

. 

From initial condition Eq. (20), we write 

0 ( ) 0F x = ,                                  (22) 

Substituting Eq. (22) into Eq. (21) and by 
straightforward iterative steps, we get the following Fk(x) 
(for k = 0, 1, 2, . . . , n) values 

1 2
( )( ) 1 ,

( 1) (1 )
AF x β δ βλ

Γ α Γ β
⎡ ⎤

= +⎢ ⎥+ −⎣ ⎦
           (23) 
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2 2
1

2

( )( ) 1
(2 1) (1 )

( 1) ( )( )
(2 1) (1 )

AF x

A

β
α

β

δ βλ
λ Γ α Γ β

Γ α δ α βδ α λ
Γ α Γ β

⎡ ⎤−
= +⎢ ⎥+ −⎣ ⎦

⎡ ⎤+ +
+ +⎢ ⎥+ −⎣ ⎦

，

     (24) 

3 22
1

2
1

2

( )( ) 1
(3 1) (1 )

( 1) ( )( )
(3 1) (1 )

(2 1) (2 )(2 ) ,
(3 1) (1 )

AF x

A

A

β
α

β
α

β

δ βλ
λ Γ α Γ β

Γ α δ α βδ α λ
λ Γ α Γ β

Γ α δ α βδ α λ
Γ α Γ β

⎡ ⎤
= +⎢ ⎥+ −⎣ ⎦

⎡ ⎤+ +
− +⎢ ⎥+ −⎣ ⎦

⎡ ⎤+ +
+ +⎢ ⎥+ −⎣ ⎦

     (25) 

4 23
1

22
1

2
1

2

( )( ) 1
(4 1) (1 )

( 1) ( )( )
(4 1) (1 )

(2 1) (2 )(2 )
(4 1) (1 )

(3 1) (3 )(3 ) ,
(4 1) (1 )

AF x

A

A

A

β
α

β
α

β
α

β

δ βλ
λ Γ α Γ β

Γ α δ α βδ α λ
λ Γ α Γ β

Γ α δ α βδ α λ
λ Γ α Γ β

Γ α δ α βδ α λ
Γ α Γ β

⎡ ⎤
= − +⎢ ⎥+ −⎣ ⎦

⎡ ⎤+ +
+ +⎢ ⎥+ −⎣ ⎦

⎡ ⎤+ +
− +⎢ ⎥+ −⎣ ⎦

⎡ ⎤+ +
+ +⎢ ⎥+ −⎣ ⎦

    (26) 

and so on. 
Then the inverse differential transformation of the 

set of values FBkB(x) gives approximate solution as 

0
( , ) ( )

k
n

n kk
f x t F x tα

=
= ∑ ，                     (27) 

Consequently, the exact solution may be obtained 
by using 

( , ) lim ( , ).nn
f x t f x t

→∞
=                           (28) 

The pressure difference across one wavelength (Δp) 
and friction force across one wavelength at the upper 
wall (F1) and the lower wall (F2) are defined as 

1

0

dpp x
x
∂

Δ =
∂∫ ,                                 (29) 

1

1 1
0

dpF h x
x
∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠∫ ,                           (30) 

1

2 2
0

dpF h x
x
∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠∫ .                          (31) 

4  Numerical results and discussion 

We now consider DTM solutions obtained using 

Mathematica for a range of value of the key dimen-
sionless parameters e.g. fractional parameters, perme-
ability, etc. Computations are illustrated in Figs. 2a–2i to 
Figs. 4a–4i, and in all cases, pressure rise or frictional 
forces is plotted on the ordinate and averaged volumetric 
flow rate on the abscissa. 

Figs. 2a–2i depict the variation of pressure rise (Δp) 

with the averaged flow rate Q  for respectively different 

values of ratio of upper wall wave amplitude to upper 
channel half width (φ1=a1/b1), ratio of lower wall wave 
amplitude to upper channel half width (φ2=a2/b1), lower 
to upper channel half width ratio (b= b2/b1), Oldroyd 
rheological material constants (λ1, λ2), fractional vis-
coelastic parameters (α, β valid for 0<α≤β≤1) at fixed 
dimensionless time (t=0.1). In all these plots, the per-
meability of the porous medium (K) is high. This cor-
responds to a sparsely packed porous regime which is 
representative of weak obstructions present in gastric 
tracts[3,29,30]. 

Fig. 2a demonstrates an inverse linear relationship 
between pressure and averaged flow rate. However 
pressure rise is clearly elevated with increasing values of 
φ1 implying that as upper wall wave amplitude is en-
hanced (or upper channel half width decreased), pressure 
generated in the peristaltic propulsion is also increased. 
Physically this implies that stronger peristaltic waves or 
a constriction in the channel width accentuate pressure 
rise which will agree with actual observations[2,3] and 
other mathematical studies such as Yasmin et al.[24]. In 
Fig. 2b, a similar pattern is observed to Fig. 2a, namely 
the pressure rise is boosted with an increase in φ2 values 
i.e., as lower wall wave amplitude is elevated (or upper 
channel half width lowered), an escalation is generated 
in pressure rise in the flow. An increase in phase dif-
ference (φ) also results in a rise in pressure (Fig. 2c). In 
all three afore-mentioned plots, the Q -Δp profiles re-

main parallel for all values of averaged flow rate Q  i.e., 
there is no cross-over. Conversely in Fig. 2d, although 
pressure rise is increased generally with greater values 
of width ratio (b= b2/b1) at much higher flow rates, the 
trend is reversed and thereafter pressure rise is depleted 
with increasing flow rate and increasing width ratio. 
Maxi-mum Δp corresponds to zero volumetric flow rate 
and width ratio. Fig. 2e reveals that with increasing of 
Oldroyd   first   material   parameter   (relaxation   time), 
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Fig. 2(a)  Plot of Δp vs. Q  for various 
values of φB1B andT Tb=0.8T, TφB2B=0.5T, TφT=π/2 T, T 
λB1B=1, λB2B=1, K=1, α=1, β=1, t=0.1.  
 

Fig. 2(b)  Plot of Δp vs. Q  for various 
values of φB2B andT Tb=0.8T, TφB1B=0.5T, TφT=π/2 T, T 
λB1B=1, λB2B=1, K=1, α=1, β=1, t=0.1. 
 

Fig. 2(c)  Plot of Δp vs. Q  for various 
values of φ andT Tb=0.8T, TφB1B=0.5T, TφB2B=0.5, T 
λ B1B=1, λB2B=1, K=1, α=1, β=1, t=0.1.T 
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Fig. 2(d)  Plot of Δp vs. Q  for various 
values of b andT TφB1B=0.5T, TφB2B=0.5T, TφT=π/2 T, T 
λB1B=1, λB2B=1, K=1, α=1, β=1, t=0.1. 
 

Fig. 2(e)  Plot of Δp vs. Q  for various 
values of Tλ B1TB and T Tb=0.8T, TφB1B=0.5T,T φB2B=0.5,T 
TφT=π/2 T, T λ B2B=1, K=1, α=1, β=1, t=0.1. 
 

Fig. 2(f)  Plot of Δp vs. Q  for various 
values of Tλ B2TB and T Tb=0.8T, TφB1B=0.5T, TφB2B=0.5, 
φT=π/2, λ B1B=1, K=1, α=1, β=1, t=0.1.T 

Q Q Q

Fig. 2(g)  Plot of Δp vs. Q  for various 
values of TKT and T Tb=0.8, φB1B=0.5T, TφB2B=0.5T, 
TφT=π/2 T, T λ B1B=1, λB2B=1, α=1, β=1, t=0.1.T 

Fig. 2(h)  Plot of Δp vs. Q  for various 
values of Tα TandT Tb=0.8T, TφB1B=0.5T,T φB2B=0.5,T 
TφT=π/2 T, Tλ B1B=1, λB2B=1, K=1, β=1, t=0.1.T 

Fig. 2(i)  Plot of Δp vs. Q  for various 
values of Tβ TandT Tb=0.8T, TφB1B=0.5T, TφB2B=0.5, 
φT=π/2, λ B1B=1, λB2B=1, K=1, α=1, t=0.1. 

 
difference magnitudes are boosted at higher flow rates; 
however when a critical flow rate is attained, the con-
trary behavior is witnessed. Evidently the rheology as 
reflected in the material parameter, λ1, exerts a 
non-negligible influence on pressure-flow response. On 
the other hand, Fig. 2f demonstrates that a strong in-
crease in the second Oldroyd material parameter, λ2, 
generates no tangible modification in pressure rise-flow 
rate profile. Fig. 2g shows that the effect of decreasing 
permeability in the regime is to significantly elevate 
pressure rise in the channel, at low volumetric flow rates. 
This is attributable to the corresponding increase in ob-

structions present in the channel as K decreases. Lower 
permeability implies a greater concentration of debris in 
the gastric tract and vice versa for higher permeability. 
In the absolute limit of infinite K, all solid particles 
vanish and the regime is purely fluid. A very different 
response however is computed at higher volumetric flow 
rates. For this scenario, increasing permeability serves to 
infact depress pressure rise in the regime. Figs. 2h and 2i 
illustrate the pressure-flow rate profiles for various 
values of the first and second fractional parameters, α 
and  β. Greater  values  of  α  significantly  boost  pres-
sure  rise  for  lower  volumetric   flow   rates,  whereas 
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Fig. 3(a)  Plot of FrB1B vs. Q  for various 
values of φB1B andT Tb=0.8T, TφB2B=0.5T, TφT=π/2 T, T 
λB1B=1, λB2B=1, K=1, α=1, β=1, t=0.1. 
 

Fig. 3(b)  Plot of FrB1B vs. Q  for various 
values of φB2B andT Tb=0.8T, TφB1B=0.5T, TφT=π/2 T, T 
λB1B=1, λB2B=1, K=1, α=1, β=1, t=0.1. 
 

Fig. 3(c)  Plot of FrB1B vs. Q  for various 
values of φ andT Tb=0.8T, TφB1B=0.5T, TφB2B=0.5, T 
λ B1B=1, λB2B=1, K=1, α=1, β=1, t=0.1.T 
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Fig. 3(d)  Plot of FrB1B vs. Q  for various 
values of b andT TφB1B=0.5T, TφB2B=0.5T, TφT=π/2 T, T 
λB1B=1, λB2B=1, K=1, α=1, β=1, t=0.1. 
 

Fig. 3(e)  Plot of FrB1B vs. Q  for various 
values of Tλ B1TB and T Tb=0.8T, TφB1B=0.5T,T φB2B=0.5,T 
TφT=π/2 T, T λ B2B=1, K=1, α=1, β=1, t=0.1. 
 

Fig. 3(f)  Plot of FrB1B vs. Q  for various 
values of Tλ B2TB and T Tb=0.8T, TφB1B=0.5T, TφB2B=0.5, 
φT=π/2, λ B1B=1, K=1, α=1, β=1, t=0.1.T 
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Fig. 3(g)  Plot of FrB1B vs. Q  for various 
values of TKT and T Tb=0.8, φB1B=0.5T, TφB2B=0.5T, 
TφT=π/2 T, T λ B1B=1, λB2B=1, α=1, β=1, t=0.1.T 

Fig. 3(h)  Plot of FrB1B vs. Q  for various 
values of Tα TandT Tb=0.8T, TφB1B=0.5T,T φB2B=0.5,T 
TφT=π/2 T, Tλ B1B=1, λB2B=1, K=1, β=1, t=0.1.T 

Fig. 3(i)  Plot of FrB1B vs. Q  for various 
values of Tβ TandT Tb=0.8T, TφB1B=0.5T, TφB2B=0.5, 
φT=π/2, λ B1B=1, λB2B=1, K=1, α=1, t=0.1. 

 
the converse response is apparent at higher flow rates. 
Clearly however increasing values of second fractional 
parameter β, does not affect the Q -Δp distributions. In 
this case the same pressure rise values occur for all flow 
rates and they are maximized at zero flow rate. 

Figs. 3a–3i depict the distributions of upper chan-
nel wall friction force (shearing force) (Fr1) with the 
averaged flow rate Q  again for respectively different 
values of ratio of upper wall wave amplitude to upper 
channel half width (φ1=a1/b1), ratio of lower wall wave 
amplitude to upper channel half width (φ2=a2/b1), lower 
to upper channel half width ratio (b= b2/b1), Oldroyd 

rheological material constants (λ1, λ2), fractional vis-
coelastic parameters (α, β valid for 0<α≤β≤1) also at 
t=0.1. In all the graphs, there is a generic rise in friction 
force, (Fr1) with increasing volumetric flow rate. The 
relationship is also linear. Fig. 3a shows that Fr1 is 
strongly increased with increasing values of φ1 Higher 
upper wall wave amplitude is clearly assistive to the rate 
of propulsion in the channel which accelerates flow and 
boosts the shearing force on the upper wall. In Fig. 3b, 
the reverse response is computed and friction force is 
observed to diminish with an increase in φ2 values, i.e., 
as  lower  wall  wave  amplitude  is  elevated  (or  upper  
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Fig. 4(a)  Plot of FrB2B vs. Q  for various 
values of φB1B andT Tb=0.8T, TφB2B=0.5T, TφT=π/2 T, T 
λB1B=1, λB2B=1, K=1, α=1, β=1, t=0.1. 
 

Fig. 4(b)  Plot of FrB2B vs. Q  for various 
values of φB2B andT Tb=0.8T, TφB1B=0.5T, TφT=π/2 T, T 
λB1B=1, λB2B=1, K=1, α=1, β=1, t=0.1. 
 

Fig. 4(c)  Plot of FrB2B vs. Q  for various 
values of φ andT Tb=0.8T, TφB1B=0.5T, TφB2B=0.5, T 
λ B1B=1, λB2B=1, K=1, α=1, β=1, t=0.1.T 
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Fig. 4(d)  Plot of FrB2B vs. Q  for various 
values of b andT TφB1B=0.5T, TφB2B=0.5T, TφT=π/2 T, T 
λB1B=1, λB2B=1, K=1, α=1, β=1, t=0.1. 
 

Fig. 4(e)  Plot of FrB2B vs. Q  for various 
values of Tλ B1TB and T Tb=0.8T, TφB1B=0.5T,T φB2B=0.5,T 
TφT=π/2 T, T λ B2B=1, K=1, α=1, β=1, t=0.1. 
 

Fig. 4(f)  Plot of FrB2B vs. Q  for various 
values of Tλ B2TB and T Tb=0.8T, TφB1B=0.5T, TφB2B=0.5, 
φT=π/2, λ B1B=1, K=1, α=1, β=1, t=0.1.T 
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Fig. 4(g)  Plot of FrB2B vs. Q  for various 
values of TKT and T Tb=0.8, φB1B=0.5T, TφB2B=0.5T, 
TφT=π/2 T, T λ B1B=1, λB2B=1, α=1, β=1, t=0.1.T 

Fig. 4(h)  Plot of FrB2B vs. Q  for various 
values of Tα TandT Tb=0.8T, TφB1B=0.5T,T φB2B=0.5,T 
TφT=π/2 T, Tλ B1B=1, λB2B=1, K=1, β=1, t=0.1.T 

Fig. 4(i)  Plot of FrB2B vs. Q  for various 
values of Tβ TandT Tb=0.8T, TφB1B=0.5T, TφB2B=0.5, 
φT=π/2, λ B1B=1, λB2B=1, K=1, α=1, t=0.1. 

 
channel half width lowered) the upper wall shearing 
force is reduced. Fig. 3c shows that an increase in phase 
difference (φ) markedly depletes the friction force Fr1. 
In Figs. 3a–3c the Q -Δp profiles are sustained as par-
allel to each other for all values of averaged flow rate Q , 
i.e., there is no cross-over. However in Fig. 3d, although 
friction force is enhanced with larger values of width 
ratio (b= b2/b1), after a critical flow rate (approximately 
0.2), the opposite effect is observed and friction force is 
seen to be depressed with increasing flow rate and in-
creasing width ratio. Fig. 3e shows that as Oldroyd first 
material parameter, λ1, is increased, for lower flow rates, 

upper wall friction force values are initially decreased; 
however beyond a critical flow rate is attained, the re-
sponse is reversed. Overall a strong influence on friction 
force is associated with the material parameter, λ1. 
Conversely Fig. 3f shows that despite a large elevation in 
the second Oldroyd material parameter, λ2 the upper wall 
friction force is unaffected at any flow rate. Inspection of 
Fig. 3g demonstrates that generally (except for very low 
flow rates), an increase in permeability parameter, K, 
serves to markedly enhance upper wall friction force. 
With increasing permeability, the peristaltic flow re-
ceives less impedance from obstructions and is acceler-
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ated, manifesting in a greater shearing at the upper wall, 
i.e., higher friction forces. Figs. 3h and 3i show respec-
tively that with higher values of first fractional parame-
ter, α (except for extremely low flow rates), the upper 
wall friction force is depressed significantly, whereas 
with any change in second fractional parameter, β, the 
friction force profiles remain unaltered.  

Figs. 4a–4i present the profiles of lower channel 
wall friction force (shearing force) (Fr2) with the aver-
aged flow rate Q  again for respectively different values 
of ratio of upper wall wave amplitude to upper channel 
half width (φ1=a1/b1), ratio of lower wall wave ampli-
tude to upper channel half width (φ2=a2/b1), lower to 
upper channel half width ratio (b= b2/b1), relaxation and 
retardation time constants (λ1, λ2), fractional viscoelastic 
parameters (α, β valid for 0<α≤β≤1) also at t = 0.1. In all 
the graphs, there is an overall decrease in friction force 
(Fr2) with increasing volumetric flow rate ( Q ). The 
relationship although linear is the opposite of that ob-
served in Figs. 3a–3i for the upper wall friction force, 
Fr1. Fr2 (Fig. 4a) is strongly increased with increasing 
values of φ1 However in Fig. 4b, the opposite effect is 
seen and lower wall friction force decreases with an 
increase in φ2 values. Fig. 4c demonstrates that rising 
phase difference (φ) weakly enhances the friction force 
Fr2 In Figs. 4a–4c the Q -Δp plots remain parallel to each 

other for all values of averaged flow rate Q  i.e., there is 
no cross-over, as observed earlier in Figs. 2a–2c and 
Figs. 3a–3c. However in Fig. 4d, despite an initial rise in 
lower wall friction force with greater width ratio (b= 
b2/b1), at higher flow rates, the friction force is lowered 
with increasing flow rate and increasing width ratio. Fig. 
4e shows that as relaxation time, λ1, is increased at lower 
flow rates, lower wall friction force values are slightly 
enhanced whereas subsequently beyond a critical flow 
rate, they are massively reduced. The effect of the ma-
terial parameter, λ1 on lower friction force is strong. 
Conversely in Fig. 4f, the second Oldroyd material pa-
rameter, λ2 (retardation time) has no effect on lower 
friction force. From inspection of Fig. 4g, it is apparent 
that generally (except for very low flow rates), an in-
crease in permeability parameter, K, serves to markedly 
elevate the lower wall friction force, and this is as de-
scribed earlier a result of peristaltic flow acceleration 
with greater permeability. Figs. 4h–4i show respectively 

that with greater first fractional parameter, α (except for 
extremely low flow rates), the lower wall friction force 
is strongly lowered, whereas with any modification in 
second fractional parameter, β, the friction force profiles 
are as with pressure rise (Fig. 2i) or upper wall friction 
force (Fig. 3i) not affected. 

5  Conclusion 

A theoretical and numerical study of peristaltic 
flow of non-Newtonian biofluids in a two-dimensional 
asymmetric channel containing porous media has been 
presented, motivated by modelling obstructed digestive 
(intestinal) transport. The fractional viscoelastic 
Oldroyd-B rheological model has been employed to 
simulate biorheological characteristics and a modified 
Darcy-Brinkman model for the effect of the porous me-
dia impedance. The differential transform method 
(DTM), a semi-numerical technique has been utilized to 
derive approximate analytical solutions to the boundary 
value problem. Mathematica software is employed to 
evaluate solutions for various parametric effects i.e., 
fractional (rheological material) parameters, relaxation 
time, retardation time, amplitude of the wave, and per-
meability parameter on peristaltic flow characteristics 
such as volumetric flow rate, pressure difference and 
wall friction force. The present model is relevant to flow 
in diseased intestines. DTM computations have shown 
that with increasing Oldroyd first material parameter 
(relaxation time), pressure difference magnitudes and 
upper and lower wall friction force are strongly influ-
enced whereas they are not affected with second 
Oldroyd material parameter (retardation time). Also 
except for very low flow rates, larger permeability pa-
rameter has been shown to strongly elevate upper and 
lower wall friction force, owing to an accelerating effect 
on the peristaltic propulsion regime, respectively. The 
first fractional parameter is also found to have a major 
influence on pressure rise and friction forces whereas the 
second fractional parameter exerts no discernible effects. 
Other interesting flow characteristics have been revealed 
of relevance to diseased gastric transport. The present 
study should serve to provide a good benchmark for 
further investigations into intestinal propulsion flows 
with obstructions. A major endeavor is underway to 
utilize commercial CFD codes e.g. ADINA-F to simu-
late such problems in three dimensions with more so-
phisticated and realistic geometrical characteristics. The 
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results of such investigations will be communicated 
imminently. 
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Appendix-1 

The DTM computational algorithm is validated using well known He’s homotopy perturbation method (HPM). 
Consider the equation 

( )2
1

1 ,f f A A
t t

α β
β

α α βλ
λ

∂ ∂
+ = +

∂ ∂
0 1α< ≤ ,        (A1) 

with initial condition 

( ,0) 0.f x =                                                         (A2) 

According to the HPM, we construct the following homotopy 

( )2
1

1 ,f h f A A
t t

α β
β

α α βλ
λ

⎡ ⎤∂ ∂
= − + +⎢ ⎥∂ ∂⎣ ⎦

               (A3) 

where the homotopy parameter h  is considered as a small parameter ( [0,1]h ∈ ). Now applying the classical per-
turbation technique, we can assume that the solution of Eq. (A1) can be expressed as a power series in p as given 
below 

2 3 4
0 1 2 3 4f f h f f f fh h h= + + + + + ,             (A4) 
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when 1h → , Eq. (A3) corresponds to Eq. (A1) and Eq. (A4) becomes the approximate solution of Eq. (A1). Substi-

tuting Eq. (A4) in Eq. (A3) and comparing the like powers of h , we obtain the following set of linear differential 
equations 

0
h : 0 0,a

t fD =                                                   (A5) 

1
h : ( )1 0 2

1

1 ,a
t f f A AD t

β
β

α βλ
λ

∂
= − + +

∂
           (A6) 

2
h : 2 1

1

1 ,a
t f fD αλ

= −                                        (A7) 

3
h : 3 2

1

1 ,a
t f fD αλ

= −                                          (A8) 

4
h : 4 3

1

1 ,a
t f fD αλ

= −                                          (A9) 

and so on. 
The method is based on applying the operator a

tJ  (the inverse operator of Caputo derivative a
tD  ) on both sides 

of the Eqs. (A5–A9), then we obtain the components fn, n≥0.  
Finally, we approximate the analytical solution f(x,t) by the truncated series: 

( , ) lim ( , )NN
f x t x tΦ

→∞
= ,                               (A10) 

where: 

1

0
( , ) ( , ).

N

N n
n

x t f x tΦ
−

=

=∑                                  (A11) 

The above series solutions generally converge very rapidly. A classical approach of convergence of this type of 
series is already presented in literature. 

 
Table 1  Comparison table of DTM and HPM results of Δp for various values of φB1B and Q  and b=0.8, φB2B=0.5T, TφT=π/ TT2T, T λ B1B=1, λB2B=1, K=1, α=1, 
β=1, t=TT1T 

Q =0.1 Q =0.3 
 

DTMpΔ  HPMpΔ  DTMpΔ  HPMpΔ  

φB1 B=0.5 0.095120425 0.095138017 0.017230189 0.017241089
φB1 B=0.6 0.137151649 0.137180157 0.050937477 0.050901749
φB1 B=0.7 0.197820059 0.197800173 0.099989816 0.099918943
φB1 B=0.8 0.286952040 0.286981045 0.172686734 0.172616284
φB1 B=0.9 0.421794668 0.421800179 0.283663418 0.283601837

 

Table 2  Comparison table of DTM and HPM results of Δp for various values of φB2B and Q and T Tb=0.8, φB1B=0.5T, TφT=π/ TT2T, T λ B1B=1, λB2B=1, K=1, α=1, 
β=1, t=TT1T 

Q =0.1 Q =0.3 
 

DTMpΔ  HPMpΔ  DTMpΔ  HPMpΔ  

φB2 B=0.5 0.056175307 0.056538905 −0.021714927 −0.021920528
φB2 B=0.6 0.094044563 0.094105739 0.007830390 0.007739266 
φB2 B=0.7 0.148904937 0.148038278 0.051074694 0.051295380 
φB2 B=0.8 0.229819387 0.229245290 0.115554081 0.115648438 
φB2 B=0.9 0.352729043 0.352629403 0.214597793 0.214385630 

 




