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Abstract This paper analyzes the flow and heat and mass transfer characteristics of the
free convection on a vertical plate with variable wall temperature and concentration in a
micropolar fluid in the presence of Soret and Dufour effects. A uniform magnetic field of
magnitude B0 is applied normal to the plate. The governing nonlinear partial differential
equations are transformed into a system of coupled nonlinear ordinary differential equations
using similarity transformations and then solved numerically using the Keller-box method.
The numerical results are compared and found to be in good agreement with previously
published results as special cases of the present investigation. The non-dimensional velocity,
microrotation, temperature and concentration are presented graphically for various values
of micropolar parameter, magnetic parameter, Dufour and Soret numbers. In addition, the
Nusselt number, the Sherwood number, the skin-friction coefficient, the wall couple stress
are shown in a tabular form.

Keywords Free convection · Micropolar fluid · Soret and Dufour effects ·
Heat and mass transfer

Mathematics Subject Classification 76A05 · 76E06 · 80A20 · 80E20

1 Introduction

Free convection of heat and mass transfer in non-Newtonian fluid have great importance in
engineering applications; for instance, the thermal design of industrial equipment dealing
with molten plastics, polymeric liquids, foodstuffs, or slurries. Several investigators have
extended many of the available convection heat and mass transfer problems to include the
non-Newtonian effects. Different models have been proposed to explain the behavior of non-
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Newtonian fluids. Among these, the fluid model introduced by Eringen [1] exhibits some
microscopic effects arising from the local structure and micro motion of the fluid elements.
Further, they can sustain couple stresses and include classical Newtonian fluid as a special
case. The model of micropolar fluid represents fluids consisting of rigid, randomly oriented
(or spherical) particles suspended in a viscous medium where the deformation of the particles
is ignored. Micropolar fluids have been shown to accurately simulate the flow characteristics
of polymeric additives, geomorphological sediments, colloidal suspensions, haematological
suspensions, liquid crystals, lubricants etc. The mathematical theory of equations of microp-
olar fluids and applications of these fluids in the theory of lubrication and in the theory of
porous media are presented by Lukaszewicz [2]. The heat and mass transfer in micropo-
lar fluids is also important in the context of chemical engineering, aerospace engineering
and also industrial manufacturing processes. The problem of free convection heat and mass
transfer in the boundary layer flow along a vertical surface submerged in a micropolar fluid
has been studied by a number of investigators. Yurusoy and Pakdemirli [3] performed group
classification of a non-Newtonian fluid flow problem using the classical Lie group approach
and the equivalence transformations approach.

When heat and mass transfer occur simultaneously in a moving fluid, the relations between
the fluxes and the driving potentials are of a more intricate nature. It has been observed that
an energy flux can be generated not only by temperature gradients but also by concentration
gradients. The energy flux caused by a concentration gradient is termed the diffusion-thermo
(Dufour) effect. On the other hand, mass fluxes can also be created by temperature gradients
and this embodies the thermal-diffusion (Soret) effect. In most of the studies related to heat
and mass transfer process, Soret and Dufour effects are neglected on the basis that they are of
a smaller order of magnitude than the effects described by Fouriers and Ficks laws. But these
effects are considered as second order phenomena and may become significant in areas such
as hydrology, petrology, geosciences, etc. The Soret effect, for instance, has been utilized
for isotope separation and in mixture between gases with very light molecular weight and
of medium molecular weight. The Dufour effect was found to be of order of considerable
magnitude so that it cannot be neglected [4]. It is well known that the Soret coefficient has
a considerable effect on convection process in liquids. The effects of the thermal-diffusion
and the diffusion-thermo on the transport of heat and mass has been developed from the
kinetic theory of gases by Chapman and Cowling [5]. Hirshfelder et al. [6] explained the
phenomena and derived the necessary formulae to calculate the thermal-diffusion coefficient
and thermal-diffusion factor for monatomic gases or for polyatomic gas mixtures.

In recent years, several simple boundary layer flow problems have received new attention
within the more general context of magnetohydrodynamics (MHD). MHD flows have many
applications in solar physics, cosmic fluid dynamics, geophysics and in the motion of earth’s
core as well as in chemical engineering and electronics. Huges and Young [7] gave an
excellent summary of applications. Several investigators have extended many of the available
boundary layer solutions to include the effects of magnetic fields for those cases when the
fluid is electrically conducting. Free convection in electrically conducting fluids through
an external magnetic field has diverse applications in the fields such as nuclear reactors,
geothermal engineering, liquid metals and plasma flows, petroleum industries, the boundary
layer control in aerodynamics and crystal growth. Fluid flow control under magnetic forces is
also applicable in magnetohydrodynamic generators and a host of magnetic devices used in
industries. Postelnicu [8] has studied the Soret and Dufour effects and influence of magnetic
field on heat and mass transfer by natural convection from a vertical surface in porous
media. Soret and Dufour effects have been found to appreciably influence the flow field in
steady MHD combined free-forced convective and mass transfer flow past a semi-infinite
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vertical plate [9]. Afify [10] carried out a numerical analysis to study the free convective
heat and mass transfer of an incompressible electrically conducting fluid over a stretching
sheet in the presence of suction and injection with the Soret and Dufour effects. Rahman
[11] studied numerically the magnetic field, Soret and Dufour’s effects on a stagnation point
flowing over a flat stretching sheet. Makinde [12] considered the mixed convection flow of an
incompressible Boussinesq fluid under the simultaneous action of buoyancy and transverse
magnetic field with Soret and Dufour effects over a vertical porous plate with constant heat
flux embedded in a porous medium. Makinde and Olanrewaju [13] studied unsteady mixed
convection with Soret and Dufour effects past a porous plate moving through a binary mixture
of chemically reacting fluid. Using the Lie group analysis, Yurusoy [14] obtained similarity
solutions for creeping flow and heat transfer in second grade fluids. Pal and Talukdar [15]
studied the influence of thermal radiation and first-order chemical reaction on unsteady MHD
convective flow, heat and mass transfer of a viscous incompressible electrically conducting
fluid past a semi-infinite vertical flat plate in the presence of transverse magnetic field under
oscillatory suction and heat source in slip-flow regime. Possible new emerging engineering
areas of these type of problems can be found in many industries such as in powder industry
and in generating electric power in which electrical energy is extracted directly from moving
electrically conducting fluid.

The problem of free convection heat and mass transfer in the boundary layer flow along a
vertical surface submerged in a micropolar fluid has been studied by a number of investiga-
tors. El-Hakien et al. [16] studied the effects of the viscous and Joule heating on MHD-free
convection flows with variable plate temperatures in a micropolar fluid. El-Amin [17] con-
sidered MHD free-convection and mass transfer flow in a micropolar fluid over a stationary
vertical plate with a constant suction. The heat transfer process in a two-dimensional steady
hydromagnetic natural convective flow of a micropolar fluid over an inclined permeable plate
subjected to a constant heat flux condition have been analyzed numerically by Rahman [18].
Although the Soret and Dufour effects of the medium on the heat and mass transfer in a
micropolar fluid is important, very little work has been reported in the literature. Beg [19]
analyzed the two dimensional coupled heat and mass transfer of an incompressible micropolar
fluid past a moving vertical surface embedded in a Darcy–Forchheimer porous medium in the
presence of significant Soret and Dufour effects. A mathematical model for the steady thermal
convection heat and mass transfer in a micropolar fluid saturated Darcian porous medium in
the presence of significant Dufour and Soret effects and viscous heating is presented by Rawat
and Bhargava [20]. Recently, Srinivasacharya and Ramreddy [21] considered the Soret and
Dufour effects on mixed convection in a non-Darcy micropolar fluid. Yurusoy [22] obtained
numerical solutions to the unsteady boundary layer equations of non-Newtonian fluids.

Thus motivated by the above investigations and applications mentioned, the aim of the
present work is to investigate the effects of transverse magnetic field, Soret and Dufour
on the free convection heat and mass transfer along a vertical plate with uniform wall
temperature and concentration conditions embedded in a micropolar fluid. The present inves-
tigations can be utilized as a basis for studying more complex systems that arise in engi-
neering and industrial application. The governing system of partial differential equations
is transformed into a system of non-linear ordinary differential equations using similarity
transformations. This system of nonlinear ordinary differential equations is solved numer-
ically using Keller-box method given in Cebeci and Bradshaw [23]. The effects of vari-
ous parameters on the Velocity, microrotation, temperature and concentration are presented
graphically, and skin friction coefficient, wall couple stress, heat and mass transfer rates are
tabulated.
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Fig. 1 Physical model and coordinate systems

2 Mathematical formulation

Consider a steady, laminar, incompressible, two-dimensional free convective heat and
mass transfer along a semi infinite vertical plate embedded in a free stream of electri-
cally conducting micropolar fluid with temperature T∞ and concentration C∞. Choose
the co-ordinate system such that x-axis is along the vertical plate and y-axis normal to
the plate. The physical model and coordinate system are shown in Fig. 1. The plate is
maintained at temperature Tw(x) and concentration Cw(x). These values are assumed
to be greater than the ambient temperature T∞ and concentration C∞. A uniform mag-
netic field of magnitude B0 is applied normal to the plate. The magnetic Reynolds num-
ber is assumed to be small so that the induced magnetic field can be neglected in com-
parison with the applied magnetic field. In addition, the Soret and Dufour effects are
considered.

Using the boussinesq and boundary layer approximations, the governing equations for the
micropolar fluid are given by
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where u and v are the components of velocity along x and y directions respectively, ω
is the component of microrotation whose direction of rotation lies in the xy−plane, g∗
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is the gravitational acceleration, T is the temperature, C is the concentration, βT is the
coefficient of thermal expansions, βc is the coefficient of solutal expansions, C p is the
specific heat capacity, B0 is the coefficient of the magnetic field, μ is the dynamic coef-
ficient of viscosity of the fluid, κ is the vortex viscosity, γ is the spin-gradient viscosity,
σ is the magnetic permeability of the fluid, ν is the kinematic viscosity, α is the thermal
diffusivity, D is the molecular diffusivity, KT is the thermal diffusion ratio, Cs is the con-
centration susceptibility, Tm is the mean fluid temperature. We follow the work of many
recent authors by assuming that γ = (μ + κ/2) j [24,25]. This assumption is invoked
to allow the field of equations predicts the correct behavior in the limiting case when
the microstructure effects become negligible and the total spin ω reduces to the angular
velocity.

The boundary conditions are:

u = 0, v = 0, ω = 0, T = Tw(x),C = Cw(x) at y = 0

u → 0, ω → 0, T → T∞,C → C∞ as y → ∞

}
(6)

where the subscripts w and ∞ indicates the conditions at wall and at the outer edge of the
boundary layer, respectively.

The continuity equation (1) is satisfied by introducing the stream function ψ such that

u = ∂ψ

∂y
, v = −∂ψ

∂x
(7)

In order to explore the possibility for the existence of similarity, we assume

ψ = Axa f (η), η = Byxb, ω = E xc g(η)

T −T∞
Tw(x)−T∞ = θ(η), Tw(x)− T∞ = M1xl

C−C∞
Cw(x)−C∞ = φ(η),Cw(x)− C∞ = N1xm

⎫⎪⎪⎬
⎪⎪⎭

(8)

where A, B, E,M1, N1, a, b, c, l, and m are constants. Substituting (7) and (8) in (2)–(5), it
is found that similarity exists only if a = 1, b = 0, c = 1, l = m = 1. Hence, appropriate
similarity transformations are

ψ = A x f (η), η = B y, ω = E x g(η),

T = T∞ + M1 x θ(η), Tw(x)− T∞ = M1 x,

C = C∞ + N1 x φ(η),Cw(x)− C∞ = N1 x

⎫⎪⎪⎬
⎪⎪⎭

(9)

Making use of the dimensional analysis, the constants A, B, E,M1 and N1 have, respectively,
the dimensions of velocity, reciprocal of length, the reciprocal of the product of length and
time, the ratio of (temperature/length) and of the ratio (concentration/length).

Substituting (7) and (9) in (2)–(5), we obtain

(1 + K ) f ′′′ + K g′ + f f ′′ − ( f ′) 2 + θ + L φ − M f ′ = 0 (10)(
1 + K

2

)
g′′ + f g′ − f ′g − K

(
2g + f ′′) = 0 (11)

1

Pr
θ ′′ + f θ ′ − f ′θ + D f φ

′′ = 0 (12)

1

Sc
φ′′ + f φ′ − f ′φ + Srθ

′′ = 0 (13)
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where Pr = ν
α

is the Prandtl number, Sc = ν
D is the Schmidth number, K = κ

μ
is the

micropolar parameter, L = βc
βT

N1
M1

is the buoyancy parameter, M = σ B2
0

μB2 is the magnetic

field parameter, D f = D KT N1
Cs C p νM1

is the Dufor number and Sr = D KT M1
Tm νN1

is the Soret number.
The primes denote differentiation with respect to similarity variable η.

The boundary conditions (6) in terms of f, g, θ and φ becomes

η = 0 : f (0) = 0, f ′(0) = 0, g(0) = 0, θ(0) = 1, φ(0) = 1
asη → ∞ : f ′(∞) → 0, g(∞) → 0, θ(∞) → 0, φ(∞) → 0

}
(14)

The wall shear stress and the wall couple stress are

τw =
[
(μ+ κ)

∂u

∂y
+ κ ω

]
y=0

and mw = γ

[
∂ω

∂y

]
y=0

(15)

The non-dimensional skin friction C f = 2τw
ρA2 and wall couple stress Mw = B

ρA2 mw ,
where A is the characteristic velocity, are given by

C f = 2 (1 + K ) f ′′(0) x, and Mw =
[

1 + K

2

]
g′(0)x (16)

where x = B x .
The heat and mass transfers from the plate respectively are given by

qw = −k

[
∂T

∂y

]
y=0

and qm = −D

[
∂C

∂y

]
y=0

(17)

The non dimensional rate of heat-transfer, called the Nusselt number Nu = qw
B k (Tw − T∞)

and rate of mass transfer, called the Sherwood number Sh = qm
D B [Cw−C∞] are given by

Nu = −θ ′(0) and Sh = −φ′(0). (18)

3 Results and discussion

The flow Eqs. (10) and (11) which are coupled, together with the energy and concentration
Eqs. (12) and (13), constitute non-linear nonhomogeneous differential equations for which
closed-form solutions cannot be obtained. Hence the governing Eqs. (10)–(13) have been
solved numerically using the Keller-box implicit method [23]. The method has the following
four main steps:

(i) Reduce the system of Eqs. (10)–(13) to a first order system;
(ii) Write the difference equations using central differences;
(iii) Linearize the resulting algebraic equations by Newtons method and write them in matrix-

vector form;
(iv) Use the block-tridiagonal-elimination technique to solve the linear system.

This method has a second order accuracy, unconditionally stable and is easy to be pro-
grammed, thus making it highly attractive for production use. A uniform grid was adopted,
which is concentrated towards the wall. The calculations are repeated until some convergent
criterion is satisfied and the calculations are stopped when δ f ′′(0) ≤ 10−8, δθ ′(0) ≤ 10−8
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Table 1 Comparison between skin friction f ′′(0) and θ ′(0) calculated by the present method and that of
Merkin [26] for K = M = Sr = D f = L = 0 and Pr = 1.0

f ′′(0) θ ′(0)

Merkin [26] Present Merkin [26] Present

0.7395 0.7394 −0.5951 −0.5950

and δφ′(0) ≤ 10−8. In the present study, the boundary conditions for η at ∞ are replaced
by a sufficiently large value of η where the velocity, temperature and concentration approach
zero. In order to see the effects of step size (�η ) we ran the code for our model with three
different step sizes as �η = 0.001, �η = 0.01 and �η = 0.05 and in each case we found
very good agreement between them on different profiles. After some trials we imposed a
maximal value of η at ∞ of 6 and a grid size of �η as 0.01. In order to study the effects of
the micropolar parameter K , magnetic field parameter M , Prandtl number Pr and Schmidt
number Sc, Dufour number D f and Soret number Sr on the physical quantities of the flow,
the remaining parameters are fixed as L = 1, Pr = 1.0 and Sc = 0.24.

In the absence of micropolar parameter K , Magnetic parameter M , Soret number Sr ,
Dufour number D f and buoyancy number L with Pr = 1.0 and Sc = 0.24 the results have
been compared with the exact values [26] and found that they are in good agreement, as
shown in Table 1.

Majority of the papers that appears in the literature on Dufour and Soret effects on con-
vective flows do not offer a physical basis to calculate Dufour and Soret coefficients ([27]).
But, Benano-Melly et al. [28], while analyzing the problem of thermal diffusion in binary
fluid mixtures, lying within a porous medium and subjected to a horizontal thermal gra-
dient, presented list of references on the measurements and the Dufour coefficient. In the
present anaysis the values of Soret number Sr and Dufour number D f are chosen in such
a way that their product is constant according to their definition provided that the mean
temperature Tm is kept constant. Kafoussias and Williams [29], Anghel et al. [30] and
Postelnicu [27] have chosen the values of Soret number Sr and Dufour number D f such
that their product is 0.06. These authors have taken the values of the Dufour numbers as
0.03, 0.037, 0.05, 0.075, 0.6, 0.15 and the Soret numbers as 2.0, 1.6, 1.2, 0.8, 0.1, 0.4. Sev-
eral authors have used the same combination of values to study the Soret and Dufour effects.
In this study the same combination of values are used to investigate the effect on Dufour
and Soret numbers on the skin friction, wall couple stress, heat and mass transfer rates.
In order to clearly observe Dufour and Soret effects separately on the velocity, microro-
tation, temperature and concentration profiles of the flow, the analysis is carried out for
various values of Soret number Sr ranging from 0 to 3, Dufour number D f ranging from 0
to 1.2.

Figure 2 depicts the variation of micropolar parameter (K ) on the non-dimensional veloc-
ity, microrotation, temperature and concentration. It is observed from Fig. 2a that the velocity
decreases with the increase of K . The maximum of velocity decreases in amplitude and the
location of the maximum velocity moves farther away from the wall with an increase of K .
The velocity in case of micropolar fluid is less than that in the viscous fluid case (i.e.K = 0).
It is seen from Fig. 2b that the microrotation component decreases near the vertical plate
and increases far away from the plate with increasing coupling number K . For large value
of K microrotation is negative near the boundary and away from the boundary it becomes
positive. Negative value of microrotation shows the reverse rotation. The reason is that the
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Fig. 2 a Velocity, b microrotation, c temperature, d concentration profiles for various values of micropolar
parameter K

microrotation field near the plate is dominated by a small number of particles spins that are
generated by collisions with the boundary. The microrotation tends to zero as K → 0. The
second term in Eq. (10) shows that a negative microrotation gradient retards the fluid near
the plate, while a positive microrotation gradient accelerates the fluid far away from the plate
[31]. It is noticed from Fig. 2c that the non-dimensional fluid temperature increases with
increasing values of micropolar parameter. It is clear from Fig. 2d that the non-dimensional
fluid concentration increases with increasing values of K .

The variation of the non-dimensional velocity, microrotation, temperature and concentra-
tion profiles with η for different values of magnetic parameter is illustrated in Fig. 3. It is
observed from Fig. 3a that velocity decreases as the magnetic parameter (M) increases.
From Fig. 3b, it is clear that the microrotation component increases near the plate and
decreases far away from the plate for increasing values of M . It is noticed from Fig. 3c
that the non-dimensional fluid temperature increases with increasing values of magnetic
parameter. It is clear from Fig. 3d that the non-dimensional fluid concentration increases
with increasing values of M . Application of a uniform magnetic field normal to the flow
direction produces a force which acts in the negative direction of flow. This force is called
the Lorentz force which tends to slow down the movement of the electrically conducting
fluid in the vertical direction. This retardation effect is accompanied by an appreciable
increase in the fluid temperature and concentration. These behaviors are clearly depicted
in Fig. 3.
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Fig. 3 a Velocity, b microrotation, c temperature, d concentration profiles for various values of magnetic
parameter M

The effect of Soret number Sr on the non-dimensional velocity, microrotation, temperature
and concentration is shown in Fig. 4. It is observed from Fig. 4a that the velocity increases
with the increase of Soret number Sr . Soret number is the ratio of temperature difference to
the concentration. Hence, the bigger Soret number stands for a larger temperature difference
and precipitous gradient. Thus the fluid velocity rises due to greater thermal diffusion factor.
From Fig. 4b, it is clear that the microrotation component decrease near the vertical plate and
increase far away from the plate with increasing of Soret number, showing a reverse rotation
near the two boundaries. The reason is that the microrotation field in this region is dominated
by a small number of particles spins that are generated by collisions with the boundary. It
is noticed from Fig. 4c that the temperature of the fluid decreases with the increase of Soret
number. It is clear from Fig. 4d that the non-dimensional concentration of the fluid increasing
with increase of Soret number Sr .

The effect of Dufour number D f on the non-dimensional velocity, microrotation,
temperature and concentration is shown in Fig. 5. It is observed from Fig. 4a that the velocity
increases with the increase of Dufour number D f . From Fig. 4b, it is clear that the micro-
rotation component decrease slightly near the vertical plate and increase slightly far away
from the plate with increasing of Dufour number, showing a reverse rotation near the two
boundaries. It is noticed from Fig. 4c that the temperature of the fluid increases with the
increase of Dufour number D f . It is clear from Fig. 4d that the non-dimensional concentra-
tion of the fluid decreasing with increase of Dufour number D f . The Dufour number denotes
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Fig. 4 a Velocity, b microrotation, c temperature, d concentration profiles for various values of Soret number

the contribution of the concentration gradients to the thermal energy flux in the flow. It can
be seen that an increase in the Dufour number causes a rise in the velocity and temperature
and a drop in the concentration.

Table 2 shows the effects of the micropolar parameter K , Prandtl number Pr , Schmidt
number Sc, the magnetic parameter M , Dufour number D f and Soret number Sr on the skin
friction C f , dimensionless wall couple stress Mw, Nusselt number Nu and Sherwood number
Sh. It is seen from this table that the skin friction, wall couple stress and heat and mass transfer
rates (Nu and Sh) decrease with increasing micropolar parameter K . For increasing values of
K , the effect of microstructure becomes significant, hence the wall couple stress decreases.
The skin friction coefficient decreases and the wall couple stress increases with increasing
Prandtl number and it is interesting to note that the reciprocal situation occurs in the case of
heat and mass transfer coefficients. i.e., the Nusselt number increases whereas the Sherwood
number decreases as Prandtl number increases. The skin friction coefficient and the Nusselt
number decreases and the wall couple stress and Sherwood number increases with Schmidt
number. Also, the effect of magnetic parameter is to decrease the skin friction coefficient,
Nusselt number and Sherwood number whereas it increase the wall couple stress. Further, it is
observed that the skin friction coefficient and the Nusselt number are decreasing and wall cou-
ple stress and Sherwood number are increasing with increasing values of Dufour number D f

(or decreasing values of Soret number Sr ).
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Fig. 5 a Velocity, b microrotation, c temperature, d concentration profiles for various values of Dufour number

4 Conclusions

Free convection heat and mass transfer in an electrically conducting micropolar fluid over
a vertical plate with magnetic, Soret and Dufour effects is considered. Using the similarity
variables, the governing nonlinear partial differential equations are transformed into a system
of coupled nonlinear ordinary differential equations and then solved numerically using the
Keller-box method.

– The higher values of the micropolar parameter K (i.e., for the case where the effect of
microstructure becomes significant) resulting in lower velocity and microrotation dis-
tributions but higher wall temperature, wall concentration distributions in the boundary
layer compared to the Newtonian fluid case (K = 0). The numerical results indicate
that the skin friction and wall couple stresses in micropolar fluids are less than those
obtained with Newtonian fluids. Also, non-dimensional heat and mass transfer coeffi-
cients decrease with the increase of the micropolar parameter.

– An increase in magnetic parameter, decrease the velocity, skin friction coefficient and
heat and mass transfer rates accompanied by an increase in temperature and concentration
distributions and the local wall couple stress. This is because of the Lorentz force, which
tends to slow down the movement of the electrically conducting fluid in the vertical
direction. This retardation effect is accompanied by an appreciable increase in the fluid
temperature and concentration.
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Table 2 Effect of K , Pr , Sc, M , Sr and D f on skin friction, wall couple stress, heat and mass transfer rates

K Pr Sc M D f Sr f ′′(0) −g′(0) Nu Sh

0.0 0.7 0.2 1.0 0.03 2.0 1.2236 0.0000 0.6155 0.1809

0.1 0.7 0.2 1.0 0.03 2.0 1.1554 0.0313 0.6073 0.1804

0.3 0.7 0.2 1.0 0.03 2.0 1.0431 0.0841 0.5933 0.1794

0.5 0.7 0.2 1.0 0.03 2.0 0.9538 0.1237 0.5813 0.1784

1.0 0.7 0.2 1.0 0.03 2.0 0.7927 0.1837 0.5573 0.1763

3.0 0.7 0.2 1.0 0.03 2.0 0.4974 0.2326 0.5004 0.1695

5.0 0.7 0.2 1.0 0.03 2.0 0.3758 0.2610 0.4678 0.1643

0.5 0.01 0.2 1.0 0.03 2.0 1.0595 0.1511 0.1296 0.3576

0.5 0.1 0.2 1.0 0.03 2.0 1.0264 0.1415 0.2510 0.3102

0.5 0.7 0.2 1.0 0.03 2.0 0.9538 0.1237 0.5813 0.1784

0.5 1.0 0.2 1.0 0.03 2.0 0.9386 0.1208 0.6709 0.1431

0.5 7.0 0.2 1.0 0.03 2.0 0.8605 0.1098 1.4165 0.1114

0.5 10 0.2 1.0 0.03 2.0 0.8476 0.1086 1.6291 0.0359

0.5 0.7 0.2 1.0 0.03 2.0 0.9572 0.0120 0.5803 0.1782

0.5 0.7 0.4 1.0 0.03 2.0 0.9441 0.0112 0.5714 0.1979

0.5 0.7 0.6 1.0 0.03 2.0 0.9371 0.0108 0.5663 0.2053

0.5 0.7 0.8 1.0 0.03 2.0 0.9328 0.0106 0.5630 0.2072

0.5 0.7 1.0 1.0 0.03 2.0 0.9300 0.0104 0.5607 0.2091

0.5 0.7 0.2 0.0 0.03 2.0 1.1650 0.0159 0.6505 0.2115

0.5 0.7 0.2 1.0 0.03 2.0 0.9572 0.0120 0.5803 0.1782

0.5 0.7 0.2 2.0 0.03 2.0 0.8270 0.0095 0.5280 0.1560

0.5 0.7 0.2 3.0 0.03 2.0 0.7375 0.0079 0.4876 0.1413

0.5 0.7 0.2 1.0 0.03 2.0 0.9572 0.0120 0.5803 0.1782

0.5 0.7 0.2 1.0 0.0375 1.6 0.9494 0.0118 0.5762 0.2050

0.5 0.7 0.2 1.0 0.06 1.0 0.9380 0.0115 0.5693 0.2448

0.5 0.7 0.2 1.0 0.12 0.5 0.9293 0.0112 0.5608 0.2777

0.5 0.7 0.2 1.0 0.3 0.2 0.9270 0.0111 0.5468 0.2984

– An increase in Dufour number D f (or decrease in Soret number Sr ), decrease the velocity,
concentration, skin friction coefficient and heat transfer rate but increase the temperature,
mass transfer rate and the local wall couple stress.
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