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A MICRO REVIEW ON MULTI-COMPONENT REACTIONS AND THEIR
APPLICATIONS.



CHAPTER-I

1. INTRODUCTION:

Multi-component condensation reactions (MCRs) are the chemical reactions in which
three or more components come together in a single reaction vessel to form a product that retains
the majority of the atoms of all the reactants. The MCRs provide rapid access to molecular
diversity by combining several reactants into functionalized molecules. Hence, MCRs paid great
attention to generating structurally diverse chemical molecules of the drug like heterocyclic
compounds. The MCRs have been known for over 150 years with the Strecker synthesis of a-
amino cyanides in 1850 from which a-amino acids could be derived. Some important
achievements have been taken into account of the discovery of the Biginelli condensation of
ethyl acetoacetate, benzaldehyde, and Urea, Mannich reaction, an amino alkylation of acidic
proton placed next to carbonyl functional group with formaldehyde and ammonia or primary or
secondary amine; Passerini reaction, which involve an isocyanide, an aldehyde (or ketone) and a
carboxylic acid to form an a-acyloxy amide, culminating in 1959 when Ugi published the most
versatile MCR based on the reactivity of isocyanides. The reagents employed may be different
molecules or they may be different functional groups of the same reagent. Devising such types of
MCRs that achieve the formation of multiple bonds in a single operation is one of the major
challenges in modern organic synthesis. These processes avoid time consuming and costly
purification processes, as well as protection and deprotection steps, they are more
environmentally benign, atom economy, speed, diversity, efficiency, and environmental
amiability are some of the key features of this class of reactions. Most of the biologically active
compounds have been effectively synthesized through multi-component reactions3. In view of
the growing importance for the generation of large heterocyclic compound libraries, the
development of the new and synthetically valuable protocol for multi-component reactions

vestiges a dispute for both academia and industrial researchers.
1.1. Some Important Multi-Component Reactions:
1.1.1. Asinger Reaction:

Friedrich Asinger3* reported a four-component reaction. An a-halogenated carbonyl
compound reacts with sodium hydrosulphide and forms a thiol in-situ. The thiol reacts with

another carbonyl compound and ammonia to give thiazolines (Scheme-1).
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0
RUAR? + NaSH R’
Br R* N:S\
0 T RS R
NH3 + R3JJ\R4

Scheme-1

1.1.2. Biginelli Reaction:

Pietro Biginelli was an Italian chemist. He developed a methodology for multi-
component condensation reaction in which ethyl acetoacetate (EAA), aryl aldehydes, and urea
were reacted in the acidic medium in ethanol to afford the corresponding heterocyclic

compounds 3,4-dihydropyrimidinones®>® shown in the Scheme-2.

O O CHO

)J\/U\O/\ +

@
© EtOH /H 0
HN (0 R

[0 reflux 41\ |
O~ N
N H

H,N~ "NH,

Y

Scheme-2

1.1.3. Bucherer-Bergs Reaction:

Bucherer and Bergs®’ developed a four-component reaction for the synthesis of
hydantoins. In this reaction, the carbonyl compounds, potassium or hydrogen cyanide, ammonia,

and carbon dioxide were cyclocondensed to produce the hydantoins (Scheme-3).
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0
o NH HN
NC. NH; Cco
RIJLRZ + HCN (or) KCN + NH; w2 2 RlRﬁZK{(NH

Scheme-3

1.1.4. Gewald Reaction:

Karl Gewald?® used a three-component reaction for the synthesis of polysubstituted 2-
amino thiophenes. The desired compound was produced by the condensation of a-methylene

ketones or aldehydes, a-cyano ester with elemental sulfur (S) in presence of a base (Scheme-4).

1
Base R3O R

1 o)
R? RY 4 Ry CN + S - I‘&
RERLE SR a

H,N" g R’

Scheme-4

1.1.5. Grieco three-component condensation:

Paul A. Grieco®+° described a three-component cyclocondensation reaction for the
synthesis of nitrogen-containing six-membered heterocyclic compounds. In the condensation
reaction, aldehydes and arylamines were cyclized with cyclopentadiene in presence of
trifluoroacetic acid (TFA) to give the desire tetrahydroquinolines (Scheme-5).

NH,
Ar-CHO +

Trifuoroacetic acid
ACN

Y

Scheme-5
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1.1.6. Hantzsch Dihydropyridine (Pyridine) Synthesis:

Arthur Rudolf Hantzsch*' used a four-component reaction for the synthesis of
substituted dihydropyridines. In this method, the cyclocondensation reaction occurred between
aldehyde (formaldehyde), two equivalents of active methylene compound (ethyl acetoacetate),

and ammonium acetate to produce the substituted dihydropyridine (Scheme-6).

H H
0) \[g o) 0) o)
/\o)i + + ﬁo/\ H,0 /\o)t(ﬁo/\
O O reflux E
NH,OAc

Scheme-6

1.1.7. Hantzsch Pyrrole Synthesis:

Arthur R. Hantzsch*? developed a three-component reaction for the synthesis of
pyrroles. Ethyl acetoacetate (B-keto ester) was condensed with a-halo f-ketones and primary (1°)

amines to give pyrrole derivatives (Scheme-7).

R-NH,

)i ﬂ\(R" EtOH
R3 1
R! ‘ reflux RS\ R?

Y
~I
—

Scheme-7

1.1.8. Laurent and Gerhardt MCR:

Laurent and C. F. Gerhardt* developed the multi-component reaction for the synthesis
of “Benzoyl Azotid”. Benzaldehyde containing bitter almond oil reacted with ammonia and
methanenitrile (HCN) to give a-amino benzyl cyanide and addition of another mole of bitter

almond oil to form the Schiff base of benzyl cyanide (Benzoyl Azotid) (Scheme-8).
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CN
CHO
©/ + NH; + HCN NH,

Scheme-8

CHO CN

o0

1.1.9. Mannich Reaction:

Carl Mannich* established C—C and C—N bond formation in a one-pot, three-
component reaction. Aldehyde and amine were condensed with o-methylene carbonyl

compounds to produce the f-amino carbonyl compounds (Scheme-9).

0] 2 3
R R
I, + N

R H H O R!
. pd R?
> R N

0
R“ﬂ\/RS

Scheme-9

1.1.10. Passerini Reaction:

Mario Passerini*>#¢ introduced the first isocyanide based multi-component reaction. The
reaction between carbonyl compounds, carboxylic acids, and isocyanides to form C—C and C—O
bonds of a-acyloxy amide via a one-pot, three-component reaction (Scheme-10).

0
L

R2 + R OH ,

O i R4
o

R _C-
N Scheme-10

0
A

Rl
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1.1.11. Radziszewski Imidazole Synthesis:

Radziszewski*’ introduced a one-pot, four-component reaction for the synthesis of
substituted imidazoles. The reaction involves 1,2-dicarbonyl compounds, formaldehyde, primary

(1°) amine, and ammonia to generate the corresponding imidazole derivatives (Scheme-11).

0]

3
JKWRZ H,N R
R +
R! R

Scheme-11

1.1.12. Robinson’s Synthesis:

Robert Robinson*® used the Mannich reaction extensively in the synthesis of tropinone
via a one-pot, multi-component reaction. Tropinone alkaloid was synthesized using a double
Mannich reaction of butanedial, aminomethane, and dimethyl-1,3-acetodicarboxylate (Scheme-
12).

7\ CH;
OHC CHO . H,N 0o ,
0
> H3CN 0
0
0
L °c

Scheme-12
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1.1.13. Strecker Synthesis of amino acids:

Adoph Strecker*® reported the first multi-component reaction in 1950. Amino acids were
synthesized using aldehydes, potassium cyanide, and ammonia followed by hydrolysis of a-

amino nitrile via a one-pot, three-component reaction (Scheme-13).

o)
)LH + KCN

NH, Hydrolysis NH,
> > OH
e o\

N
NH,

R

Scheme-13

1.1.14. Ugi Reaction:

Ivar Karl Ugi®® reported a one-pot multi-component reaction for the synthesis of a-
acylaminoamides. The condensation of carbonyl compounds, amines with carboxylic acids and

carbylamines to generate the bis-amide via a one-pot, four-component reaction (Scheme-14).

1
3
RIVCR? HZN’R
0O R}
- RS )g(ﬁ R*
. N
\\\@
C

Scheme-14

2. Types of multi-component reactions
Multi-component reactions can be described based on the functional groups of the
reactants participating in the reaction as follows.
)] Isocyanide based MCRs
i) Imine based MCRs
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Isocyanides are used as starting materials in the isocyanide based multi-component
reactions. While amines are used as starting materials in imine based MCRs, most of the multi-
component reactions belong to imine based type of multi-component reactions.

On the other multi-component reactions can be classified based on the number of
reactants contributed in the reaction to produce the designed compound as pseudo-component,

three-component, four-component, five-component reactions, etc...

3. Applications of multi-component reactions:

3.1. Applications in generating drugs through MCRs:

Multi-component reactions are useful to synthesize the well known drugs like (S)-
clopidogrel, ticlopidine, and bicalutamide®°? via a three-component Ugi reaction and Passerini
reaction.

|

0.0
0,0 OH g F F
X Mo
Cl > g (o)
=
Cl \s _ F \\N
(S)-clopidogrel Ticlopidine

Bicalutamide

Harjit® et al. reported the synthesis of Nifedipine drug and its derivatives via a one-pot

multi-component reaction. Nifedipine is used to reduce high blood pressure.

NO,

MeO,C CO,Me

H;C™ N° "CH
3 H 3

Nifedipine
John® et al. described the one-pot, multi-component synthesis of Retosiban drug and its

derivatives.
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Retosiban

Haiping® et al. used Ugi four-component reaction for the synthesis of Schistosomiasis
drug Praziquantel with good yields.

N:/I/O
N
O)\O
Praziquantel
Daniela® et al. reported the one-pot, multi-component synthesis of N-(2-

(cyclohexylamino)-2-oxoethyl)-N-(4-(hydroxycarbamoyl)benzyl)-4-isopropylbenzamide and

tested for anti-malarial activity.

H
HO-N

SC

(0]
N-(2-(cyclohexylamino)-2-oxoethyl)-N-(4-(hydroxycarbamoyl)benzyl)-4-isopropylbenzamide

3.2. Applications in combinatorial chemistry:

Alexander®” et al. developed a novel method to highly versatile monomeric Peptide
Nucleic Acid (PNA) building blocks by Ugi four-component reaction as shown in the Scheme-
15.
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0)
1.
R-NH, Base)J\ OH B §) o
Ugi-4CR ase/\lf NPG
+ . Rl )%LN/\/
O R2 R3H
. JLR3 Ne - NPG

Scheme-15

Mironov®® et al. developed the combinatorial method for the synthesis of imidazo[1,2-

a]pyridines by using Ugi three-component reaction (Scheme-16).

NH, R _ _
@( N=R o R 131
N + CH;OH, H _N =N
HN - . %RZ
0 N
i SN NH
A | /
R H _
L _ R!
Scheme-16

Sarvesh®® et al. reported the synthesis of combinatorial libraries of dihydroindeno[1,2-

clisoquinolines through a multi-component reaction using Cu/Pd-catalysts (Scheme-17).

R? 0
NS
N 0 )H( SnBuj,
+
1 Cu(l) cat.
o) Pd(0) cat.
Cl

Scheme-17
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3.3. Applications in the synthesis of natural products:

Various natural products were isolated and used in therapeutics. Some of the natural
products were synthesized in the laboratory to improve the quantity and quality of natural
products using multi-component reactions.

Patrick®® et al. reported the synthesis of Justicidin E using 5-(3-chloroprop-1-yn-1-
yl)benzo[d][1,3]dioxole, 5-ethynylbenzo[d][1,3]dioxole and carbon dioxide via a one-pot, multi-
component reaction (Scheme-18).

0
cl1 o

SO0s
| o
o Y 1. SOCL,, DMA
ol ‘ g
0 + 2. K,CO3, DMA o

O\/O 18-crown ether 0/
100°C .
0=C=0 Justicidin E
Scheme-18

Jason®! and co-worker described the synthesis of 2-allyl-3-(5-methoxy-2-(prop-1-en-2-
yl)benzofuran-3-yl)cyclohex-2-enone from the reaction of 2-bromo-4-methoxyphenol, 2-allyl-3-
bromocyclohex-2-enone and 2-methylbut-1-en-3-yne using Pd-catalyst through multi-component

reaction pathway (Scheme-19). Further, it was converted into Frondosin B.

o
\O Br

Frondosin B

Scheme-19

11



CHAPTER-I

Penchal® and co-worker reported an efficient multi-component strategy for the
synthesis of methyl 1-hydroxy-9-methyl-6-oxo-3-pentyl-6H-benzo[c]chromene-8-carboxylate
from the reaction of 1-(2,6-dihydroxy-4-pentylphenyl)ethanone, propan-2-one, and dimethyl
pent-2-enedioate in presence of piperidine and 1,4-dioxane (Scheme-20). It was used as an
intermediate for the Cannabinol.

OH O
O O
)J\ OH O o~
OH
Piperidine O
+ _—
1,4-Dioxane (U

Scheme-20 Cannabinol

4. PRESENT WORK:

Based on the literature work on MCRs, we have been inspired to synthesize various N

and S heterocyclic compounds by this methodology. In addition to this many, triazoles were
associated with good biological activity. Prompted by these observations in the present study, we
have synthesized new heterocyclic systems starting from a triazole derivative 4-amino-5-
hydrazinyl-4H-1,2,4-triazole-3-thiol.
5. AIMS AND OBJECTIVES:
i. To develop facile, efficient, eco-friendly synthetic methods for the preparation of different

heterocyclic motifs.

ii. To evaluate the newly synthesized compounds for their biological and molecular docking
studies.

iii. To illustrate the structures of the newly synthesized compounds by their analytical and
spectral methods.

12
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Our current research work explains the synthesis of nitrogen and sulfur heterocyclic
compounds. These heterocyclic derivatives were synthesized utilizing the easily available
starting materials such as 4-amino-5-hydrazinyl-4H-1,2,4-triazole-3-thiol, substituted phenacyl
bromides, acetylacetone, various aromatic aldehydes, alkyl/aralkyl halides, different phthalic
anhydrides, and substituted benzoic acids. The present research work is divided into seven
chapters.

Chapter-1 deals with a micro review on multi-component reactions and their utility in the
synthesis of biologically active compounds.

Chapter-11 is divided into three parts. Part-A deals with the one-pot multi-component synthesis
of substituted benzylideneamino-3,5-dimethyl-1H-Pyrazoles, Part-B explains the synthesis of
various aralkyl/alkyl thio-3,5-dimethyl-1H-pyrazolyl-4H-1,2,4-triazol-4-amines via a multi-
component cascade reaction and their molecular docking studies. Part-C describes the one-pot,
four-component synthesis of substituted (E)-N-benzylidene-3-(benzylthio)-5-(3,5-dimethyl-1H-

pyrazol-1-yl)-4H-1,2,4-triazol-4-amines and their DNA binding and molecular interactions.

N-N N’IL
N. /N /
/QN)\SH N-N \q/&“ﬂ >
/\ N
N /N‘N/ANXS/ [ 4
I \R | R
NH,
R! R3
R2
Part-A Part-B Part-C

Chapter-111  describes the one-pot, multi-component synthesis of 2-(6-phenyl-7H-
[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-2,3-dihydrophthalazine-1,4-dione derivatives.

13
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Chapter-1V illustrates the discovery of 3-(1H-pyrazol-1-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-
b][1,3,4]thiadiazine derivatives with promising anti-coronavirus and anti-tumoral activity.

/L\%

Chapter-V portrays an efficient one-pot synthesis of 6-phenyl-3-(1H-pyrazol-1-yl)-
[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives and their antimicrobial evaluation and

molecular docking studies.

Chapter-VI  depicts the novel one-pot, three component synthesis of 7H-
[1,2,4]triazolo[4',3":1,5][1,2,4]triazolo[3,4-b][1,3,4]thiadiazine derivatives.

2 R4
YQ OO PN
s N R

Chapter-VII delineates the an efficient one-pot three component synthesis of N-(2,5-dimethyl-
1H-pyrrol-1-yl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-amine derivative.

Rl

N-N 111
M DN
N H

|

S

~

Ar

14
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A FACILE ONE-POT, MULTI-COMPONENT CASCADE SYNTHESIS OF

» BENZYLIDENEAMINO-3,5-DIMETHYL-1H-PYRAZOLE
DERIVATIVES

» VARIOUS ARALKYL/ALKYL THIO-3,5-DIMETHYL-1H-
PYRAZOLYL-4H-1,2,4-TRIAZOL-4-AMINE AND THEIR DOCKING
STUDIES

» (E)-N-BENZYLIDENE-3-(BENZYLTHIO)-5-(3,5-DIMETHYL-1H-
PYRAZOL-1-YL)-4H-1,2,4-TRIAZOL-4-AMINES AND THEIR DNA
BINDING AND MOLECULAR DOCKING STUDIES.
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INTRODUCTION:

nitrogen atoms at adjacent position. In these two nitrogen atoms, one can behave as the weak
base and the other one is neutral. Most of the pyrazoles are aromatic five-membered heterocyclic
rings. Numerous pyrazole derivatives play a versatile role in drug discovery due to the vast range
of their remarkable bioactivities such as anticancer!?, anti-inflammatory*®, antiviral®’, anti-

microbial®®, anti-tumor'®!!, anti-diabetic'?, anti-fungal*®**, fungicidal®®, anti-malarial‘®, and anti-

Pyrazoles are the interesting and most significant heterocyclic compounds with two

leishmanial’ activities (Fig. 1).

HOO’& H F3CW CH,

NH, N-N

N.
N

. . . SO,NH
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@) /zm
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Lonazolac
(Anti-inflammatory)

Surinabant
(Anti-obesity)

Fig. 1:

Some of the drugs containing pyrazole ring as core moiety.
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Literature survey shows that there are several synthetic procedures available for the

preparation of the pyrazoles. The following are some of the literature reports on the pyrazoles.

Amer and Moustafa'® synthesized the 4-amino-5-(1H-pyrazol-1-yl)-4H-1,2,4-triazole-3-
thiol (4) derivatives by the reaction of 4-amino-5-hydrazinyl-4H-1,2,4-triazole-3-thiol (1),
substituted acetophenones (2) and 1,1-dimethoxy-N,N-dimethylmethanamine (3) in H3PO4 at 95-
100°C.

N-N (0]

/N NH2 H;C O— N-N
as—{ 3

N + N— H;PO, AN N

T A H,C O— ~ HSTONTTN Y

|
95-100°C NH, R

1 2 3 4

Banerjee'? et al. reported the synthesis of 4,4'-(phenylmethylene)bis(3-methyl-1-phenyl-
1H-pyrazol-5-ol) (8) derivatives by using phenylhydrazine (2 eq) (5), various benzaldehydes (1

eq) (6) and ethyl acetoacetate (2 eq) (7) via a one-pot, pseudo multi-component reaction.

_NH O._H
HN" 2 o o QOH OHQ
K,CO, N N
O - A T N
R
6 7

\ | N
Acetonitrile
rt
5

2 eq 2 eq 8

Assali®® et al. reported the synthesis of substituted 1,3-diphenyl-1H-pyrazole-4-
carbaldehydes (10) using the Vilsmeire-Haack reagent and these derivatives were screened for

their COX-1 and COX-2 inhibitory activity with good results.
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o rn NH: . o)
. @ i @/L\NN i glv @R
=N 1
R! K R!
2 5 9 R 10

i. EtOH/AcOH, reflux
ii. DMF-POCI;, reflux

Kamal?! et al. described the synthesis of various pyrazole compounds 11, 12, 13, and 14.

These derivatives were monitored for their anti-proliferative activity with moderate results.

Bhat?? et al. reported the stepwise synthesis of 3-(5-methyl-1H-1,2,3-triazol-4-yl)-1H-
pyrazole-4-carbaldehyde (15) derivatives through the Vilsmeire-Haack reaction. Among the final

compounds, some of the pyrazole molecules exhibited potent anti-microbial activity.

O_ H
N:N (jF3
NN N
N-N .
Ar/ R R2
15
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Pyrazolo-thiadiazine (19) derivatives were synthesized by Pavurala? et al. via a one-pot
three-component by the reaction of thiocarbohydrazide (16), different 3-(2-bromoacetyl)-2H-

chromen-2-one (17) and acetylacetone (18) in presence of ethanol in 70-85% yields.

S
HZN\NJ\N.NHZ N=
H H NN N Y
16 1 | \(
0 Ethanol R S
R! Br >
N + 0 O l‘efluX 5 O 0
R
R 0”70 M
17 18 19

Schiff bases play a significant role in synthetic organic chemistry. Condensation of
carbonyl compounds (aldehydes or ketones) with primary amines produces Schiff bases. They
have an imine or an azomethine (-C=N-) functional group. In the formation of metal complexes
Schiff bases act as ligands®*?°. Molecules with Schiff base are exhibiting a wide range of
applications such as biological, catalysts, dyes, and stabilizers?®. Many compounds having Schiff
bases are reported to display broad range of biological activities such as anti-microbial?’?¢, anti-
proliferative?®3!,  anti-oxidant®>®, ant-inflammatory®*, cytotoxic®, anti-viral®’, anti-
tubercular®®3, ant-fungal®®, anti-HIV**?, anti-candida*®, anti-dyslipidemic*, anti-glycation®,
herbicidal*® and insecticidal*’ activities.

The following are literature reports on the synthesis of Schiff bases and their biological
applications.

Unver® et al. described the stepwise synthesis of triazole containing Schiff bases (20)
with good vyields. Some of their compounds exhibited good anti-microbial and anti-oxidant

activities.
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20

Santhosh®® et al. conducted the reaction between 4-fluoroaniline (21) and substituted
benzaldehydes (6) in the methanol and few drops of acetic acid at 60°C to generate the
benzylidene-4-fluoroaniline (22) derivatives. The target compounds were screened for their anti-

biocide activity.

NH, [6)
MeOH, H
: s
60°C
F
21 6 22

Benzylidene-1H-benzo[d]imidazol-2-amine (24) derivatives were reported by Hranjec*
et al. using different 1H-benzo[d]imidazol-2-amines (23) and aromatic aldehydes (6) in absolute
ethanol under reflux conditions. Some of the final compounds have displayed promising anti-

proliferative activity.

(o}
N
S>—NH, + H  abs. EtOH \ N
R N N—<
N
H N R
6

23

24
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Matharasi®! et al. described the synthesis of glycones (27) by the reaction of aloin (25)
with various amino acids (26) in the presence of methanol and catalytic amounts of conc. H2SO4

under the reflux condition.

R!_H
R!_H o OH
OH R2 MeOH, conc.H,SO,
+ HO >
NH, reflux OH N OH
OH O OH o2 OH
25 26 o
27

Compound 1 was treated with two equivalents of aromatic benzaldehydes (6) at reflux
temperature in ethanol to produce the triazole Schiff base derivatives (28). This was published by

Yu®2et al..

reflux |

N-N CHO Ethanol N NQQ
HS/«N»\NNHZ as—{ >~
' H *
NH,
R
1 6 28
2eq
Sim®3 et al. carried out the reaction between 4-amino-3-((pyrimidin-2-ylthio)methyl)-1H-
1,2,4-triazole-5(4H)-thione (29) and substituted aromatic aldehydes (6) in the presence of
ethanol and (+)-Tartaric acid catalyst under reflux condition to produce the (E)-4-
(benzylideneamino)-3-((pyrimidin-2-ylthio)methyl)-1H-1,2,4-triazole-5(4H)-thione (30)

analogues. Among these few compounds manifested their anti-bacterial activity.
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CHO HN-N N
\ S
N N-NH Ethanol S%\N)\/ \(/J
(/Y S\/QNKS + (+)-Tartaric acid N Nx
=N | > -z
NH;, reflux
30
29 6 R

Hu * et al. designed stepwise synthesis of the various triazole Schiff bases 31 and 32.

The target compounds were evaluated for their anti-tumor activity with good results.

N-N
N-N HO A
/o s N)\Q
HS*N*® o X
N R
" A0
N-N 7\
I N~ J)J\© (s
N= N S N
! N\
H,N

. Oy

5-Amino-3-(phenylamino)-1H-pyrazole-4-carboxamides (33) react with various
arylaledehydes (6) in ethanol and cat. AcOH resulted in the formation of the Schiff bases (34)
with good yields. This was reported by Hassan®® et al. and these compounds were having good

anti-bacterial activity.

N-NH CHO
Ar. ] EtOH, cat. AcOH N-NH
H
reflux
0~ NH, R 07 NH,
R
33 6 34

Malladi®® et al. synthesized the pyrazole containing Schiff bases (37) using 4-amino-4H-

1,2,4-triazole-3-thiols (35) and substituted 3-phenyl-1H-pyrazole-4-carbaldehydes (36) in the

25



CHAPTER-II

acidified ethanolic solution under reflux conditions. Further, its derivatives were screened for

their anti-bacterial activity.

N-NH

@ /
/41711:1)\ N-NH EtOH/H 7
R SH + 2 - S
EH reflux HS i

2 H O

N-~N

35 36 37

Pillai®" et al. carried out the reaction between 4-amino-5-(5-methyl-4H-pyrazol-3-yl)-4H-
1,2,4-triazole-3-thiol (38) and substituted aromatic benzaldehydes (6) at reflux condition in
ethanol containing a catalytic amount of acetic acid to generate (E)-4-(benzylideneamino)-5-(5-

methyl-4H-pyrazol-3-yl)-4H-1,2,4-triazole-3-thiol (39) derivatives in good yields.

N-N o._H /41711:1
HS/QN»\(YCHs EtOH HS N)\WCHs
N + . N-N
N, N-N - N
2 AcOH, reflux -
R
38 6 R 39

Organosulfur compounds are important in organic synthesis. Compounds with C—S—C
bond play a significant role in organic chemistry®®®!, Sulfur atom behaves as the bridge to form
alkyl, aryl, aryl alkyl, heteryl, and heteryl alkyl thioethers. These are beneficial and important
compounds in different branches such as materials, agriculture, industry, pharmaceutical,
medicine, heterocyclic chemistry, and biological processes®? . In the field of medicine,
organosulfur compounds are broadly used for the treatment of different types of diseases such as

Alzheimer's, cancer, tuberculosis, and Parkinson’?7® (Fig. 2).
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L
N
0] Z SN
s NH H NH
H;C RN SE
N__S_ N ~N"
NN pu
HO™ "0 N- HO YO
Cefmetazole Cefotiam
(anti-bacterial) (anti-biotic)
N
o NN
»\/N\//
S I;I NH
S_S \H
S
N HO SO
Cefazolin Meropenem
(anti-bacterial) (antibiotic)
W N_NO,
(1
o O oy
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H H CH;
Cimetidine Vortioxetine Butoconazole

Fig. 2: Some of the US-FDA approved drugs having sulfur atom as thioether linkage.
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The following paragraphs indicate a few literature reports on the synthesis of thioethers.

Yan’® et al reported the synthesis of 3-((5-(benzylthio)-4-phenyl-4H-1,2,4-triazol-3-
yl)methyl)quinazolin-4(3H)-ones (42) from the reaction of various benzyl halides (41) with 3-
((5-mercapto-4-phenyl-4H-1,2,4-triazol-3-yl)methyl)quinazolin-4(3H)-one (40) in
dimethylformamide (DMF) and K>COgz at room temperature.

3 N-
N

N
N Y NN
A x SH DM a0 %NJNB\SAp

(0]

40 41 42

Chen’” et al. described the synthesis and nematocidal activity of thioethers 44. These
compounds (44) were synthesized by the reaction of potassium 5-((pyridin-2-yloxy)methyl)-
1,3,4-oxadiazole-2-thiolate (43) with various alkyl or benzyl halides (41) in presence of

acetonitrile (ACN) and potassium carbonate.

N-N

ACN / K,CO
RN A Psk * R-X 2 R Ov4 )\s
_N _N b

43 41 44

Ding’® et al. reported the synthesis of various thioethers (47) by the reaction of different
tosylhydrazones (45) with substituted benzenethiols (46) at 110°C temperature in dioxane and
K2CO:s.

Ts Ar
HN. dioxane, K,CO; S-
1|‘1 + Ar-SH -
Al')\R 11 OOC Ar R
45 46 47
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A mixture of 2-mercaptobenzimidazoles/thiazoles (48) and phenylacetylene (49) in
presence of basified methanol with NaOH under reflux condition generated the
styrylthiobenzimidazoles/thiazoles (50) in 78-92% vyields. This work was published by

Guravaiah and Rao’®.

R N CH;0H/NaOH R N
L=~ =0 - L)
X ¢ A\

reflux

48 49 50

X =NH, S

Azizi® et al. reported the green synthesis of thioether (52) derivatives from the reaction
of alkyl/aralkyl halides (41) and substituted benzenethiols/heterylthiols (51) in the green solvent

water containing potassium carbonate or triethylamine at room temperature in high yields.

K,CO; or TEA

R-X + Ar/Het—SH R-S~Ar/Het

Water, rt
41 51 52

Taking into consideration of all the above synthetic approaches and biological
applications of pyrazoles, Schiff’s bases, and thioethers, we have incorporated all these motifs in
our final molecules. Chapter-Il has been classified into three parts, Part-A containing a facile
one-pot three-component synthesis of benzylideneamino-3,5-dimethyl-1H-pyrazoles. Part-B
describes the one-pot, multi-component cascade reaction for the synthesis of various
aralkyl/alkyl thio-3,5-dimethyl-1H-pyrazolyl-4H-1,2,4-triazol-4-amine and their docking studies.
Part-C explains the four-component, one-pot synthesis of (E)-N-benzylidene-3-(benzylthio)-5-
(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazol-4-amines and their DNA binding and molecular
docking studies.
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PART-A

A FACILE ONE-POT THREE-COMPONENT SYNTHESIS OF
BENZYLIDENEAMINO-3,5-DIMETHYL-1H-PYRAZOLES.

2 ~
N._SH 4
BN R
N T
\_N 3
TN R
N-N X
/L/)\ Rl R2




CHAPTER-II PART-A

PART-A

PRESENT WORK

This part deals with the synthesis of benzylideneamino-3,5-dimethyl-1H-pyrazoles via a

facile one-pot three-component reaction.

Because of various biological activities associated with triazoles, pyrazoles, and Schiff
bases, our present study is aimed at the development of new methodologies for the synthesis of

8182 |n continuation of our earlier work on

pyrazoles having both triazole and Schiff bases
MCRs®84 we have developed a one-pot multicomponent reaction for the synthesis of title

compounds aiming that these derivatives may have good biological activities.

The reaction of 4-amino-5-hydrazino-4H-[1,2,4]triazole-3-thiol (1), acetylacetone (18),
and aromatic aldehydes (6) in absolute ethanol under reflux gave only 12% of the expected
product. When the same reaction is carried out in presence of two drops of concentrated HCI and
absolute ethanol yielded the corresponding product is 86% after recrystallization. Additionally,
when the same reaction is examined by using various solvents produced lower vyields of the
products when compared to ethanol solvent using an acid catalyst. Hence, the optimized
condition for the heterocyclization and condensation is the catalytic amount of HCI in absolute

ethanol under reflux condition (Table-1).

1 HS}N
EtOH, HCI R? =
) ,N /N
HS/L >\NH M /<>[ > 3 \N \(
NH, NH, Reflux R NN
5-6 h, 72-88% R4 \
1 18 6a-p 53a-p

Scheme-1: One-pot synthesis of substituted benzylideneamino-3,5-dimethyl-1H-pyrazole 53a-p.
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Table-1: Optimization of the reaction conditions.

entry solvent acid Yield (%) of 53a
1 EtOH . 12
2 EtOH HCI 86
3 MeOH HCI 50
4 CHCl HCI 15
5 H20 HCI 0

*Reaction conditions: 1 (1 mmol), 18 (1 mmol), 6 (1 mmol), and two drops of con. HCI

in 5 mL of solvent.

The reaction between 1, acetylacetone and aromatic aldehydes is expected to give 54 or
55 or both depending on the mode of cyclization. In the present investigation, the reaction
proceeds in such a way that only the hydrazino part of 1 underwent condensation during
heterocyclization followed by the second condensation of the amino group of 1 with aromatic
aldehyde lead to the formation of final products benzylideneamino-3,5-dimethyl-1H-pyrazoles
(Scheme-2) (only one product based on TLC). The yields of products obtained were 72-88%
(Scheme-1). From the above optimization studies, we found that the solvent and reaction
conditions have played a crucial role in the selective hetero cyclization reaction.

The alternative products i.e. 54 and 55 (Fig. 3) can be rejected based on spectral studies
(IR, 'H-, 3C-NMR and mass). The specialty of the condensation is that simultaneously pyrazole

ring and C=N of Schiff base were formed at a time. No mixture of products is detected (by TLC).

, R! N.
\>—N R S-(l:l N
R3 N N-N

54 55

Fig. 3: Alternate possible products.
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The structures of the title compounds were confirmed by spectral data. The FT-IR
spectrum of compound 53a showed prominent peaks at 2733 cm™ and 1603 cmfor thiol and -
C=N groups respectively. The 'H-NMR spectrum of compound 53a showed characteristic
singlets for two methyl groups of pyrazole 6 2.29, 2.33, and singlet for methyl group on benzene
ring at 6 2.42. The pyrazole proton appears as a singlet at 6 6.05. The Schiff base proton and
thiol proton appear at & 9.89 and & 11.91 respectively. The **C-NMR of 53a showed the peaks at
0 11.3, 13.6 for -CHz3 of pyrazole, and -CHs of benzene ring appeared at 6 21.8. The 8 107.9 and
129.9 corresponds to pyrazole and Schiff's base carbons.

With the one-pot reaction conditions in hand, the relative reactivity of various substituted
benzaldehydes was investigated. Initially, the reaction of 3-nitrobenzaldehyde (6b) with 1 and 18
reacted smoothly to produce corresponding Schiff’s base derivative 53b in 85% vyield (Table-2).
The independent reactions of 2-hydroxybenzaldehyde (6¢) and 2-hydroxy-3-methoxy
benzaldehyde (6d) were furnished well and the expected products (53c and 53d) were obtained
in 80% and 75% vyields, respectively. Furthermore, 2-chloro benzaldehyde (6e) reacted well in
the standard conditions to give 53e in 78% vyield. Electron-donating groups at various positions
of benzaldehydes (6f-m) were utilized in the present conditions, to give the corresponding
heterocyclic products in good yields (53f-m; 75-88%). Similarly, 4-chlorobenzaldehyde (6n) and
4-hydroxybenzaldehyde (60) were treated with 1 and 18 to furnish the expected products in 72%
(53n) and 80% (530) vyields, respectively in good vyields. Finally, the reaction of 4-
nitrobenzaldehyde (6p) in the one-pot conditions progressed well to deliver the compound 53p in
72% yield. The one-pot reaction of aromatic aldehydes containing electron-withdrawing groups
proceeded slowly when compared to the electron-donating aromatic aldehydes.

In general, the time required for the formation of products 53a-p depends on the type and
nature of the substituent present in the aromatic aldehyde. When an electron-withdrawing group
like -NO: is present in the aldehyde meta-position time required is less when compared to the
similar type of substituent at the para position. On the other hand when electron-donating groups

are present in the benzene ring of aldehyde the reaction requires more time.
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Table-2: Benzylideneamino-3,5-dimethyl-1H-pyrazole derivatives (53a-p).

Product R! R? R3 R* Time (hrs)  Yield (%)
53a H H CHs H 5.20 86
53b H NO2 H H 5.00 85
53c OH H H H 5.30 80
53d OH OCHs H H 5.40 75
53e Cl H H H 5.50 78
53f OH H N(C2Hs)2 H 5.50 80
539 H OCHs OCHs H 5.40 82
53h OCHs OCHs H H 5.40 85
53i OCHs H OCHs H 5.40 81
53] H OCH3 OCHs OCHs 6.00 78
53k H OCHs H H 5.40 75
53l OH OCH2CHs H H 5.50 88
53m H H OCH3 H 5.30 78
53n H H Cl H 5.50 72
530 H H OH H 5.40 80
53p H H NO:2 H 5.30 72
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Scheme-2: A plausible mechanism for the synthesis of benzylideneamino-3,5-dimethyl-1H-
pyrazoles (53a-p).

In conclusion, a facile, one-pot three-component reaction for the synthesis of
benzylideneamino-3,5-dimethyl-1H-pyrazoles (53a-p) has been achieved via a multi-component
approach using readily available starting materials. This method provides various advantages,
such as the good of yields, neat reaction conditions, easy workup, and purification. The

synthesized heterocyclic compounds may be beneficial for drug discovery.
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EXPERIMENTAL:

General procedure for the synthesis of benzylideneamino-3,5-dimethyl-1H-pyrazole
derivatives (53a-p).

An equimolar mixture of 4-amino-5-hydrazino-4H-[1,2,4] triazole-3-thiol (1 mmol),
pentane-2,4-dione (1 mmol), and appropriate aromatic aldehyde (1 mmol) was taken in 5 mL of
dry ethanol, with two drops of conc. HCI. The reaction mixture was refluxed for 5-6 h by
monitoring TLC (CHCI3:CH3OH = 95:5), after completion of the reaction, the mixture was
allowed to cool and the solid separated was filtered. The crude product was recrystallized from 8
mL ethanol.

SPECTRAL DATA:

5-(3,5-Dimethyl-1H-pyrazol-1-yl)-4-((4-methylbenzylidene)amino)-4H-1,2,4-triazole-3-thiol
(53a):

S Brown color solid (0.268g, 86%); m.p.: 200-202°C; FT-IR (KBr,

@ﬂ\N SN vmax/cm): 2733 (-SH), 1603 (-C=N): 'H-NMR (400 MHz, CDCls, &

NVN ppm): 2.29 (s, 3H, -CHs), 2.42 (s, 3H, -CHa), 2.33 (s, 3H, -CHs), 6.06

\L<N (s, 1H, -CH- of pyrazole ring), 7.25 (d, 2H, J=7.6 Hz, Ar-H), 7.66 (d,

2H, J=7.6 Hz, Ar-H), 9.89 (s, 1H, -N=CH-), 11.91(s, 1H, -SH); 13C-

NMR (100 MHz, CDCls, 6 ppm): 11.3, 13.6, 21.8, 107.9, 129.0, 129.4, 129.6, 129.7, 129.9,

1435, 143.7, 152.7, 164.4; ESI-MS (m/z): 311 [M-H]"; Analytical calculated formulae
CisH16N6S: C, 57.67; H, 5.16; N, 26.90; S, 10.26. Found: C, 57.63; H, 5.12; N, 26.85; S, 10.21.
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5-(3,5-Dimethyl-1H-pyrazol-1-yl)-4-((3-nitrobenzylidene)amino)-4H-1,2,4-triazole-3-thiol
(53b):

s Yellow color solid (0.291g, 85%); m.p.: 212-214°C; FT-IR (KBr,
@/\\N‘N%N vmaxcm™): 2756 (-SH), 1601 (-C=N); H-NMR (400 MHz, CDCls, &
N/N ppm): 2.21 (s, 3H, -CHa), 2.25 (s, 3H, -CH3), 6.01 (s, 1H, -CH- of
\H/\<N pyrazole ring), 7.56 (t, 1H, J=8.0 Hz, Ar-H), 7.96 (d, 1H, J=7.6 Hz, Ar-
H), 8.26 (d, 1H, J=8.0 Hz, Ar-H), 8.50 (s, 1H, Ar-H), 10.51 (s, 1H, -
N=CH-), 13.65 (s, 1H, -SH); 3C-NMR (100 MHz, CDCl3+DMSO-ds, & ppm): 11.2, 13.5,
108.0, 123.1, 126.4, 130.0, 134.3, 134.3, 143.3, 143.8, 148.6, 152.8, 158.8, 163.2; ESI-MS
(m/z): 342 [M-H]"; Analytical calculated formulae C14H13N7O3S: C, 48.97; H, 3.82; N, 28.55; S,
9.34. Found: C, 48.94; H, 3.87; N, 28.51; S, 9.31.
2-(((3-(3,5-Dimethyl-1H-pyrazol-1-yl)-5-mercapto-4H-1,2,4-triazol-4-yl)imino)methyl)
phenol (53c¢):
OH . Brown color solid (0.251g, 80%); m.p.: 184-186°C; FT-IR (KBr, vmax/cm"
\N/N%N 1): 2777 (-SH), 1603 (-C=N); 'H-NMR (400 MHz, DMSO-ds, & ppm):
IN 2.15 (s, 3H, -CHa), 2.27 (s, 3H, -CHs), 6.17 (s, 1H, -CH- of pyrazole ring),
\L<N 6.91 (t, 1H, J=7.6 Hz, Ar-H), 6.98 (d, 1H, J=8.4 Hz, Ar-H), 7.43 (t, 1H,
J=8.0 Hz, Ar-H), 7.62 (d, 1H, J=8.0 Hz, Ar-H), 9.88 (s, 1H, -OH), 10.50 (s,
1H, -N=CH-), 14.40 (s, 1H, -SH); 3C-NMR (100 MHz, DMSO-dg, & ppm): 11.2, 13.7, 108.2,
117.2, 118.2, 120.1, 128.4, 135.1, 142.9, 143.4, 152.0, 159.0, 162.9, 163.1; ESI-MS (m/z): 313
[M-H]*; Analytical calculated formulae C14H1sNeOS: C, 53.49; H, 4.49; N, 26.73; S, 10.20.
Found: C, 53.45; H, 4.46; N, 26.77; S, 10.24.

2-(((3-(3,5-Dimethyl-1H-pyrazol-1-yl)-5-mercapto-4H-1,2,4-triazol-4-yl)imino)methyl)-6-

methoxyphenol (53d):
o OH o Grey color solid (0.258g, 75%); m.p.: 186-188°C; FT-IR (KBr,
@A\ J<n|  vmadem?): 2769 (-SH), 1597 (-C=N); 'H-NMR (400 MHz,
: NYN CDCI3+DMSO-ds, 6 ppm): 2.28 (s, 3H, -CHs3), 2.33 (s, 3H, -CHj3), 3.89
\L/<N (s, 3H, -CHjs), 6.06 (s, 1H, -CH- of pyrazole ring), 6.90 (t, 1H, J=8.0 Hz,
Ar-H), 7.04 (t, 2H, J=6.4 Hz, Ar-H), 9.98 (s, 1H, -OH), 10.35 (s, 1H, -
N=CH-), 14.13 (s, 1H, -SH); *C-NMR (100 MHz, CDCI3+DMSO-ds, 6 ppm): 11.4, 13.6,
56.2,108.2, 115.9, 116.8, 119.5, 123.8, 142.3, 143.4, 148.3, 149.2, 152.8, 163.1, 163.2; ESI-MS
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(m/z): 345 [M+H]"; Analytical calculated formulae C15H1sNsO2S: C, 52.31; H, 4.68; N, 24.40; S,
9.31. Found: C, 52.37; H, 4.73; N, 24.35; S, 9.35.
4-((2-Chlorobenzylidene)amino)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazole-3-thiol
(53e):

Cream color solid (0.258g, 78%); m.p.: 202-204°C; FT-IR (KBr, vmax/cm"

@A\N/Nki 1): 2742 (-SH), 1618 (-C=N); 'H-NMR (400 MHz, CDCIl3+DMSO-ds, &

l\f ppm): 2.26 (s, 3H, -CHs), 2.30 (s, 3H, -CHs), 6.07 (s, 1H, -CH- of pyrazole

\L<N ring), 7.30-7.34 (m, 1H, Ar-H), 7.46 (d, 2H, J=4.0 Hz, Ar-H), 7.90 (d, 1H,

J=7.6 Hz, Ar-H), 10.65 (s, 1H, -N=CH-), 14.68 (s, 1H, -SH); 3C-NMR

(100 MHz, CDCI3+DMSO-ds, 6 ppm): 11.2, 13.6, 107.7, 127.3, 127.8, 130.1, 130.2, 133.4,

136.3, 143.1, 1435, 152.3, 158.4, 163.2; ESI-MS (m/z): 331 [M-H]"; Analytical calculated

formulae C14H13CINeS: C, 50.52; H, 3.94; Cl, 10.65; N, 25.25; S, 9.63. Found: C, 50.56; H, 3.90;

Cl, 10.68; N, 25.21; S, 9.68.

5-(Diethylamino)-2-(((3-(3,5-dimethyl-1H-pyrazol-1-yl)-5-mercapto-4H-1,2,4-triazol-4-

yl)imino)methyl)phenol (53f):
OH Dark Brown color solid (0.295g, 80%); m.p.: 172-174°C; FT-IR (KBr,
(N \ HS>§N vmadcm?): 2731 (-SH), 1631 (-C=N); H-NMR (400 MHz,
« YN CDCI3+DMSO-ds, 6 ppm): 1.19 (t, 6H, J=6.8 Hz, -CH3), 2.26 (s, 3H, -
\Il/\?N CHz3), 2.28 (s, 3H, -CHs3), 3.36-3.41 (m, 4H, -N-CH>-), 6.03 (s, 1H, -CH-
of pyrazole ring), 6.11 (s, 1H, Ar-H), 6.25 (d, 1H, J=8.8 Hz, Ar-H),
7.10 (d, 1H, J=8.8 Hz, Ar-H), 9.65 (s, 1H, -OH), 10.24 (s, 1H, -N=CH-); *C-NMR (100 MHz,
CDCIl3+DMSO-de, 6 ppm): 11.2, 12.6, 13.6, 44.6, 97.7, 104.4, 105.0, 107.8, 134.7, 142.3,
143.3, 152.5, 152.6, 161.8, 163.1, 164.7; ESI-MS (m/z): 386 [M+H]*; Analytical calculated
formulae C1gH23N70OS: C, 56.08; H, 6.01; N, 25.43; S, 8.32. Found: C, 56.12; H, 6.12; N, 25.49;

S, 8.37.
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4-((3,4-Dimethoxybenzylidene)amino)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazole-
3-thiol (539):

7 Light yellow color solid (0.293g, 82%); m.p.: 215-217°C; FT-IR (KBr,
\ @ “S% vmadem): 2736 (-SH), 1610 (-C=N); !H-NMR (400 MHz,
=N| CDCI3+DMSO-ds, & ppm): 2.16 (s, 3H, -CHz3), 2.22 (s, 3H, -CH3), 3.78
\E\%‘N (s, 3H, -OCHs), 3.85 (s, 3H, -OCHs), 5.98 (s, 1H, -CH- of pyrazole ring),

6.87 (d, 1H, J=8.0 Hz, Ar-H), 7.20 (d, 1H, J=8.4 Hz, Ar-H), 7.63 (s, 1H,

Ar-H), 9.71 (s, 1H, -N=CH-), 14.04 (s, 1H, -SH); 3C-NMR (100 MHz, CDCls+DMSO-ds, &
ppm): 11.3, 13.6, 55.8, 56.1, 107.6, 109.0, 110.9, 124.9, 124.9, 143.0, 143.5, 149.3, 152.0,
153.1, 163.1, 163.3; ESI-MS (m/z): 359 [M+H]"; Analytical calculated formulae C16H1sNsO2S:
C, 53.62; H, 5.06; N, 23.45; S, 8.95. Found: C, 53.68; H, 4.95; N, 23.49; S, 8.91.
4-((2,3-Dimethoxybenzylidene)amino)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazole-
3-thiol (53h):

HS Light yellow color solid (0.304g, 85%); m.p.: 180-182°C; FT-IR (KBr,

QTN-N&TJ vmax/cml): 2742 (-SH), 1614 (-C=N); 'H-NMR (400 MHz, CDCls, &
=N

O\ /0 N ppm): 2.29 (s, 3H, -CHs3), 2.33 (s, 3H, -CH3), 3.91 (s, 3H, -OCHz), 3.96

| N (s, 3H, -OCHs), 6.05 (s, 1H, -CH- of pyrazole ring), 7.08 (m, 2H, Ar-H),

7.47 (d, 1H, J=7.2 Hz, Ar-H), 10.20 (s, 1H, -N=CH-), 11.66 (s, 1H, -SH);
13C-NMR (100 MHz, CDCls, 6 ppm): 11.3, 13.6, 55.9, 62.3, 107.9, 116.3, 118.5, 124.3, 126.1,
143.5, 143.6, 150.7, 152.7, 152.9, 161.0, 163.5; ESI-MS (m/z): 359 [M+H]*; Analytical
calculated formulae C16H1sNsO2S: C, 53.62; H, 5.06; N, 23.45; S, 8.95. Found: C, 53.68; H,
4.95; N, 23.49; S, 8.91.
4-((2,4-Dimethoxybenzylidene)amino)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazole-
3-thiol (53i):

HS Yellow color solid (0.302g, 78%); m.p.: 188-200°C; FT-IR (KBr,
N \N/N%NN vmax/cmt): 2737 (-SH), 1605 (-C=N); 'H-NMR (400 MHz, ,
/ NY DMSO-ds, & ppm): 2.2 (s, 3H, -CH3), 2.27 (s, 3H, -CHs), 3.86 (s,
\L/{V 3H, -OCHpg), 3.88 (s, 3H, -OCH3), 6.04 (s, 1H, -CH- of pyrazole ring),
6.49 (s, 1H, Ar-H), 6.53 (d, 1H, J=8.8 Hz, Ar-H), 7.79 (d, 1H,

J=10.4 Hz, Ar-H), 9.82 (s, 1H, -N=CH-), 14.09 (s, 1H, -SH); ®C-NMR (100 MHz,

CDCI3+DMSO-ds, 6 ppm): 11.2, 13.6, 55.7, 55.9, 97.9, 106.7, 107.6, 113.4, 128.6, 133.0,
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143.3, 151.9, 160.8, 161.4, 163.2, 165.2; ESI-MS (m/z): 359 [M+H]*; Analytical calculated
formulae C16H1sN6O-S: C, 53.62; H, 5.06; N, 23.45; S, 8.95. Found: C, 53.68; H, 4.95; N, 23.49;
S, 8.91.
5-(3,5-Dimethyl-1H-pyrazol-1-yl)-4-((3,4,5-trimethoxybenzylidene)amino)-4H-1,2,4-
triazole-3-thiol (53)):
0/ s Golden yellow color solid (0.289g, 81%); m.p.: 174-176°C; FT-IR
“ \N/in (KBr, vmax/cm): 2746 (-SH), 1610 (-C=N); H-NMR (400 MHz,
J I CDCls, 8 ppm): 2.28 (s, 3H, -CHs), 2.32 (s, 3H, -CHg), 3.87 (s, 6H, -
h \L/<N OCHpa), 3.91 (s, 3H, -OCHz3), 6.05 (s, 1H, -CH- of pyrazole ring), 6.99
(s, 2H, Hz, Ar-H), 9.88 (s, 1H, -N=CH-), 11.68 (s, 1H, -SH); 3C-
NMR (100 MHz, CDCls, 6 ppm): 11.4, 13.6, 56.2, 61.0, 106.1, 107.9, 127.3, 142.0, 143.5,
143.8, 152.7, 153.4, 163.3, 163.6; ESI-MS (m/z): 389 [M+H]"; Analytical calculated formulae
C17H20N6O3S: C, 52.56; H, 5.19; N, 21.64; S, 8.25. Found: C, 52.51; H, 5.16; N, 21.60; S, 8.29.
5-(3,5-Dimethyl-1H-pyrazol-1-yl)-4-((3-methoxybenzylidene)amino)-4H-1,2,4-triazole-3-
thiol (53k):
HS Golden yellow color solid (0.246g, 75%); m.p.: 179-181°C; FT-IR (KBr,
N =N vmaxcm™): 2740 (-SH), 1607 (-C=N); 'H-NMR (400 MHz, CDClz, &
3 ]\TN ppm): 2.28 (s, 3H, -CHs), 2.31 (s, 3H, -CHs), 3.82 (s, 3H, -OCHs3), 6.04 (s,
\L/<N 1H, -CH- of pyrazole ring), 7.06 ( d, 1H, J=7.2 Hz, Ar-H), 7.29 (s, 1H,
Ar-H), 7.34 (m, 3H, Ar-H), 9.99 (s, 1H, -N=CH-), 11.74 (s, 1H, -SH); 13C-
NMR (100 MHz, CDCI3+DMSO-ds, 6 ppm): 11.3, 13.6, 55.3, 107.7, 112.3, 119.0, 122.2,
129.8, 133.7, 143.3, 143.6, 152.4, 159.8, 162.7, 163.2; ESI-MS (m/z): 329 [M+H]"; Analytical
calculated formulae C15sH16NsOS: C, 54.86; H, 4.91; N, 25.59; S, 9.76. Found: C, 54.81; H, 4.97;
N, 25.54; S, 9.71.
2-(((3-(3,5-Dimethyl-1H-pyrazol-1-yl)-5-mercapto-4H-1,2,4-triazol-4-yl)imino)methyl)-6-

ethoxyphenol (53I):

HS Grey color solid (0.315g, 88%); m.p.: 172-174°C; FT-IR (KBr, vmax/cm’
Q/\\N'N = 1): 2733 (-SH), 1603 (-C=N); 'H-NMR (400 MHz, CDClz, 6 ppm): 1.46
o OH (t, 3H, J=6.8 Hz, -CH3) 2.30 (s, 3H, -CHa), 2.33 (s, 3H, -CHa), 4.12 (m,
> 2H, Hz, -OCH3-) 6.05 (s, 1H, -CH- of pyrazole ring), 6.88 (t, 1H, J=8.0
Hz, Ar-H), 7.02 (m, 2H, Ar-H), 9.83 (s, 1H, -OH), 10.25 (s, 1H, -N=CH-),

Z-Z

—

4\4,2
4

39



CHAPTER-II PART-A

11.69 (s, 1H, -SH); *C-NMR (100 MHz, CDCl3+DMSO-ds, 6 ppm): 11.4, 13.6, 14.8, 64.9,
108.3, 116.7, 117.7, 119.4, 124.6, 142.5, 143.4, 147.6, 149.7, 153.1, 163.2, 163.9; ESI-MS
(m/z): 359 [M+H]*; Analytical calculated formulae C16H1sN6O2S: C, 53.62; H, 5.06; N, 23.45; S,
8.95. Found: C, 53.68; H, 5.14; N, 23.40; S, 8.99.
5-(3,5-Dimethyl-1H-pyrazol-1-yl)-4-((4-methoxybenzylidene)amino)-4H-1,2,4-triazole-3-
thiol (53m):

HS White color solid (0.255g, 78%); m.p.: 182-184°C; FT-IR (KBr,
“o \N/N%NN vmax/cm): 2729 (-SH), 1603 (-C=N); *H-NMR (400 MHz, CDCls, &
NY ppm): 2.26 (s, 3H, -CHz3), 2.31 (s, 3H, -CHz3), 3.86 (5,3H, -OCHj3),
\L/<N 6.03 (s, 1H, -CH- of pyrazole ring), 6.93 (d, 2H, J=8.0 Hz, Ar-H),

7.71 (d, 1H, J=8.4 Hz, Ar-H), 9.76 (s, 1H, -N=CH-), 11.47 (s, 1H, -
SH); 13C-NMR (100 MHz, CDCls, & ppm): 11.3, 13.6, 55.5, 107.9, 114.4, 124.6, 131.0, 143.6,
152.7, 163.4, 163.4, 164.3; ESI-MS (m/z): 327 [M-H]*; Analytical calculated formulae
C1sH16N6OS: C, 54.86; H, 4.91; N, 25.59; S, 9.76. Found: C, 54.81; H, 4.97; N, 25.54; S, 9.71.
4-((4-Chlorobenzylidene)amino)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazole-3-thiol
(53n):

HS White color solid (0.239g, 72%); m.p.. 207-209°C; FT-IR (KBr,
Cl SWoN =N| vmalemt): 2741 (-SH), 1619 (-C=N); *H-NMR (400 MHz, CDCls, &
N ppm): 2.28 (s, 3H, -CHz3), 2.32 (s, 3H, -CHg), 6.06 (s, 1H, -CH- of
\\\/\/<N pyrazole ring), 7.30 (d, 1H, J=6.4 Hz, Ar-H), 7.44 (d, 2H, J=4.8 Hz,
Ar-H), 7.92 (d, 1H, J=7.6 Hz, Ar-H), 10.46 (s, 1H, -N=CH-), 10.59 (s,
1H, -SH); 3C-NMR (100 MHz, CDCIlz+DMSO-ds, 6 ppm): 11.2, 13.6, 107.7, 127.1, 127.8,
130.0, 133.3, 136.3, 143.5, 152.3, 158.5, 163.2; ESI-MS (m/z): 333 [M+H]"; Analytical
calculated formulae C14H13CINeS: C, 50.52; H, 3.94; CI, 10.65; N, 25.25; S, 9.63. Found: C,
50.56; H, 3.90; CI, 10.68; N, 25.21; S, 9.68.
4-(((3-(3,5-Dimethyl-1H-pyrazol-1-yl)-5-mercapto-4H-1,2,4-triazol-4-yl)imino)methyl)
phenol (530):
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HS White color solid (0.251g, 80%); m.p.: 195-197°C; FT-IR (KBr,
N =N vma/em?): 2725 (-SH), 1605 (-C=N); 'H-NMR (400 MHz,
]\TN CDCI3+DMSO-ds, 6 ppm): 2.14 (s, 3H, -CH3), 2.19 (s, 3H, -CHj),
\L/<N 5.92 (s, 1H, -CH- of pyrazole ring), 6.48 (d, 1H, J=8.0 Hz, Ar-H),
6.86 (d, 1H, J=8.0 Hz, Ar-H), 7.49 (d, 1H, J=8.0 Hz, Ar-H), 7.65 (d,
1H, J=8.0 Hz, Ar-H), 9.55 (s, 1H, -OH), 9.72 (s, 1H, -N=CH-), 13.84 (s, 1H, -SH); *C-NMR
(100 MHz, CDClI3+DMSO-dg, 6 ppm): 11.2, 13.6, 107.5, 116.0, 123.25, 130.9, 132.2, 143.4,
152.1, 161.9, 163.0, 164.3; ESI-MS (m/z): 315 [M+H]"; Analytical calculated formulae
C14H14N6OS: C, 53.49; H, 4.49; N, 26.73; S, 10.20. Found: C, 53.45; H, 4.46; N, 26.77; S, 10.24.
5-(3,5-Dimethyl-1H-pyrazol-1-yl)-4-((4-nitrobenzylidene)amino)-4H-1,2,4-triazole-3-thiol
(53p):

HS Yellow color solid (0.251g, 80%); m.p.: 217-219°C; FT-IR (KBr,
\N—N%E vmax/cmt): 2755 (-SH), 1625 (-C=N); 'H-NMR (400 MHz, CDCls,
]\T 6 ppm): 2.28 (s, 3H, -CH3), 2.34 (s, 3H, -CH3), 6.09 (s, 1H, -CH- of
\L<N pyrazole ring), 7.90 (d, 2H, J=8.8 Hz, Ar-H), 8.29 (d, 2H, J=8.8 Hz,
Ar-H), 10.53 (s, 2H, 1H of -N=CH- and 1H of -SH); 33C-NMR (100

MHz, CDCls, 6 ppm): 11.1, 13.6, 108.3, 124.1, 124.3, 129.5, 130.5, 138.1, 143.7, 153.0, 158.8,
162.0; ESI-MS (m/z): 344 [M+H]"; Analytical calculated formulae C14H13N70.S: C, 48.97; H,

3.82; N, 28.55; S, 9.34. Found: C, 48.50; H, 3.93; N, 28.51; S, 9.38.

O,N
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PART-B

PRESENT WORK

The present part describes the synthesis of aralkyl/alkyl thio-3,5-dimethyl-1H-pyrazolyl-
4H-1,2,4-triazol-4-amines and their molecular docking studies.

In view of the importance of triazoles, pyrazoles and thioethers we would like to
incorporate all these units in a single heterocyclic system. So that the resulting molecule may
exhibit good biological activity. In continuation of earlier work on multi-component
reactions®8 in the present work we are reporting the one-pot, multi-component cascade
reaction for the synthesis of various aralkyl/alkyl thio-3,5-dimethyl-1H-pyrazolyl-4H-1,2,4-
triazol-4-amines (Scheme-3) and their docking studies.

N-N
N-N EtOH + DMF
L N, 00 - s
HS™>N"TN +)J\/U\+ R-X flux, 8-10 h R
| 0 reflux, 8- R NH,
NH, 78-90%
1 18 41a-m Metal free 56a-m
Atom economy
High yields

Scheme-3: Synthesis of various aralkyl/alkyl thio-3,5-dimethyl-1H-pyrazolyl-4H-1,2,4-triazol-4-

amines (56a-m).

For the optimization of reaction conditions, the reaction was performed with 4-amino-5-
hydrazino-4H-[1,2,4]triazole-3-thiol (1), acetylacetone (18), and aralkyl/alkyl halides (41) in the
water under reflux condition, and no product was formed. On the other hand, when the same
reaction was carried out in a mixture of an equal amount of dry ethanol and DMF (1:1) under
reflux produced the final compound in 90% yield. Additionally, when the same reaction was
examined by using EtOH/EtsN or MeOH/EtsN produced lower yields of the product when
compared to a mixture of dry ethanol and DMF. The optimized conditions for the hetero
cyclization and alkylation are a mixture of dry ethanol and DMF under reflux conditions (Table-
3).
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Table-3: Optimization conditions for the reaction 56a.

Entry Solvent Base Yield (%) of 56a
1 H20 . 0
2 EtOH DMF 90
3 EtOH EtsN 40
4 MeOH EtsN 25

*Reaction conditions: 1 (1 mmol), 18 (1 mmol), 44 (1 mmol) and base in the solvents.

When the reaction is carried out between 1, 18, and 41 there is a probability of formation
of a mixture of products like 56, 57, or 58 or all of them. But in our investigation, only one
product (via TLC) formation is observed i.e. 56 only. The alternative products such as 57 and 58

from the reaction can be rejected on the basis of spectral studies (Scheme-4).

AR
EtOH + DMF ~
reflux —N NH
57 NIR

/<N_N NH O O
MG+ + R-X
HS N)\FI M

NH,

1 18 41

N-N
EtOH + DMF /) N
d HyAN

N X
reflux R/NH ):7/

58

Scheme-4: Alternative possible products of the reaction of 18, 41 with 1.

In the present process the reaction proceeds in such a way that only the hydrazino part of
compound 1 wundergoes condensation with 18 during heterocyclization followed by
aralkylation/alkylation of the -SH group of compound 1 that lead to the formation of target title
compounds. The formation of S-aralkylated/S-alkylated products can be explained due to the
high nucleophilicity of the thiol group compared to the amino group (Scheme-5). The vyields of

products obtained were 78-90%.
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Scheme-5: Plausible mechanism for the synthesis of various aralkyl/alkyl thio-3,5-dimethyl-1H-

pyrazolyl-4H-1,2,4-triazol-4-amine (56a-m).

The structures of the products were confirmed by their analytical and spectral studies. For
example in the FT-IR spectrum of compound 56a displayed a peak at 3323 cm™ (-NH2) and 1584
cm(-C=C-). In the *H-NMR (CDCls) spectrum of compound 56a gave characteristic singlets for
two -CHs groups of pyrazole at ¢ 2.26, 2.53, a singlet for -SCH>- at & 4.46, -NH, two protons
showed as a singlet at 6 5.22 and the pyrazole ring proton appeared as a singlet at & 6.02. The
13C-NMR spectrum of compound 56a displayed the peaks at & 12.3 and 13.6 for two methyl
carbons of pyrazole. The benzylic (-S-CH>-) carbon appeared at 6 35.9 and pyrazole carbon
showed at 8 108.1. In the mass spectrum, the compound 56a appeared at m/z 301 [M+H]".

In the present one-pot, multi-component cascade reaction conditions the relative
reactivity of various aralkyl and alkyl halides were examined. When the benzyl bromide (41a)
and 4-nitrobenzyl bromide (41b) were reacted with 1 and 18 they easily produced the
corresponding thioether derivatives (56a and 56b) in 90% and 88% yields, respectively (Table-
4). Similarly, when the allyl halides such as Propargyl bromide (41c) and allyl bromide (41d)
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were used the expected products (56¢ and 56d) were formed in 86% and 82% Yyields,
accordingly. When the reaction was carried out with bromoethyl acetate (41e) and chloroacetic
acid (41f) the expected products (56e and 56f) were obtained in 80% and 84% yields,
correspondingly. Furthermore, various alkyl halides (41g-m) were also utilized in the present
reaction conditions, to give corresponding derivatives in good yields (56g-m; 82-78%). From
this investigation, we have observed that the time required for the formation of the products 56a-
m depends on the type of aralkyl and alkyl halides. When compared to the alkyl halides the
aralkyl halides require less time and gave high yields of products (Table-4).

Table-4: Synthesis of various aralkyl/alkyl thio-3,5-dimethyl-1H-pyrazolyl-4H-1,2,4-triazol-4-

amines (56a-m).

Products R- M.F. M.Wt. Time (h) Yield (%)
56a QHZ C14H16N6S 300 8.00 90
C -
56b H, C14H15N702S 345 8.30 88
ox{
56¢ H, C10H12NeS 248 8.20 86
HC=C-C —
56d H H, C10H14NeS 250 8.40 82
H,C=C-C -
S6e H, O C11H16N6O2S 296 8.50 80
H3C~C\O)kc__
H2
56f O CoH12N602S 268 9.00 84
HO)J\C—
2
569 H, C21H3sNeS 406 9.20 82

H;C—(H,C0),,—C —
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56h H, C19H34N6S 378 9.20 83
H3;C-(CHy),o—C -

56i H, C17H30N6S 350 9.30 81
H;C—(H,C)s—C —

56j H, C1sH26N6S 322 9.30 85
H3C‘(H2C)6_C -

56k H, C14H24N6S 308 9.40 88

56l H, C13H22N6S 294 9.40 84
H;C—(H,C),—C —

56m H, C12H20N6S 280 9.50 78

H3C_(H2C)3_C

Molecular Modeling Studies:

The molecular docking tool is helpful to investigate and to gain a profound insight into
the mode of binding interactions of each ligand molecules (56a-m) with receptor structure. All
chemical structures were drawn by using ChemDraw Ultra 12.0 and 2D structures drawn and
converted to mol2 format by using Open Babel GUI version 2.3.2 (OpenBableGUI; Chris
Morley, USA), Molecular energy was minimized using the Energy Minimization module of
Discovery Studio version 4.1 (Accelrys Inc., San Diego, CA, USA) under the chemistry at
Harvard Macromolecular Mechanics (CHARMM) force field.

The three-dimensional structure of Tubulin protein was retrieved from Protein Data
Bank (PDB ID: 1SA0)®. Molecular docking studies for the synthesized compounds of 56a-m
were performed. The structure preparation and correction protein were performed using
Discovery Studio 4.1 suite. The target protein file was prepared by removing the structural water
molecule, heteroatoms, and co-factors by leaving only the residues associated with protein by
using Accelrys Discovery Studio 4.1 (ADS) tool was used to prepare target protein file addition
of polar hydrogen’s to the macromolecule, an essential step to correct the calculation of partial

charge by keeping all other values as default. The molecular docking was performed using the
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Ligand Fit module and obtained results were scrutinized based on the highest dock score and
number of H-bonds by SS Viewer®® The docking studies revealed that all the synthesized
molecules exhibited excellent binding energies towards the receptor active sites.

Results:

We have carried out the docking studies and found that the binding site of the receptor
makes the synthesized compounds easy to fit into the binding site and it gives supporting
evidence in the results. Microtubules are cytoskeletal polymers of Tubulin involved in numerous
cellular functions. Their dynamic instability is controlled by several compounds and proteins,
including Colchicine. Molecular docking results are identified the best-interacted ligands were
scrutinized on the best ligand binding poses were identified using the low binding energy, high
docking score, and the number of H-bonding, hydrophobic interactions at the receptor site.
Table-5 represents the docking score and binding energies of (56a-m).

Docking analysis of most excellent active products in the active site of 1SAQ receptor of
Tubulin Colchicine discovered that the hydrophobic interactions are significant for the activity.
All these compounds showed good binding interactions with the receptor. The most potent
compounds of 56e, 56f, 56g, and 56j showed maximum dock score good H-bond interactions
with the receptor, and these compounds are tabularized in Table-5. Compounds 56e, 56f, 569,
and 56j show the superior docking score in both open (PDB-1SAQO) and closed conformations of
the protein which confirms its high binding affinity. Besides, the high affinity of compounds can
be further testified by their optimal potential energy, columbic, and Van der Waals forces,
interaction profile as well as excellent hydrogen bonding efficiency in the active site of the
protein. The docking images of the best compounds of 56e, 56f, 56g, and 56j were shown in
Fig.4 receptor structure (Amino acids). Are shown in wireframe representation and ligand
structure as shown in sticks representation and H-bonds are visualized by dotted lines.

Table-5: The docking interactions of 56a-m compounds with the active site of TUBULIN-
COLCHICINE (1SAO).

Ligand Interacting Residues Distance (A) Docking Energy(Kcal/mol)
Ligand Receptor
56a NH OD1-ASP98 2.69 -88.2354
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NH OD2-ASP69 2.86
NH OE2-GLUT71 2.97
56b NH OG-SER140 2.74 -86.8753
56¢ NH OG-SER140 2.72 -88.1245
56d NH OD1-ASN228 2.60 -88.4578
S56e NH OG-SER140 2.55 -89.2546
56f @) NH-THR145 2.60 -88.1124
@) NH-GLY146 2.95
569 NH O-SER178 2.59 -89.9887
NH O-VAL177 2.97
56h NH O-SER178 2.75 -79.2456
NH OE2-GLU183 2.78
56i NH OG-SER140 2.69 -80.2013
56j NH O-SER178 2.60 -79.2451
NH O-VAL177 2.72
56k NH OG-SER140 2.60 -79.2456
561 NH OD1-ASN228 2.77 -79.2345
56m NOT GOOD

INTERACTIONS
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56f ]

Fig. 4: H-bonding interactions between amino acid residues at the active site of the TUBULIN

and compounds 56e, 56f, 56, and 56j.

In summary, a facile and simple procedure for the synthesis of various aralkyl/alkyl thio-
3,5-dimethyl-1H-pyrazolyl-4H-1,2,4-triazol-4-amines 56a-m has been achieved via a multi-
component approach using readily available chemicals. The attractive and notable features of
this approach are that good yields, neat reaction conditions, easy purification of product, metal-
free, atom economy, and avoiding toxic catalyst. The synthesized compounds could be useful for

medicinal chemistry applications. The biological activity of these compounds is in progress.

EXPERIMENTAL.:

General procedure for the one-pot, multi-component cascade reaction for the synthesis of

various aralkyl/alkyl thio-3,5-dimethyl-1H-pyrazolyl-4H-1,2,4-triazol-4-amine (56a-m):

A mixture of 4-amino-5-hydrazino-4H-[1,2,4]triazole-3-thiol (0.001mol) and pentane-
2,4-dione (0.001mol) was refluxed for 3 h in dry ethanol (2 mL) in a 25 mL round bottom flask.
Then to the reaction mixture appropriate aralkyl/alkyl halide (0.001mol) and DMF (2 mL) were
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added. The reaction mixture was refluxed for 5-7 h at 80-90°C by monitoring TLC. After
completion of the reaction, the resulting mixture was cooled, the separated solid was filtered and
recrystallized from 6-8 mL ethanol.

SPECTRAL DATA

3-(Benzylthio)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazol-4-amine (56a):

White color solid (0.270g, 90%); m.p.: 140-142°C; IR (KBr,
5/4 %N R vmax/cm): 3323 (-NH2); *H-NMR (400 MHz, CDCls, 8 ppm):
U NH2)—7/ 2.26 (s, 3H, -CHz3), 2.53 (s, 3H, -CHz), 4.46 (s, 2H, -SCH>-),
5.22 (s, 2H, -NH>, 6.02 (s, 1H, -CH- of pyrazole ring), 7.26-7.34
(m, 3H, Ar-H), 7.43 (d, 2H, J=7.6 Hz, Ar-H); 3C-NMR (100 MHz, CDCls,  ppm): 12.34,
13.56, 35.89, 108.11, 127.74, 128.68, 129.18, 136.75, 143.20, 147.66, 151.31, 151.83; ESI-MS
(m/z): 301 [M+H]*; Analytical calculated formulae Ci14H16NeS; C, 55.98; H, 5.37; N, 27.98; S,
10.67; Found: C, 55.95; H, 5.40; N, 27.93; S, 10.71.
3-(3,5-Dimethyl-1H-pyrazol-1-yl)-5-((4-nitrobenzyl)thio)-4H-1,2,4-triazol-4-amine (56b):
White color solid (0.303g, 88%); m.p.: 168-170°C; IR
SJ\ )\N N (KBr, vmax/cm™t): 3312 (-NH); H-NMR (400 MHz,
/@2 )_7/ DMSO-ds,  ppm): 2.24 (s, 3H, -CH3), 2.35 (s, 3H, -CH3),
N 4.56 (s, 2H, -SCH2-), 5.92 (s, 2H, -NH_), 6.10 (s, 1H, -CH-
of pyrazole ring), 7.73 (d, 2H, J=8.4 Hz, Ar-H), 8.16 (d, 2H, J=8.8 Hz, Ar-H); 3C-NMR (100
MHz, DMSO-ds, & ppm): 11.6, 13.8, 33.9, 107.8, 123.9, 130.8, 143.1, 146.4, 147.1, 149.2,
151.1, 151.9; ESI-MS (m/z): 346 [M+H]"; Analytical calculated formulae Ci4H1sN7O:S; C,
48.69; H, 4.38; N, 28.39; S, 9.28; Found: C, 48.65; H, 4.33; N, 28.42; S, 9.25.
3-(3,5-Dimethyl-1H-pyrazol-1-yl)-5-(prop-2-yn-1-ylthio)-4H-1,2,4-triazol-4-amine (56¢):
White color solid (0.213g, 86%); m.p.: 165-167°C; IR (KBr,
S/QN)\N,N\ vmax/cm™?): 3434 (-NH); 'H-NMR (400 MHz, CDCls,
é/ NHZ ):7/ ppm): 1.26 (s, 1H, -C=C-H), 2.29 (s, 3H, -CH3), 2.56 (s, 3H,
-CH3), 4.02 (s, 2H, -SCH>-), 5.44 (s, 2H, -NH>), 6.05 (s, 1H, -
CH- of pyrazole ring); 13 C-NMR (100 MHz, CDCl3+DMSO-ds, 8 ppm): 12.1, 13.6, 19.7, 72.6,
78.7, 107.9, 142.9, 148.4, 150.4, 151.7; ESI-MS (m/z): 249 [M+H]*; Analytical calculated
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formulae C10H12NeS; C, 48.37; H, 4.87; N, 33.85; S, 12.91; Found: C, 48.34; H, 4.84; N, 33.89;
S, 12.95.
3-(Allylthio)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazol-4-amine (56d):

H, White color solid (0.205g, 82%); m.p.: 93-95°C; IR

N-N
/ KBr, vmax/cm™): 3314 (-NHz); H-NMR (400 MHz,
HA&/\S/(N»\N N\ ( max ) (-NH2) (

Hy NH )___7/ CDCls, 6 ppm): 2.29 (s, 3H, -CHg), 2.55 (s, 3H, -CHa),
2 3.91 (d, 2H, J=7.2 Hz, -SCH>-), 5.19 (d, 1H, J=Hx Ha,

J=10.0 Hz, Ha of allyl group), 5.35 (d, 1H, J=Hx Hs, J=17.6 Hz, Hg of allyl group), 5.38 (s, 2H,
-NH>), 5.98-6.08 (m, 1H, =CHx-), 6.04 (s, 1H, -CH- of pyrazole ring); 3C-NMR (100 MHz,
CDCls, 6 ppm): 12.3, 13.6, 34.1, 108.1, 119.0, 132.7, 143.2, 147.6, 151.2, 151.8; ESI-MS
(m/z): 251 [M+H]"; Analytical calculated formulae C10H14N6S; C, 47.98; H, 5.64; N, 33.57; S,
12.81; Found: C, 47.95; H, 5.60; N, 33.60; S, 12.85.
Ethyl-2-((4-amino-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazol-3-yl)thio)acetate (56e):
White color solid (0.236g, 80%); m.p.: 100-102°C; IR (KBr,
N X vmax/cm™t): 3304 (-NH), 1733 (-C=0); H-NMR (400 MHz,
NH2 )_7/ CDCls, 6 ppm): 1.30 (t, 3H, J=7.2 Hz, -CH3), 2.29 (s, 3H, -CHj3),
2.54 (s, 3H, -CHa), 4.05 (s, 2H, -SCH>-), 4.21-4.26 (m, 2H, -
7 CH20-), 5.49 (s, 2H, -NH>) 6.04 (s, 1H, -CH- of pyrazole ring);
13C-NMR (100 MHz, CDCIs, 8 ppm): 12.3, 13.6, 14.1, 33.6, 62.1, 108.1, 143.2, 147.9, 150.4,
151.9, 158.6; ESI-MS (m/z): 297 [M+H]"; Analytical calculated formulae C11H16NsO2S; C,
44.58; H, 5.44; N, 28.36; S, 10.82; Found: C, 44.62; H, 5.47; N, 28.39; S, 10.87.
2-((4-Amino-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazol-3-yl)thio)acetic acid (56f):
White color solid (0.225g, 84%); m.p.: 202-204°C; IR (KBr,
N vmax/cm™t): 3293 (-NHz), 1746 (-C=0); H-NMR (400 MHz,
HOWJ NHz )J/ DMSO-ds, & ppm): 2.21 (s, 3H, -CHz), 2.25 (s, -NH2), 2.34 (s,
3H, -CHs), 3.93 (s, 2H, -SCH>-), 6.03 (s, 1H, -CH- of pyrazole
ring), 7.93 (s, 1H, -OH); ¥*C-NMR (100 MHz, CDClI3+DMSO-dg, 6 ppm): 11.6, 13.8, 33.3,
107.7, 143.1, 149.0, 151.1, 152.4, 170.0; ESI-MS (m/z): 269 [M+H]*; Analytical calculated
formulae CoH12N6O-S; C, 40.29; H, 4.51; N, 31.32; S, 11.95; Found: C, 40.33; H, 4.55; N,
31.35; S, 11.99.
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3-(3,5-Dimethyl-1H-pyrazol-1-yl)-5-(tetradecylthio)-4H-1,2,4-triazol-4-amine (569):
N-N White color solid (0.332g, 82%); m.p.: 96-98°C; IR (KBr,
S/QN»\I\}NJ/ omadem™): 3340 (-NH2): H-NMR (400 MHz, CDCls, &
ppm): 0.88 (t, 3H, J=7.2 Hz, -CH3), 1.26 (unresolved m, 20H,
-(CH2)10-), 1.42-1.49 (m, 2H, -CH2-), 1.77-1.84 (m, 2H, -CHz-
), 2.28 (s, 3H, -CHg), 2.54 (s, 3H, -CH3), 3.26 (t, 2H, J=7.2 Hz, -SCH>-), 5.32 (s, 2H, -NH>),
6.03 (s, 1H, -CH- of pyrazole ring); *C-NMR (100 MHz, DMSO-ds, 8 ppm): 11.6, 13.8, 22.6,
28.5, 29.0, 29.2, 29.4, 29.5, 30.9, 31.8, 107.6, 143.0, 148.9, 151.0, 152.9; ESI-MS (m/z): 407
[M+H]*; Analytical calculated formulae C21HasNeS; C, 62.03; H, 9.42; N, 20.67; S, 7.89; Found:
C, 61.97; H, 9.38; N, 20.62; S, 7.93.
3-(3,5-Dimethyl-1H-pyrazol-1-yl)-5-(dodecylthio)-4H-1,2,4-triazol-4-amine (56h):
N-N White color solid (0.313g, 83%); m.p.: 73-75°C; IR (KBr,
S/QN%D}B/ vmax/cm™?): 3340 (-NH,); H-NMR (400 MHz, CDCls, &
ppm): 0.89 (t, 3H, J=6.4 Hz, -CH3), 1.29 (unresolved m, 16H,
-(CH2)g-), 1.45-1.47 (m, 2H, -CH>-), 1.78-1.85 (m, 2H, -CH>-),
2.26 (s, 3H, -CH3), 2.56 (s, 3H, -CHa), 3.29 (t, 2H, J=7.2 Hz, -SCH>-), 5.27 (s, 2H, -NH>), 6.04
(s, 1H, -CH- of pyrazole ring); 3 C-NMR (100 MHz, DMSO-ds, 8 ppm): 11.5, 13.8, 14.4, 22.6,
28.5, 29.0, 29.1, 29.4, 29.6, 30.9, 31.8, 107.7, 143.1, 148.9, 151.0, 152.9; ESI-MS (m/z): 351
[M+H]"; Analytical calculated formulae C19H34NsS; C, 60.28; H, 9.05; N, 22.20; S, 8.47; Found:
C, 60.23; H, 9.11; N, 22.25; S, 8.43.
3-(Decylthio)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazol-4-amine (56i):
N-N White color solid (0.283g, 81%); m.p.: 78-80°C; IR (KBr,
SXNXBE/ omademd): 3341 (-NH2); H-NMR (400 MHz, CDCls,
\ — ppm): 0.89 (t, 3H, J=6.8 Hz, -CH3), 1.28 (unresolved m, 12H, -
(CH2)e-), 1.45-1.47 (m, 2H, -CH>-), 1.78-1.85 (m, 2H, -CH>-),
2.29 (s, 3H, -CHj3), 2.55 (s, 3H, -CHg), 3.27 (t, 2H, J=7.2 Hz, -SCH>-), 5.35 (s, 2H, -NH), 6.04
(s, 1H, -CH- of pyrazole ring); *C-NMR (100 MHz, CDCls,  ppm): 12.3, 13.6, 14.1, 22.7,
28.8, 29.1, 29.3 29.4, 29.5, 31.2, 31.9, 108.1, 143.2, 147.6, 151.8, 152.2; ESI-MS (m/z): 351
[M+H]"; Analytical calculated formulae C17H30NsS; C, 58.25; H, 8.63; N, 23.98; S, 9.15; Found:
C, 58.20; H, 8.68; N, 23.95; S, 9.19.

(Hzcn/ NH,
\

(HZC)IOJ NH,
\

(HZC)/ NH,
\
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3-(3,5-Dimethyl-1H-pyrazol-1-yl)-5-(octylthio)-4H-1,2,4-triazol-4-amine (56j)):
N-N White color solid (0.278g, 85%); m.p.: 95-97°C; IR (KBr,
SANXI\}E/ omademd): 3325 (-NH2); *H-NMR (400 MHz, CDCls, & ppm):
0.88 (t, 3H, J=7.2 Hz, -CH3s), 1.27 (unresolved m, 8H, -(CH2)s-),
1.42-1.49 (m, 2H, -CH2-), 1.76-1.84 (m, 2H, -CH>-), 2.27 (s, 3H,
-CHa), 2.53 (s, 3H, -CH?3), 3.25 (t, 2H, J=7.6 Hz, -SCH>-), 5.34 (s, 2H, -NH>), 6.02 (s, 1H, -CH-
of pyrazole ring); **C-NMR (100 MHz, CDCls, 6 ppm): 12.4, 13.6, 14.1, 22.6, 28.8, 29.1, 29.2,
29.5, 31.3, 31.8, 108.1, 143.2, 147.5, 151.8, 152.2; ESI-MS (m/z): 323 [M+H]"; Analytical
calculated formulae CisH26Ns6S; C, 55.87; H, 8.13; N, 26.06; S, 9.94; Found: C, 55.83; H, 8.10;
N, 26.12; S, 9.90.
3-(3,5-Dimethyl-1H-pyrazol-1-yl)-5-(heptylthio)-4H-1,2,4-triazol-4-amine (56k):
N-N White color solid (0.283g, 90%); m.p.: 90-92°C; IR (KBr,
S/QN»\;—NJ/ vmax/cm™?): 3296 (-NH2); *H-NMR (400 MHz, CDClz, 8 ppm):
' — 0.88 (t, 3H, J=7.2 Hz, -CH3), 1.29-1.35 (m, 6H, -(CH2)3-), 1.42-
1.49 (m, 2H, -CHy-), 1.77-1.84 (m, 2H, -CH-), 2.27 (s, 3H, -
CHz3), 2.53 (s, 3H, -CHa), 3.25 (t, 2H, J=7.6 Hz, -SCH>-), 5.33 (s, 2H, -NH>), 6.02 (s, 1H, -CH-
of pyrazole ring); **C-NMR (100 MHz, CDCls, 6 ppm): 12.4, 13.6, 14.1, 22.6, 28.7, 28.8, 29.5,
31.3,31.7,108.1, 143.2, 147.5, 151.8, 152.2; ESI-MS (m/z): 309 [M+H]"; Analytical calculated
formulae C14H22NeS; C, 54.52; H, 7.84; N, 27.25; S, 10.40; Found: C, 54.55; H, 7.80; N, 27.29;
S, 10.46.
3-(3,5-Dimethyl-1H-pyrazol-1-yl)-5-(hexylthio)-4H-1,2,4-triazol-4-amine (56l):
N-N White color solid (0.283g, 90%); m.p.: 143-145°C; IR (KBr,
SANXI\}E/ omadcml): 3341 (-NH2); 'H-NMR (400 MHz, CDCls+DMSO-
de, & ppm): 0.80 (t, 3H, J=6.0 Hz, -CH3), 1.22-1.24 (m, 4H, -
(CH2)2-), 1.36-1.39 (m, 2H, -CH-), 1.71 (t, 2H, J=8.8 Hz, -CH>-
), 2.19 (s, 3H, -CH?3), 2.28 (s, 3H, -CH?3), 3.24 (t, 2H, J=7.2 Hz, -SCH>-), 4.26 (s, 2H, -NH>), 5.96
(s, 1H, -CH- of pyrazole ring); **C-NMR (100 MHz, CDCIl3+DMSO-ds, 6 ppm): 11.1, 11.5,
13.7, 14.3, 29.5, 30.9, 31.2, 34.9, 107.8, 143.6, 144.8, 145.7, 151.5, 167.3; ESI-MS (m/z): 295
[M+H]*; Analytical calculated formulae Ci3H2NeS; C, 53.03; H, 7.53; N, 28.54; S, 10.89;
Found: C, 52.97; H, 7.50; N, 28.57; S, 10.83.

o7 N
/

(HZC)sJ NH,
/

(HZC)/ NH,
/
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3-(3,5-Dimethyl-1H-pyrazol-1-yl)-5-(pentylthio)-4H-1,2,4-triazol-4-amine (56m):
N-N White color solid (0.218g, 78%); m.p.: 126-128°C; IR (KBr,
S/QN»\)}NJ/ vmadem™): 3341 (-NH2): tH-NMR (400 MHz, CDCls+DMSO-
' — de, & ppm): 0.82 (t, 3H, J=6.4 Hz, -CHs), 1.25-1.29 (m, 2H, -
(CH2)-), 1.33-1.38 (m, 2H, -(CH2)-), 1.68-1.73 (m, 2H, -CH2-),
2.19 (s, 3H, -CHj3), 2.27 (s, 3H, -CHg), 3.21 (t, 2H, J=6.8 Hz, -SCH>-), 4.02 (s, 2H, -NH>), 5.96
(s, 1H, -CH- of pyrazole ring); *3C-NMR (100 MHz, CDCIl3+DMSO-ds, 6 ppm): 11.5, 13.8,
14.3, 22.1, 29.2, 30.7, 30.9, 107.8, 143.3, 148.9, 151.1, 151.4; ESI-MS (m/z): 281 [M+H]";
Analytical calculated formulae Ci12H2NseS; C, 51.40; H, 7.19; N, 29.97; S, 11.44; Found: C,
51.44; H, 7.15; N, 29.94; S, 11.40.

(H2C)3J NH,
/
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PART-C

PRESENT WORK

The current part explains the synthesis of (E)-N-benzylidene-3-(benzylthio)-5-(3,5-
dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazol-4-amines via a one-pot four-component reaction,
their DNA binding, and docking interactions.

In view of the synthetic, pharmaceutical, and biological importance of triazoles,
pyrazoles, Schiff bases, and thioethers, we became interested to develop a novel one-pot four-
component condensation strategy in producing triazole substituted pyrazole having Schiff base
and thioether moiety in a single scaffold. The target compounds (59a—p) were synthesized by the
reaction of 4-amino-5-hydrazinyl-4H-1,2,4-triazole-3-thiol (1) with pentane-2,4-dione (18),
substituted aromatic aldehydes (6), and aralkyl/allyl/propargyl bromides (41) via a one-pot, four-

component condensation as shown in the Scheme-6.

-N S
J\j ) NH, o R! EtOH, HCl N N_\
HS—N~ N + + + - N
. H o) 5 R4 reflux -
NH, R X 12-14 h 1
R 82-94% R* R
1 18 6 41
R} R?
59a-p

s )

Scheme-6: Method 1, A one-pot, four-component synthesis of (E)-N-benzylidene-3-
(benzylthio)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazol-4-amines (59a—p).

For the synthesis of title compounds, the reaction conditions were optimized. Initially, 4-
amino-5-hydrazinyl-4H-1,2 4-triazole-3-thiol (1) was treated with pentane-2,4-dione (18),
substituted aromatic aldehydes 6, and aralkyl/propargyl/allyl bromides (41) in presence of
solvent and also the catalytic amount of HCI under reflux conditions. Finally, the best reaction
condition was EtOH (3 mL) and two drops of HCI under reflux. The yield of the product 59a
was 90% (entry 6, Table-6).
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Table-6: Screening of reaction conditions for the synthesis of compound 59a.

Entry Solvent Acid Yield (%) of 59a
1 H20 HCI 0
2 DCM HCI 10
3 MeOH _ 30
4 MeOH HCI 45
5 EtOH o 55
6 EtOH HCI 90

*Reaction Conditions: 1 (Immol), 18 (Immol), 6 (Immol) and 41(1mmol) in EtOH (3

mL), two drops of HCI under reflux.

When the reaction was operated between 1, 18, 6, and 41 there is a possibility of the
formation of a mixture of products such as 59, 60, 61, 62, 63, or all of them depending on the
reaction. But in the current investigation, we have been ended up with only one product 59 (By
TLC, Scheme-6). The other possible products like 60, 61, 62, and 63 can be denied based on

spectral evidence (Fig. 5).

.............................................................................
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Fig. 5: Other possible products of reaction between 1, 18, 6 and 41.

100



59a
12.20 h, 90%

59d

12 h, 85%

CHAPTER-II PART-C
N-N N-N
/ N
@AS/AN»\N N Qﬂs/gNkNN\
| — O,N ) _
HO 59h 59c¢
—~o 12 h, 89% o 12.15 h, 86%
O\
N-N N-N
I\ N N
N )= O,N \ —
‘s /N
59¢ 59f
12.40 h, 89% 13.30 h, 84%
Cl Cl
N-N N-N
N
/@AS/“ S = s
O,N N )=
’ N N
50 59i
o 13.15h, 83%
13.20 h, 94% F F
o F
N-N N-N
N
N N /T
HO 59k HO 591
13 h, 87% 13.20 h, 85%
NO, 0 NO,
N-N N N-N N
I\
®/\S/QN»\N Q %/\S/LN)\N N
/N - /N B
HO 59n 590
13.50 h, 90% 12 h, 82%
o) NO,

Fig. 6: Synthesis of (E)-N-benzylidene-3-(benzylthio)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-
1,2,4-triazol-4-amines (59a—p). All reactions were carried out in 1 mmol scale.

101



CHAPTER-II PART-C

These initial observations inspired us to extend this procedure to other substrates.

propargyl,
reaction. The good reaction condition to synthesize target compounds 59a—p was EtOH (3mL),

Surprisingly, different aldehydes, allyl, and benzyl halides participated in this
two drops of HCI under reflux. Further, the time taken for the synthesis of 59a—p was 12-14 h,

with yields ranging from 82-94% after recrystallization as shown in Fig. 6.

In another way also the compounds 59a—p can be synthesized by a three-component
condensation process. In this method first we have reacted 1 with acetylacetone to give 4-amino-
5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazole-3-thiol (A) (Fig. 7). Then followed by
reaction with aromatic aldehydes and aralkyl/propargyl/allyl halides in ethanol and a few drops
of conc. HCI. In this reaction, one N=C and one C-S bond are formed synchronously (Scheme-
7). Compared to one-pot four-component condensation this three-component reaction yields are

less (65%) and hence we had carried out four-component synthesis (Scheme-6, Method-1).

( R

(0]
R3
N-N
N-N RY T
N /\ N
N-N R R? 6 s /KN <
O SH
s AL SN2, EtOH —~¢ NN _EtOH,HCI 0
N H o NH,
NH, Reflux
3 hrs
1 18 A
Isolated Reflux R3
10-12 hrs
60a-p

Scheme-7: Method 2, Alternative three-component synthesis of compounds 59a—p by isolating

A

N-N

NCSH

NH2

Isolated
A
3 h, 95%

Fig. 7: Isolated intermediate 4-amino-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazole-3-thiol

(A)
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Mechanistically the reaction is believed to proceed first through the initial formation of
dimethyl pyrazole intermediate A by the attack of -NH-NH> group of 4-amino-5-hydrazinyl-4H-
1,2,4-triazole-3-thiol (1) on pentane-2,4-dione (18). This is further confirmed by the isolation of
intermediate A and establishing its structure by spectra. Later on the N— amino group of reactive
intermediate A reacts with various aromatic aldehydes 6 to give second intermediate Schiff’s
bases B. Finally, the added aralkyl/allyl/propargyl bromide (41) reacts with the thiol group of in-
situ formed B to yield final products as presented in Scheme-8. The uniqueness of this four-
component reaction is that at a time many bonds like two C=N, one C=N, and one C-S are
formed contemporaneously. Another interesting observation of the reaction is that there is
selective heterocyclization and selective S—alkylation over N-alkylation. The observed selective

S—alkylation was due to the high nucleophilicity of S—H over the N-H group of B (Scheme-8).

H
® D
M ! )OJ\;?K
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N-N _ - N-N H
N-N N-N
I\ I\ 0ON
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Scheme-8: Plausible reaction pathway for 59a—p.
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The structures of the title compounds were confirmed by their analytical and spectral
data. In the FT-IR spectrum, compound 59a displayed peaks at 3410 cm™ (-OH), 2922 cm™(—
CH2-), and 1600 cm™ (-C=N-). The 'H-NMR (CDCIl3+DMSO-ds) of the compound 59a showed
two characteristic singlets at 6 2.22 and 2.23 for the two —CH3 groups of pyrazole, one singlet at
d 4.50 for —S—CH>—. The pyrazole proton appeared as a singlet at & 6.03. The —OH and
azomethine protons appeared as a singlet at & 7.86 and 6 9.91 respectively. The remaining
aromatic protons appeared at § 6.87 - 7.49. The ®*C-NMR (CDCls+DMSO-ds) spectrum of the
compound 59a displayed peaks at & 13.9 and o 18.5 for the two methyl carbons of pyrazole. The
—S—CHo—carbon appeared at 6 40.9 and pyrazole ring carbon appeared at 6 112.5. The peak at 6
154.8 is due to azomethine (-CH=N-) carbon. In the mass spectrum compound 59a gave a peak
at m/z 405 due to [M+H]".

Isolated intermediate  4-amino-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazole-3-
thiol (A) structure was confirmed by its analytical and spectral analysis. Intermediate A showed
peaks at 3370 and 2740 for —~NH; and —SH respectively in the FT-IR spectrum. In the 'H-NMR
(CDCl3+DMSO-dg) spectrum compound A displayed a singlet for pyrazole proton peak at o
5.99. The amino (—-NH) and thiol (—SH) group protons of compound A showed as two singlets at
5 5.3 and 13.79 respectively. The *C-NMR (CDCl3+DMSO-ds) spectrum of intermediate A
showed a peak at 6 108.1 is due to the pyrazole carbon. In the mass spectrum (ESI) the
intermediate A gave a peak at m/z 211(M+H).

DNA Binding Studies:

The UV absorption spectral analysis was carried out to recognize the DNA binding
properties of the newly synthesized compounds (59a—p). The compounds with 32uM constant
concentration were used for titration against the different concentrations of 10uL CT-DNA (0-9
MM) was used for the UV absorption experimental study. The Emission spectral or fluorescence
spectral studies were done with the CT-DNA intercalation Ethidium bromide (EB). The
fluorescence spectra of new compounds were recorded with the titration of CT-DN, Ethidium
bromide at constant concentrations of 10uM, 12uM against different concentrations of

compounds (10uL) ranges from 0-50 pM.

104



CHAPTER-II PART-C

In the present investigation the absorption spectra of compounds 59b, 59, 59g, 59h, and
59j shown single broadband at 291, 280, 292, 305, and 298 nm respectively and 59n having two
bands at 352 nm and 420 nm. All the compounds exhibited hypochromism (decrease intensity) at
their respective bands with increasing concentration of CT-DNA without blue and red color shift
at the absorption maxima (Fig. 8). Hence, there may be an intercalative mode of binding present
between compounds and CT-DNA. Calculation of intrinsic binding constant Ky from the ratio of
the slope to y intercept in plots of [DNA]/[a- 1] Versus [DNA]® gave the binding strengths for
the compounds 59b, 59, 59g, 59h, 59j and 59n with CT-DNA (Table-7).

Table-7: Intrinsic Binding constant (Kp) for the 59b, 59, 59g, 59h, 59j, and 59n with CT-DNA

Compound Kb
59b 0.598x10°M*
59 1.08x10°M*
59¢ 2.20x10° M1
59h 1.51x10° Mt
59 0.75x10° M
59n 1.33x10° M?

The emission spectral studies revealed more information for the binding nature of the
newly synthesized compounds with CT-DNA. When the compounds 59b, 59, 59¢g, 59h, 59j,
and 59n were titrated against EB bounded CT-DNA, the concentration of EB and CT-DNA was
constant and the concentrations of the compounds were increased then the emission bands of the
compounds were recorded at 591 nm (Fig. 9). While increasing the concentrations of the
compounds the intensity of the bands decreased which is hypochromism. However, further the
plot 1o/l Vs [Q] was used to calculate the Stern-VVolmer quenching constant Ksy. Kapp IS apparent
DNA binding constant calculated using Kes[EB]=Kapp[Compound]. Both constants Ksy and Kapp
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values were shown in Table-8. Hence, the above two investigations proposed that the

compounds bind with the CT-DNA through the intercalative mode of binding®-%2,

Table-8: Stern—Volmer quenching constant Ksy and apparent DNA binding constant Kapp.

Absorbance

Compound Ksv Kapp
59b 3.59x103 Mt 4.36x10°M1
59 6.19x10° M 7.54x10° Mt
599 5.16x10° M 6.33x10° M
59h 6.19x10° M1 7.53x10° M1
59j 7.37x10° M1 8.90x10° M
59n 8.23x10° M 9.98x10° M
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Absorbance

Absorbance
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Fig. 9: Emission spectra of compounds 59b, 59¢, 59¢, 59h, 59j, and 59n
Molecular Docking Studies:

Molecular docking is widely used in molecular structural biology to know the interaction
between two molecules (receptor and ligand). All the synthesized chemical (ligand) compounds
of 59a—p were drawn 2D models using Chemdraw software and converted into 3D structures
using Open Babel GUI version 2.3.2 (OpenBableGUI; Chris Morley, USA). Molecular energy
was minimized using the Energy Minimization module of Maestro Tool (Schrodinger software)
under the Chemistry at Harvard Macromolecular Mechanics (CHARMM) force field. The three-
dimensional structure of EGFR—kinase in complex with compounds was retrieved from Protein
Data Bank (PDB ID: 6s9b.pdb)®. The structure preparation and correction of protein were
performed using the protein preparation suite. The target protein file was prepared by removing
the structural water molecule, heteroatom’s, and co-factors by leaving only the residues

associated with protein by using protein preparation suite (wizard) tool was used to prepare
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target protein file addition of polar hydrogen’s to the macromolecule, an essential step to correct
the calculation of partial charge by keeping all other values as default. Further grid was prepared
and used for molecular docking was performed using Glide docking module and obtained results

were scrutinized based on highest dock score and number of H-bonds by visualizing in Pymol.
Results:

The docking studies revealed that all the synthesized molecules exhibited excellent
binding energies towards the receptor active sites. Molecular docking results were identified
basis on the ideal interacted ligands were scrutinized based on the greatest ligand binding poses
were identified using the low binding energy, high docking score, and the number of H-bonding,
hydrophobic interactions at receptor site i.e., 59a, 59b, 59¢c, 59h, 59j, and 59n (Fig. 10). Table-9
represents the docking score, Hydrogen bond distance, and interacting atoms. All the compounds

were found to be buried.

Table-9: Molecular interactions of 59a—p with receptor 6S9B.

Ligand Receptor Ligand H-bond Docking
Interaction Interaction Distance score
Atoms Atoms (A) (Kcal/mol)

59a Glu 734-0 H 1.86 -0.572
Glu 736-O S 2.30

59b Thr 710-H H 1.95 -0.623
Glu 709-H N 2.59

59c Thr 710-H O 2.07 -1.332
Lys 713-H O 1.92

59d No bond -0.735

59 Lys 713-H N 2.20 -0.56

59f Thr 710-O H 2.30 -2.22

599 Lys 739-H O 2.20 -0.293

59h Thr 710-H O 2.08 -0.945

59i Thr 710-O H 2.34 -1.41
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Leu 782-H S 2.29

59 Lys 739-H 0 2.02 -2.166
Lys 739-H 0 2.20
Val 738-H H 2.01

59k Glu 709-H N 2.39 -1.136
Lys 708-H 0 2.08

591 Lys 739-H H 2.41 -2.691
Lys 713-H 0 2.15

59m Glu 709-H S 2.25 -0.601

59n Lys 713-H 0 2.07 -2.854
Lys 713-N 0 2.94
Lys 739-H N 2.33

590 Glu 709-H S 2.25 -1.078

59p Thr 710-O H 2.27 0.012
Glu 736-0 S 2.30
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Fig. 10: Molecular interactions of the Receptor with ligands 59a, 59b, 59c, 59h, and 59j.

In summary, (E)-N-benzylidene-3-(benzylthio)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-
1,2,4-triazol-4-amines (59a-p) were synthesized in good yields via a one-pot, four-component
reaction by readily available starting materials, and no column chromatography is needed for the
purification of the product. This method is operationally simple. Further, DNA binding studies
were also carried out by using UV-visible and fluorescence experiments. Furthermore, molecular
docking studies were confirmed the binding interactions with the EGFR receptor. Hence, the

newly synthesized compounds may be useful in the drug discovery process.
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EXPERIMENTAL:

General procedure for the synthesis of (E)-N-benzylidene-3-(benzylthio)-5-(3,5-dimethyl-
1H-pyrazol-1-yl)-4H-1,2,4-triazol-4-amines (59a—p) involving four-component reaction.

A mixture of 4-amino-5-hydrazino-4H-[1,2,4] triazole-3-thiol (1) (0.001 mol) and
pentane-2,4-dione (18) (0.001 mol) was refluxed for 3 h in ethanol (3 mL). Then to this reaction
mixture, appropriate aromatic aldehyde (6) (0.001 mol) and two drops of conc. HCI was added
and refluxed for 4-5 h. Then appropriate aralkyl/propargyl/allyl bromide (41) (0.001 mol) were
added to the reaction mixture and refluxed for 5-6 h, by monitoring TLC (CHCI3+CH3OH 5:5)
After completion of the reaction, the reaction mixture was allowed to cool, then diluted with
water and the solid separated was filtered. The compound was recrystallized from 5-6 mL
ethanol.

Alternative procedure for the synthesis 59a-p via a three-component condensation reaction
by isolating 4-amino-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazole-3-thiol (A).

A mixture of 4-amino-5-hydrazino-4H-[1,2,4]-triazole-3-thiol (1) (0.001 mol) and
pentane-2,4-dione (18) (0.001 mol) was refluxed for 3 h in ethanol (3 mL).The reaction mixture
was cooled and solid formed was filtered and recrystallized from ethanol (5 mL).

A mixture of 4-amino-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazole-3-thiol (A)
(0.001 mol) and requisite aromatic aldehyde (6) (0.001 mol) was taken in ethanol (5 ml)
containing 2 drops of conc. HCI and aralkyl/propargyl/allyloromide (41) (0.001 mol) were added
and refluxed for 10-12 h. After completing the reaction (vide TLC), the reaction mixture was
cooled, solid produced was filtered and recrystallized from ethanol (5-6 mL) (yield 95%; mp:
182-184°C).

SPECTRAL DATA:

(E)-4-(((3-(Benzylthio)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazol-4-yl)imino)
methyl)phenol (59a):

. 1;1\\1 . Brick red color solid (0.363g, 90%); m.p.: 187-189°C; FT-IR (KBr,
> Y NTT| omadom): 3410 (-OH), 2922 (-CHz), 1590 (-C=N-); *H-NMR (400
g MHz, CDCl3+DMSO-ds, & ppm): 2.22 (s, 3H, -CHs), 2.23 (s, 3H, -
CHs3), 4.50 (s, 2H, -CH>-), 6.03 (s, 1H, -CH- of pyrazole ring), 6.87

HO
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(d, 2H, J=8.0 Hz, Ar-H) 7.26-7.32 (m, 3H, Ar-H), 7.41 (d, 2H, J=7.2 Hz, Ar-H), 7.49 (d, 2H,
J=8.0 Hz, Ar-H), 7.86 (s, 1H, -OH), 9.91 (s, 1H, -N=CH-); 3C-NMR (100 MHz,
CDCI3+DMSO-ds, 6 ppm): 15.9, 18.3, 40.9, 112.5, 121.0, 127.4, 132.5, 133.4, 133.9, 135.9,
141.0, 148.3, 154.8, 156.4, 156.9, 167.3, 169.2; ESI-MS (m/z): 405 [M+H]"; Analytical
calculated formulae C21H20NsOS: C, 62.36; H, 4.98; N, 20.78; S, 7.93; Found: C, 62.31; H, 4.95;
N, 20.76; S, 7.90.

(E)-2-(((3-(Benzylthio)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazol-4-yl)imino)
methyl)-6-ethoxyphenol (59b):

Cream color solid (0.398g, 89%); m.p.: 172-174°C; FT-IR (KBr,

S* )\ vmad/cml): 3405 (-OH), 2928 (-CH-), 1610 (C=N); H-NMR

(400 MHz, CDCls, & ppm): 1.49 (t, 3H, J=6.8 Hz, -CHs), 2.26 (s,

. b 3H, -CH3), 2.31 (s, 3H, -CHs), 4.14 (m, 2H, -CH2-), 4.55 (s, 2H, -

SCH>-), 6.04 (s, 1H, -CH- of pyrazole ring), 6.83 (dd, 1H, J=9.2
Hz, J=7.6 Hz, Ar-H), 6.88 (t, 1H, J=8.0 Hz, Ar-H), 7.03 (dd, 1H, J=8.8 Hz, J=7.6 Hz, Ar-H),
7.32 (m, 3H, Ar-H), 7.42 (dd, 2H, J=9.2 Hz, J=7.6 Hz, Ar-H), 8.29 (s, 1H, -OH), 9.70 (s, 1H, -
N=CH-); 3C-NMR (100 MHz, CDCls,  ppm): 11.4, 13.6, 14.8, 36.8, 64.8, 108.1, 116.4,
117.4, 119.8, 123.6, 127.9, 128.8, 129.2, 136.0, 143.9, 144.4, 147.7, 149.5, 149.8, 152.6, 165.1;
ESI-MS (m/z): 449 [M+H]*; Analytical calculated formulae C23H24NsO2S: C, 61.59; H, 5.39; N,
18.74; S, 7.15; Found: C, 61.55; H, 5.42; N, 18.70; S, 7.18.

(E)-3-(3,5-Dimethyl-1H-pyrazol-1-yl)-5-((4-nitrobenzyl)thio)-N-(3,4,5-trimethoxy
benzylidene)-4H-1,2,4-triazol-4-amine (59c¢):

/41)1 1:1)\ . Pale yellow color solid (0.452g, 86%); m.p.: 156-158°C; FT-IR

NN N (KBr, vmaxlcm™): 2924 (-CH-), 1605 (C=N); *H-NMR (400
MHz, CDCls, & ppm): 2.24 (s, 3H, -CH3), 2.27 (s, 3H, -CHj3),

(’)/(OéLO 3.88 (s, 6H, -CHs3), 3.91 (s, 3H, -CH3), 4.60 (s, 2H, -SCH>-), 6.03
= (s, 1H, -CH- of pyrazole ring), 6.87 (s, 2H, Ar-H), 7.65 (d, 2H,

J=8.8 Hz, Ar-H), 8.03 (s, 1H, -N=CH-), 8.17 (d, 2H, J=8.8 Hz, Ar-H); 3C-NMR (100 MHz,
CDCls,  ppm): 11.4, 13.6, 34.8, 56.3, 61.1, 106.2, 108.0, 123.9, 126.7, 130.2, 142.6, 143.9,
144.4, 1445, 147.4, 149.7, 152.4, 153.6, 164.2; ESI-MS (m/z): 524 [M+H]*; Analytical
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calculated formulae C24H2s5N70sS: C, 55.06; H, 4.81; N, 18.73; S, 6.12; Found: C, 55.14; H,
4.85: N, 18.76; S, 6.15.

(E)-3-(3,5-Dimethyl-1H-pyrazol-1-yl)-5-((4-nitrobenzyl)thio)-N-(3-nitrobenzylidene)-4H-
1,2,4-triazol-4-amine (59d):

N-N White color solid (0.420g, 88%); m.p.: 170-172°C; FT-IR
\S/QN\ N'N\ (KBr, Umax/Cm'l): 2924 (-CH2-), 1605 (C=N); IH-NMR
/N —

(400 MHz, CDCls, & ppm): 2.27 (s, 3H, -CH3), 2.32 (s, 3H,
-CHa), 4.60 (s, 2H, -SCH>-), 6.09 (s, 1H, -CH- of pyrazole
ring), 7.68 (m, 4H, Ar-H), 7.98 (d, 1H, J=6.0 Hz, Ar-H),
8.19 (d, 2H, J=6.8 Hz, Ar-H), 8.37 (d, 1H, J=6.8 Hz, Ar-H), 8.47 (s, 1H, -N=CH-); 3C-NMR
(100 MHz, CDCls, 6 ppm): 11.5, 13.6, 34.5, 108.5, 123.4, 123.8, 123.9, 127.1, 130.2, 134.0,
144.2, 1443, 144.4, 148.7, 149.1, 152.0, 153.0, 153.6, 159.1; ESI-MS (m/z): 479 [M+H]*;
Analytical calculated formulae C21H1sNgO4S: C, 52.71; H, 3.79; N, 23.42; S, 6.70; Found: C,
52.74; H, 3.76; N, 23.45; S, 6.74.

O,N

(E)-3-(Benzylthio)-N-(4-chlorobenzylidene)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-
triazol-4-amine (59¢):

N-N White color solid (0.375, 89%); m.p.: 132-134°C; FT-IR (KBr,
\S/Ql}lk;i\?/ vmax/cmt): 2923 (-CH-), 1597 (C=N); H-NMR (400 MHz, CDCls,
: 6 ppm): 2.25 (s, 3H, -CH3), 2.27 (s, 3H, -CH3), 4.56 (s, 2H, -SCH>-),
6.03 (s, 1H, -CH- of pyrazole ring), 7.31 (m, 3H, Ar-H), 7.40 (d, 2H,
cl J=8.8 Hz, Ar-H), 7.44 (d, 2H, J=8.0 Hz, Ar-H), 7.58 (d, 2H, J=8.8
Hz, Ar-H), 7.99 (s, 1H, -N=CH-); 1*C-NMR (100 MHz, CDCls, 6 ppm): 11.3, 13.6, 36.1,

108.0, 127.9, 128.8, 129.2, 129.3, 129.4, 130.0, 130.3, 130.4, 136.9, 144.0, 144.2, 152.5, 161.6;
ESI-MS (m/z): 423 [M+H]"; Analytical calculated formulae C21H19CINeS: C, 59.64; H, 4.53; N,
19.87; S, 7.58; Found: C, 59.68; H, 4.56; N, 19.90; S, 7.61.

=
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(E)-N-(4-Chlorobenzylidene)-3-(3,5-dimethyl-1H-pyrazol-1-yl)-5-((4-nitrobenzyl)thio)-4H-
1,2,4-triazol-4-amine (59f):

N-N White color solid (0.394g, 84%); m.p.: 155-157°C; FT-IR
\Si){k ;b/ (KBr, vmax/cm?): 2929 (-CH.-), 1610 (C=N); *H-NMR (400
" MHz, CDCls, 8 ppm): 2.24 (s, 3H, -CH3), 2.27 (s, 3H, -CHa),

4.61 (s, 2H, -SCH>-), 6.04 (s, 1H, -CH- of pyrazole ring), 7.42
cl (d, 2H, J=8.4 Hz, Ar-H), 7.58 (d, 2H, J=8.4 Hz, Ar-H), 7.66 (d,
2H, J=8.8 Hz, Ar-H), 8.01 (s, 1H, -N=CH-), 8.17 (d, 2H, J=8.8 Hz, Ar-H); 1¥*C-NMR (100
MHz, CDCls, 8 ppm): 11.4, 13.6, 36.2, 108.3, 123.5, 126.9, 127.9, 128.8, 129.3, 130.2, 133.9,
136.1, 144.2, 148.6, 151.5, 153.8, 159.3; ESI-MS (m/z): 466 [M-H]"; Analytical calculated
formulae C21H18CIN;O2S: C, 53.90; H, 3.88; N, 20.95; S, 6.85; Found: C, 53.94; H, 3.85; N,

20.97; S, 6.88.

=

(E)-3-(Benzylthio)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-N-(3-nitrobenzylidene)-4H-1,2,4-

triazol-4-amine (599):

N-N Pale yellow color solid (0.355g, 82%); m.p.: 168-170°C; FT-IR
\SXN*NN\ (KBr, vma/cm™): 2925 (-CH-), 1597 (C=N); H-NMR (400
N/ MHz, CDCls, 8 ppm): 2.31 (s, 3H, -CHz3), 2.31 (s, 3H, -CHj),
/é 4.57 (s, 2H, -SCH2>-), 6.07 (s, 1H, -CH- of pyrazole ring), 7.32 (m,
O.N 3H, Ar-H), 7.44 (d, 2H, J=5.6 Hz, Ar-H), 7.64 (t, 1H, J=6.4 Hz,
Ar-H), 8.00 (d, 1H, J=6.0 Hz, Ar-H), 8.13 (s, 1H, Ar-H), 8.35 (d, 1H, J=7.6 Hz, Ar-H), 8.43 (s,
1H, -N=CH-); *C-NMR (100 MHz, CDCls, 8 ppm): 11.4, 13.6, 34.6, 108.2, 123.9, 128.0,
128.1, 129.1, 129.5, 130.0, 130.2, 139.4, 144.0, 144.2, 144.3, 147.4, 150.5, 152.7, 161.6; ESI-
MS (m/z): 434 [M+H]"; Analytical calculated formulae C21H19N7O3S: C, 58.19; H, 4.42; N,
22.62; S, 7.40; Found: C, 58.22; H, 4.46; N, 22.67; S, 7.44.
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(E)-3-(3,5-Dimethyl-1H-pyrazol-1-yl)-N-(4-methoxybenzylidene)-5-((4-nitrobenzyl)thio)-
4H-1,2,4-triazol-4-amine (59h):

N-N 1 Pale yellow color solid (0.435g, 94%); m.p.: 135-137°C; FT-IR

\Sigkxi\ (KBr, vmaxlcm™): 2921 (-CHy-), 1607 (C=N); 'H-NMR (400

. MHz, CDCls, & ppm): 2.24 (s, 6H, -CHs), 3.86 (s, 3H, -CHa),

é 4.59 (s, 2H, -SCH>-), 6.01 (s, 1H, -CH- of pyrazole ring), 6.93 (d,

( 9 ) 2H, J=6.8 Hz, Ar-H), 7.59 (d, 2H, J=6.8 Hz, Ar-H), 7.64 (d, 2H,

J=6.8 Hz, Ar-H), 7.98 (s, 1H, -N=CH-), 8.16 (d, 2H, J=6.8 Hz, Ar-H); 3C-NMR (100 MHz,
CDCls, 6 ppm): 11.3, 13.6, 34.8, 55.6, 107.9, 114.6, 123.9, 124.2, 130.0, 130.2, 130.9, 143.8,
1445, 147.4, 149.8, 152.4, 163.6, 163.7; ESI-MS (m/z): 464 [M+H]*; Analytical calculated
formulae C22H21N70sS: C, 57.01; H, 4.57; N, 21.15; S, 6.92; Found: C, 57.14; H, 4.54; N, 21.19;
S, 6.95.

(E)-3-(3,5-Dimethyl-1H-pyrazol-1-yl)-5-(prop-2-yn-1-ylthio)-N-(3,4,5-trifluorobenzylidene)-
4H-1,2,4-triazol-4-amine (59i):

N-N White color solid (0.323g, 83%); m.p.: 131-133°C; FT-IR (KBr,
\Siwk;i\f vmax/cml): 3308 (=-H), 2925 (-CH-), 1619 (C=N); 'H-NMR (400
@ MHz, CDCls+DMSO-ds, & ppm): 2.25 (s, 3H, -CHs), 2.28 (s, 3H, -
F@F CH3), 4.08 (s, 2H, -CHp-), 4.37 (s, 1H, =—H), 6.11 (s, 1H, -CH- of
K pyrazole ring), 6.93 (t, 2H, J=8.8 Hz, Ar-H) 8.28 (s, 1H, -N=CH-); 13C-

NMR (100 MHz, CDCls, 6 ppm): 11.3, 13.6, 19.8, 72.6, 78.0, 101.6, 108.3, 143.8, 144.2,
152.7, 152.8, 153.0, 153.4, 163.4, 163.9; ESI-MS (m/z): 391 [M+H]*; Analytical calculated
formulae C17H13F3NeS: C, 52.30; H, 3.36; N, 21.53; S, 8.21; Found: C, 52.34; H, 3.32; N, 21.50;
S, 8.19.
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(E)-N-(2,3-Dimethoxybenzylidene)-3-(3,5-dimethyl-1H-pyrazol-1-yl)-5-((4-nitrobenzyl)thio)
-4H-1,2,4-triazol-4-amine (59j):

N-N Pale yellow color solid (0.419g, 85%); m.p.: 143-145°C;
\S/QN%N'N\ FT-IR (KB, vmadcm™): 2923 (-CHy-), 1604 (C=N): H-
! N/ NMR (400 MHz, CDCls, & ppm): 2.25 (s, 3H, -CHs), 2.26

(s, 3H, -CHg), 3.75 (s, 3H, -OCHz), 3.87 (s, 3H, -OCHj3),
-0 4.60 (s, 2H, -SCH3-), 6.04 (s, 1H, -CH- of pyrazole ring),

7.04 (dd, 1H, J=7.6 Hz, J=6.4 Hz Ar-H), 7.09 (t, 1H, J=6.4 Hz, Ar-H), 7.53 (d, 1H, J=6.4 Hz,
Ar-H), 7.66 (d, 2H, J=6.8 Hz, Ar-H), 8.17 (d, 2H, J=6.8 Hz, Ar-H), 8.39 (s, 1H, -N=CH-); 13C-
NMR (100 MHz, CDCls, 8 ppm): 11.2, 13.7, 34.6, 55.9, 61.8, 108.0, 116.5, 118.2, 123.9,
124.4, 125.6, 130.2, 143.6, 144.2, 144.5, 147.4, 150.4, 150.7, 152.7, 152.8, 158.3; ESI-MS
(m/z): 494 [M+H]"; Analytical calculated formulae C23H23N704S: C, 55.97; H, 4.70; N, 19.87; S,
6.50; Found: C, 55.95; H, 4.74; N, 19.91; S, 6.47.

(E)-2-(((3-(3,5-Dimethyl-1H-pyrazol-1-yl)-5-(prop-2-yn-1-ylthio)-4H-1,2,4-triazol-4-yl)
imino)methyl)-4-nitrophenol (59K):

N-N Pale green color solid (0.345g, 87%); m.p.: 168-170°C; FT-IR (KBr,
\Sil}l\ N'} vmax/cm): 3422 (-OH), 3292 (=—H), 2969 (-CH2-), 1615 (C=N);
HOKETL IH-NMR (400 MHz, DMSO-ds,  ppm): 2.25 (s, 3H, -CHj), 2.31 (s,
3H, -CHj3), 2.59 (s, 1H, =-H), 4.10 (s, 2H, -SCH>-), 6.09 (s, 1H, -

il CH- of pyrazole ring), 7.08 (d, 2H, J=9.2 Hz, Ar-H), 7.64 (s, 1H, -

OH), 8.20 (d, 2H, J=9.6 Hz, Ar-H), 8.56 (s, 1H, Ar-H), 8.66 (s, 1H, -N=CH-); 3C-NMR (100
MHz, CDCIl3+DMSO-ds, 6 ppm): 11.3, 13.6, 20.4, 73.2, 78.2, 108.2, 117.5, 118.3, 124.2,
129.1, 143.4, 143.7, 1445, 149.4, 152.6, 158.8, 164.1; ESI-MS (m/z): 398 [M+H]*; Analytical
calculated formulae C17H1sN7O3S: C, 51.38; H, 3.80; N, 24.67; S, 8.07; Found: C, 51.34; H,
3.83; N, 24.71; S, 7.94.
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(E)-2-(((3-(3,5-Dimethyl-1H-pyrazol-1-yl)-5-(prop-2-yn-1-ylthio)-4H-1,2,4-triazol-4-yl)
imino)methyl)-6-methoxy-4-nitrophenol (591):

N-N Green color solid (0.362g, 85%); m.p.: 175-177°C; FT-IR (KBr,
\S/Q}fk;i\?/ vmax/cm™): 3401 (-OH), 3369 (=—H), 2940 (-CH>-), 1611 (C=N); *H-
Hoﬁ NMR (400 MHz,DMSO-ds, 8 ppm): 2.24 (s, 3H, -CH3), 2.33 (s, 3H, -

N CHz3), 2.58 (s, 1H, =—H), 3.99 (s, 3H, -OCHg), 4.09 (s, 2H, -SCH>-),
6.08 (s, 1H, -CH- of pyrazole ring), 7.72 (s, 1H, -OH), 7.78 (s, 1H, Ar-
H), 8.34 (s, 1H, Ar-H), 8.56 (s, 1H, -N=CH-); 13C-NMR (100 MHz, CDCls+ DMSO-ds, &
ppm): 11.3, 13.6, 20.4, 56.7, 73.2, 78.1, 108.3, 108.8, 116.1, 117.4, 139.8, 143.6, 144.5, 145.4,
148.6, 149.3, 152.7, 159.8; ESI-MS (m/z): 428 [M+H]"; Analytical calculated formulae
C18H17N704S: C, 50.58; H, 4.01; N, 22.94; S, 7.50; Found: C, 50.62; H, 3.96; N, 22.90; S, 7.46.

o
|

0,

(E)-2-(((3-(Benzylthio)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazol-4-yl)imino)
methyl)-4-nitrophenol (59m):

N-N Yellow color solid (0.408g, 91%); m.p.: 149-151°C; FT-IR (KBr,
\SXNXN} vmax/cm™): 3425 (-OH), 2964 (-CH-), 1614 (C=N); 'H-NMR
HO\<§L (400 MHz, CDCls, 6 ppm): 2.28 (s, 3H, -CH?3), 2.43 (s, 3H, -CH3),
4.56 (s, 2H, -SCH>-), 6.08 (s, 1H, -CH- of pyrazole ring), 7.11 (d,

NO

1H, J=9.2 Hz, Ar-H), 7.31(m, 3H, Ar-H), 7.39 (d, 2H, J=6.8 Hz,
Ar-H), 8.13 (s, 1H, -OH), 7.28 (d, 1H, J=6.8 Hz, Ar-H), 8.45 (s, 1H, Ar-H), 11.00 (s, 1H, -
N=CH-); 3C-NMR (100 MHz, CDCls,  ppm): 11.9, 13.5, 37.9, 108.7, 115.9, 118.9, 128.2,
128.8, 128.9, 129.2, 129.3, 135.7, 140.6, 144.2, 145.0, 148.1, 153.1, 161.5, 164.1; ESI-MS
(m/z): 448 [M-H]"; Analytical calculated formulae C2:H19N7O3S: C, 56.11; H, 4.26; N, 21.81; S,
7.13; Found: C, 56.15; H, 4.22; N, 21.85; S, 7.16.
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(E)-2-(((3-(Benzylthio)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazol-4-yl)imino)
methyl)-6-methoxy-4-nitrophenol (59n):

I

!

s 3

N-N
N

N
N

HO f

Yellow color solid (0.431g, 90%); m.p.: 173-175°C; FT-IR (KBr,
vmax/cm™): 3402 (-OH), 2939 (-CH>-), 1609 (C=N); 'H-NMR (400
MHz, CDCls, 8 ppm): 2.27 (s, 3H, -CHz3), 2.29 (s, 3H, -CHs3), 4.00
(s, 3H, -OCHz), 4.54 (s, 2H, -SCH>-), 6.07 (s, 1H, -CH- of pyrazole
ring), 7.30 (m, 3H, Ar-H), 7.38 (d, 2H, J=6.4 Hz, Ar-H), 7.84 (s,

2H, Ar-H), 8.39 (s, 1H, -OH), 10.74 (s, 1H, -N=CH-); 3C-NMR (100 MHz, CDCls, 6 ppm):
11.7,13.6, 37.5, 56.7, 108.6, 109.5, 115.4, 119.4, 128.1, 128.8, 129.2, 135.8, 140.5, 144.1, 144.6,
148.8, 149.0, 153.1, 154.4, 161.5; ESI-MS (m/z): 478 [M-H]"; Analytical calculated formulae
C2H21N704S: C, 55.11; H, 4.41; N, 20.45; S, 6.69; Found: C, 55.15; H, 4.46; N, 20.49; S, 6.65.

(E)-3-(Allylthio)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-N-(4-methoxybenzylidene)-4H-1,2,4-
triazol-4-amine (590):

\g/Q

h

(0]

-

N-

N

|

N

\ N

jj

¢

White color solid (0.301g, 82%); m.p.: 142-144°C; FT-IR (KBr,
vmax/cm™?): 3062 (=C-H), 2918 (-CH2-), 1603 (C=N); *H-NMR (400
MHz, CDCls, 8 ppm): 2.29 (s, 3H, -CH3), 2.42 (s, 3H, -CHs3), 2.33 (s,
3H, -CHs3), 6.06 (s, 1H, -CH- of pyrazole ring), 7.25 ( d, 2H, J=8 Hz, Ar-
H), 7.66 (d, 2H, J=8 Hz, Ar-H), 9.89 (s, 1H, -N=CH-), 11.91 (s, 1H, -

SH); C-NMR (100 MHz, CDCls, 8 ppm): 11.34, 13.61, 21.78, 107.95, 129.08, 129.37,
129.63, 129.74, 129.93, 143.55, 143.71, 152.70, 164.45; ESI-MS (m/z): 469 [M+H]*; Analytical
calculated formulae C1gH20NsOS: C, 58.68; H, 5.47; N, 22.81; S, 8.70; Found: C, 58.73; H, 5.43;
N, 22.85; S, 8.74.

(E)-3-(Allylthio)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-N-(4-methylbenzylidene)-4H-1,2,4-

triazol-4-amine (59p):

s

N-N
/\
AN

N
N

N

N

Cream color solid (0.299g, 85%); m.p.: 147-149°C; FT-IR (KBr,
vmax/cmt): 3074 (=C-H), 2918 (-CH,-), 1603 (C=N); 'H-NMR (400
MHz, CDCIlz+DMSO-dg, 6 ppm): 2.26 (s, 3H, -CH3), 2.31 (s, 3H, -
CHs), 2.40 (s, 3H, -CHg), 3.97 (d, 2H, J=7.2 Hz, -SCH>-), 5.19 (d, 1H,
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J=10.0 Hz, -C=C-H), 5.35 (d, 1H, J=11.6 Hz, -C=C-H), 6.03 (s, 1H, -CH- of pyrazole ring),
6.05 (m, 1H, -C=C-H), 7.23 (d, 2H, J=7.6 Hz, Ar-H), 7.64 (d, 2H, J=8.0 Hz, Ar-H), 9.89 (s, 1H,
-N=CH-); 3C-NMR (100 MHz, CDCls, 8 ppm): 11.3, 13.6, 21.8, 34.5, 107.9, 119.3, 129.1,
129.6, 129.8, 132.4, 143.5, 143.7, 152.7, 163.4, 164.0, 164.3; ESI-MS (m/z): 353 [M+H]";
Analytical calculated formulae C18H20NeS: C, 61.34; H, 5.72; N, 23.84; S, 9.10; Found: C, 61.38;
H, 5.75; N, 23.80; S, 9.14.

4-Amino-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazole-3-thiol (A):

White solid; yield (0.197g, 94%); m.p.: 182-184°C; FT-IR (KBr,

N-N
HS/QN»\N Na vmadem): 3370 (-NHy), 2740 (-SH); H-NMR (400 MHz,
- ):7/ CDCls+DMSO-ds, & ppm): 2.19 (s, 3H, -CHs); 2.26 (s, 3H, -CHa):

2

5.53 (s, 2H, -NH>); 5.99 (s, 1H, -CH- of pyrazole ring); 13.79 (s,
1H, -SH); 3C-NMR (100 MHz, CDClI3+DMSO-ds, 6 ppm): 11.5; 13.6; 108.1; 143.0; 143.2;
152.1; 165.2; ESI-MS (m/z): 211 [M+H]*. Analytical calculated formulae C7H10NeS: C, 39.99;
H, 4.79; N, 39.97; S, 15.25. Found: C, 40.04; H, 4.86; N, 40.02; S, 15.20%.
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Fig: *H-NMR Spectrum of Compound 59a (400 MHz, CDCl3+DMSO-ds)
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DIHYDROPHTHALAZINE-1,4-DIONES




CHAPTER-I1II

INTRODUCTION:

Phthalazine is a six-membered heterocyclic ring fused with benzene having two nitrogen
atoms placed at adjacent positions in the ring. It belongs to the nitrogen heterocyclic compounds
category. Sometimes phthalazine is also called as benzo-orthodiazine or benzopyridazine (Fig.
1). Most of the phthalazine derivatives exhibit a wide range of biological activities such as anti-
diabetic!, anti-cancer®®, anti-fungal®, anti-microbial®’, anti-tumor®' cytotoxicity!**?, anti-
inflammatory!3!#,  anti-convulsant'>®, vasorelaxant'’°, anti-bacterial?®, vasodilator?® anti-
thrombotic??, anti-hypertensive?® activities. In the current method, we have reported the

formation of dihydro-1,4-phthalazinedione ring.
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Fig. 1: Structures of phthalazine and dihydro phthalazine dione.

When thiadiazine ring is fused with 1,2,4-triazole that results in the formation of 1,2,4-
triazolo[3,4-b][1,3,4]thiadiazine derivatives. Most promising biological and pharmaceutical
applications have been reported on various thiadiazine derivatives such as anti-cancer?-2%, anti-
microbial?”?8, anti-bacterial®®, analgesic/anti-inflammatory®’, anti-viral®!, anti-fungal®?, anti-

oxidative®®, molluscicidal®, anti-HIV/anti-tumor® and anti-leishmanial®® activities (Fig. 2).

[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine
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Fig. 2: Some of the drugs having phthalazine moiety.

The following are some of the brief literature surveys on the synthesis of phthalazines

and thiadiazines.

Chunduru®” and co-worker synthesized various 1,3,5-thiadiazinyl phthalazine-1,4-
diones (4) via a one-pot, multi-component reaction by treating substituted phenacyl bromides (1),
thiocarbohydrazide (2), and phthalic anhydride (3) in presence of acidified ethanol under reflux

condition. The target compounds were formed with good yields.
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Thirupaiah®® and co-worker reported a one-pot multi-component reaction for the
synthesis of 1,2,4-triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-2,3-dihydrophthalazine-1,4-dione (7)
analogs from the reaction of 3-(2-bromoacetyl)-4-hydroxy-6-methyl-2H-pyran-2-one (5),

purpald (6), and substituted phthalic anhydride (3) in presence of acetic acid under reflux
condition with good yields.
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Chunduru® and co-worker reported the synthesis of 2-(4-phenylthiazol-2-yl)-2,3-
dihydrophthalazine-1,4-dione (9) derivatives by the condensation of 2-bromo-1-phenylethanone
(1), hydrazine carbothioamide (8), and isobenzofuran-1,3-dione (3) in the presence of acidified
ethanol in a single reaction vessel with high yields.
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Sangani‘® et al. conducted a reaction between 1H-pyrazole-4-carbaldehydes (10),
propanedinitrile/ethyl cyanoacetate (11), and 2,3-dihydrophthalazine-1,4-diones (12) in the
presence of absolute ethanol having NaOH under reflux condition to generated the derivatives of
1H-pyrazolo[1,2-b]phthalazine-5,10-diones (13). These compounds exhibited good anti-

microbial, anti-tuberculosis, and anti-oxidant activities.

1

+ EtOH / NaOH

reflux

13

12

Kolsepatil*! et al. prepared analogs of pyrazole dihydro phthalazine dione (16) using
phthalic anhydride (3), hydrazine hydrate (14), malononitrile (11), and substituted benzaldehydes

(15) adding boric acid under the microwave irradiation in a one-pot.
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Sujatha and Rao* performed a one-pot multi-component reaction for the synthesis of

benzylideneamino dihydrophthalazine-1,4-dione (17) derivatives by condensation of 4-amino-5-

hydrazinyl-4H-1,2,4-triazole-3-thiol (6), different phthalic anhydrides (3), and various aromatic

aldehydes (15) in a round bottom flask containing acetic acid under reflux condition with good

yields.
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Some of the [1,2,4]-triazolo[3,4-b][1,3]thiazine (20) derivatives were synthesized by

using substituted 3-(2-bromoacetyl)-2H-chromen-2-ones (18), 4-amino-5-hydrazinyl-4H-1,2,4-

triazole-3-thiol (6), and different (E)-ethyl-3-ox0-2-(2-phenylhydrazono)butanoates (19) in

presence of AcCOH/AcONa through a one-pot reaction with high yields by Aychiluhim and

Rao*3.
N-N NH
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Penta* et al. synthesized different pyrazolyl[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines (22)
by the cyclo condensation of 3-(2-bromoacetyl)-4-hydroxy-6-methyl-2H-pyran-2-one (5),
purpald (6) and acetylacetone/ethyl acetoacetate (21) in presence of MeOH and fused AcONa via
a one-pot synthesis. The final derivatives were produced with good yields. These compounds

were shown good anti-microbial and anti-nematicidal activities.
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4-Amino-4H-1,2,4-triazole-3,5-dithiol (23) and two equivalents of various 2-bromo-1-
phenylethanone (1) were refluxed in presence of ethanol/TEA to synthesize the
triazolothiadiazines (24) via a facile, one-pot synthesis by Arandkar and Vedula®*. These

compounds were screened for their anti-cancer activity with moderate results.
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Prakash*® and co-worker synthesized 1,2,4-triazolo[3,4-b][1,3,4]thiadiazine (26) derivatives
using substituted 2-bromo-1-phenylethanone (1) and 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol

(25) in presence of ethanol under reflux condition.
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In the present chapter we have synthesized [1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-
2,3-dihydrophthalazine-1,4-dione derivatives via a one-pot, three-component reaction. Both the
dihydrophthalazine-1,4-dione and thiadiazine rings were formed simultaneously in a single
reaction vessel by the cyclocondensation reaction of 4-amino-5-hydrazino-4H-[1,2,4]triazole-3-
thiol, substituted phenacyl bromides and different phthalic anhydrides in presence of acetic acid

under reflux conditions.
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PRESENT WORK:

Novel hybrid compounds containing two or three biological motifs were expected to
possess good biological activities. Based on the literature review we have designed a new hybrid
template containing phthalazine and [1,2,4]triazole[3,4-b][1,3,4]thiadiazine units in a single
molecular structure with the hope that the new compounds may exhibit good biological
activities. 4-Amino-5-hydrazino-4H-[1,2,4]triazole-3-thiol (6) was used as the precursor for the
synthesis of fused heterocyclic compounds*’*. Herein we are reporting one-pot multi-
component synthesis of substituted 2-(6-phenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-
2,3-dihydro phthalazine-1,4-diones (27a-0) (Scheme 1).

R? o
j & NH, R? AcOH
HS NN + + 0O —>
- H R4 reflux
2 RS O 10-12 h
82-96%
6 1 3 27a-0

Scheme-1: Method-I, Synthesis of 2-(6-phenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-
2,3-dihydrophthalazine-1,4-dione (27a-0) derivatives.

Initially, we have screened the reaction conditions using 4-amino-5-hydrazino-4H-
[1,2,4]triazole-3-thiol (6), 2-bromo-1-(4-methoxyphenyl)ethanone (1) and isobenzofuran-1,3-
dione (phthalic anhydride) (3). The reaction was conducted in the water under reflux conditions
where no product was observed even after 10 hours. When the same reaction was operated in the
methanol only a 10% yield of the product was formed. On the other hand, when the same
reaction was carried out in ethanol under reflux condition the yield of the product was 20%.
Finally, when the reaction was operated in the AcOH under reflux condition generated the
designed compound 27a in 86% vyield. Hence, the 2-(6-phenyl-7H-[1,2,4]triazolo[3,4-
b][1,3,4]thiadiazin-3-yl)-2,3-dihydrophthalazine-1,4-diones (27a-0) were synthesized in acetic
acid under reflux condition (Method-I, Table-1).
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Table-1: Optimization of reaction conditions for the synthesis of 27a.

Entry Solvent Yield (%) of 27a
1 H20 0
2 MeOH 10
3 EtOH 20
4 AcOH 86

*Reaction conditions: 6 (1 mmol), 1 (1 mmol), and 3 (1 mmol) in the solvents.

The target compounds (27a-0) can also be synthesized through an alternative method
involving condensation of 4-amino-5-hydrazino-4H-[1,2,4]triazole-3-thiol (6) with substituted 2-
bromo-1-phenylethanone (1) to produce the respective intermediates 3-hydrazinyl-6-phenyl-7H-
[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines (28). These on further reaction with one equivalent of
phthalic anhydride (3) under reflux in ethanol produced the compounds (27a-0) through a two-
step process (Method-I1). The yields of the products are 60%. The title derivatives (27a-0)
obtained both the ways were found to be identical by examining their mixed melting point
measurement, co-TLC, and IR spectra. The formation of 27a-0 is displayed in Scheme-2. In the
present investigation, Method-1 was preferred over Method-11, because of the high yields of the

products in Method-1.

When the reaction was treated between 6, 1, and 3 in acetic acid there is a probability of
formation of 29 or 30 or 31 or all based on the mode of cyclization. But in the present condition,
only one product 27 (vide TLC) was produced. The alternative products (29, 30, and 31) were

rejected on the evidence of their spectral data (Scheme-3).

s Y

s%/N\N
N-N / N/lk NH 3
— »\N NH, EtOH N IP\II 2 27a-0
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Scheme-2: Method-11, Alternative route for the synthesis of 27a-0
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Scheme-3: Alternative possible products by a multi-component reaction between 6, 1, and 3.
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Scheme-4: Plausible reaction mechanism for the synthesis of compounds 27a-o.
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Table-2: Synthesis of substituted 2-(6-phenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-
2,3-dihydrophthalazine-1,4-diones (27a-0).

Product R! R? R3 R* R® Time (h) Yield (%)
27a OCHs H H H H 11.00 86
27b CHs H H H H 10.30 85
27¢c NO:2 H H H H 11.30 82
27d Br H H H H 11.15 90
27e Cl H H H H 11.00 86
27f F H H H H 11.00 82
279 CHs H NO:2 H H 11.45 88
27h F H NO2 H H 12.00 84
271 H Br Br Br Br 10.20 95
27] OCHjs Br Br Br Br 10.45 92
27k CHs Br Br Br Br 10.45 89
271 F Br Br Br Br 10.30 91
27m Cl Br Br Br Br 11.00 96
27n Br Br Br Br Br 10.15 94
270 H H H H H 10.00 88

In the present one-pot, multi-component reaction condition, substituted 2-bromo-1-
phenylethanone (1) and substituted isobenzofuran-1,3-dione (3) were treated with 4-amino-5-
hydrazino-4H-[1,2,4]triazole-3-thiol (6) to produce the 2-(6-phenyl-7H-[1,2,4]triazolo[3,4-
b][1,3,4]thiadiazin-3-yl)-2,3-dihydrophthalazine-1,4-diones. The yields of 27a-0 were 86-88%

respectively (Table-2). In the current process, the reaction progresses in such a route that the -
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SH and -NH: functional groups of the compound 6 undergoes cyclization initially with 1 to form
thiadiazine ring. Finally, the hydrazino part of the compound condenses with 3 leading to the

formation of the phthalazinediones.

The structures of all the newly synthesized derivatives were confirmed by their analytical
and spectral data. In the L.R. spectrum compound 27a displayed peaks at 3451 cm™ for -NH-,
1790 and 1736 cm™ ! for cyclic -C=0. In the *H-NMR (CDCls) spectrum of compound 27a gave
characteristic singlet for -CH»- of thiadiazine two protons at & 4.38 and the -NH- one proton
appeared at 6 10.10, -OCHj3 protons appeared as a singlet at 6 3.85. The remaining eight aromatic
protons appeared in between & 7.00-8.00. The ¥C-NMR spectrum of compound 27a displayed
the peak at 6 23.4 for the thiadiazine methylene carbon, the methyl carbon of -OCH3 appeared at
8 56.0 and the remaining sp? carbons appeared in the aromatic region at & 114.0-166.0. The

compound 27a gave a molecular ion peak at m/z 407 [M+H]" in the mass spectrum.

In  conclusion, we have  synthesized  2-(6-phenyl-7H-[1,2,4]triazolo[3,4-
b][1,3,4]thiadiazin-3-yl)-2,3-dihydrophthalazine-1,4-diones 27a-0 via a one-pot, multi-
component reaction using readily available starting materials. This approach is very simple to
operate, it involves clean and simple reaction conditions with high yields. The advantage of this
method is that the reaction was carried out without using metals and toxic catalysts and the

products were obtained in a single step with the high atom-economy.

EXPERIMENTAL.:

General procedure for the Synthesis of Substituted 2-(6-phenyl-7H-[1,2,4]triazolo[3,4-
b][1,3,4]thiadiazin-3-yl)-2,3-dihydrophthalazine-1,4-dione via a one-pot multi-component
reaction (27a-0)

An equimolar mixture of 4-amino-5-hydrazino-4H-[1,2,4]triazole-3-thiol (6) (0.001 mol),
2-bromo-1-phenylethanones (1) (0.001 mol) and isobenzofuran-1,3-diones (3) (0.001 mol) was
taken in acetic acid (5 mL) and then refluxed for 10-12 h. The progress of the reaction was
monitored by TLC and after the completion of the reaction, the mixture was cooled, solid
separated was filtered, and recrystallized from 5-6 mL ethanol to give the title compounds in

good yields.
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SPECTRAL DATA:

2-(6-(4-Methoxyphenyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-2,3-
dihydrophthalazine-1,4-dione (27a):

White solid (0.349g, 86%); m.p.: 244-246°C; IR (KBr, vmaxlcm™):
3451 (-NH-), 1790 (-C=0), 1736 (-C=0); 'H-NMR (400 MHz,
DMSO-ds, 6 ppm): 3.85 (s, 3H, -OMe), 4.38 (s, 2H, -CH- of
thiadiazine), 7.06 (d, 2H, J=8.8 Hz, Ar-H), 7.96 (d, 2H, J=8.4 Hz, Ar-
H), 7.98-8.00 (m, 4H, Ar-H), 10.10 (s, 1H, -NH-); 3C-NMR (100

MHz, CDClIl3+DMSO-ds, 6 ppm): 23.5, 56.0, 114.8, 124.3, 125.8, 129.8, 135.9, 138.4, 151.6,
154.6, 162.6, 166.0; ESI-MS (m/z): 407 [M-H]"; Analytical calculated formulae C19H14NO3S;
C, 56.15; H, 3.47; N, 20.68; S, 7.89; Found: C, 56.18; H, 3.43; N, 20.72; S, 7.85.

2-(6-(p-Tolyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-2,3-dihydrophthalazine-1,4-

dione (27b):
_S
=N
\\Nzl\' _N
o.__N

‘NH
(6]

White solid (0.331g, 85%); m.p.: 250-252°C; IR (KBr, vmax/lcm™):
3435 (-NH-), 1790 (-C=0), 1736 (-C=0); 'H-NMR (400 MHz,
DMSO-ds, 6 ppm): 2.42 (s, 3H, -CHs), 4.16 (s, 2H, -CH>- of
thiadiazine), 7.27 (d, 2H, J=8.0 Hz, Ar-H), 7.77 (s, 1H, -NH-), 7.83-
7.87 (m, 4H, Ar-H), 7.92 (d, 2H, J=8.4 Hz, Ar-H); *C-NMR (100

MHz, CDCl3+DMSO-ds, 6 ppm): 21.5, 23.3, 124.3, 127.8, 129.9, 130.0, 130.8, 135.9, 138.5,
142.7, 151.7, 155.0, 159.3, 166.0; ESI-MS (m/z): 391 [M+H]"; Analytical calculated formulae
C19H14N60sS; C, 58.45; H, 3.61; N, 21.53; S, 8.21: Found: C, 58.41; H, 3.65; N, 21.58; S, 8.25.

2-(6-(4-Nitrophenyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-2,3-dihydrophthalazine

-1,4-dione (27c):

Yellow solid (0.346g, 82%); m.p.: 233-235°C; IR (KBr, vmax, cm-
1): 3434 (-NH-), 1793(-C=0), 1736 (-C=0); 'H-NMR (400 MHz,
DMSO-ds, 6 ppm): 4.42 (s, 2H, -CH>- of thiadiazine), 7.90-7.92 (m,
4H, Ar-H), 8.11 (s, 1H, -NH-), 8.27 (d, 2H, J=8.4 Hz, Ar-H), 8.31
(d, 2H, J=8.4 Hz, Ar-H).*C-NMR (100 MHz, CDClz+ DMSO-ds,

0 ppm): 23.5, 124.2, 124.3, 129.2, 129.9, 135.7, 138.1, 139.7, 149.9, 151.9, 153.2, 165.9. ESI-
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MS (m/z): 422 [M+H]"; Analytical calculated formulae C1gH11N704S; C, 51.30; H, 2.63; N,
23.27; S, 7.61: Found: C, 51.35; H, 2.67; N, 23.22; S, 7.66.

2-(6-(4-Bromophenyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-2,3-dihydro
phthalazine-1,4-dione (27d):

~S White solid (0.410g, 90%); m.p.: 248-250°C; IR (KBr, vmax, cm™):

_N
\\N,m\;N 3432 (-NH-), 1792 (-C=0), 1732 (-C=0); 'H-NMR (400 MHz,
0; ENNH DMSO-ds, 8 ppm): 4.43 (s, 2H, -CH»- of thiadiazine), 7.76 (d, 2H,

o| J=8.0 Hz, Ar-H), 7.95-8.01 (m, 6H, Ar-H), 10.20(s, 1H, -NH-); 13C-
NMR (100 MHz, CDCIls+DMSO-de, 6 ppm): 23.3, 124.3, 126.2,
129.8, 129.9, 132.4, 132.9, 135.9, 138.2, 151.7, 154.2, 165.9. ESI-MS (m/z): 457 [M+2]*;
Analytical calculated formulae C1sH11BrNsO-S; C, 47.48; H, 2.44; N, 18.46; S, 7.04: Found: C,
47.44; H, 2.49; N, 18.40; S, 7.12.
2-(6-(4-Chlorophenyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-2,3-dihydro
phthalazine-1,4-dione (27¢):
~S White solid (0.352g, 86%); m.p.: 239-241°C; IR (KB, vmax, cm™):
N 3435 (-NH-), 1790 (-C=0), 1734 (-C=0); H-NMR (400 MHz,

N\ a
N-N__N

M
0é Nypu| DMSO-ds, 8 ppm): 4.34 (s, 2H, -CH2- of thiadiazine), 7.51 (d, 2H,

o| J=8.8 Hz, Ar-H), 7.89-7.96 (m, 4H, Ar-H), 8.03 (d, 2H, J=8.4 Hz, Ar-
H), 8.10 (s, 1H, -NH-); 3C-NMR (100 MHz, DMSO-ds, 6 ppm):
23.2,129.6, 129.8, 129.9, 131.9, 137.8, 139.5, 139.9, 151.2, 151.4, 155.4, 170.8, 173.4; ESI-MS
(m/z): 411 [M+H]"; Analytical calculated formulae C1sH1:CINsO-S; C, 52.62; H, 2.70; N, 20.46;
S, 7.80: Found: C, 52.68; H, 2.75; N, 20.42; S, 7.84.
2-(6-(4-Fluorophenyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-2,3-dihydro
phthalazine-1,4-dione (27f):

~s White solid (0.323g, 82%); m.p.: 243-245°C; IR (KBr, vmax, cm™):
—N

\\N,;;N 3446 (-NH-), 1790 (-C=0), 1735 (-C=0); H-NMR (400 MHz,

o._N. DMSO-ds, 6 ppm): 4.39 (s, 2H, -CH- of thiadiazine), 7.73 (t, 2H,

NH
5/% J=8.0 Hz, Ar-H), 7.95-7.97 (m, 4H, Ar-H), 8.07 (t, 2H, J=6.0 Hz, Ar-
H), 8.24 (s, 1H, -NH-); 3C-NMR (100 MHz, CDCl3+ DMSO-ds, &
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ppm): 23.5, 116.4, 116.6, 124.3, 130.5, 130.6, 135.8, 151.7, 154.0, 160.5, 163.7, 165.9, 169.0;
ESI-MS (m/z): 395 [M+H]*; Analytical calculated formulae C1sH11FN6O2S; C, 54.82; H, 2.81;
N, 21.31; S, 8.13: Found: C, 54.87; H, 2.85; N, 21.36; S, 8.16.
6-Nitro-2-(6-(p-tolyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-2,3-dihydro
phthalazine-1,4-dione (279):
N White solid (0.382g, 88%); m.p.: 216-218°C; IR (KBTI, vmax, cm1):
L N_o 3403 (-NH-), 1800 (-C=0), 1745 (-C=0): *H-NMR (400 MHz,
N 046 DMSO-ds, & ppm): 2.39 (s, 3H, CHs), 441 (s, 2H, -CHa- of
NO, thiadiazine), 7.35 (d, 2H, J=7.6 Hz, Ar-H), 7.90 (d, 2H, J=7.6 Hz,
Ar-H), 8.18 (t, 1H, J=7.2 Hz, Ar-H), 8.31 (d, 1H, J=7.6 Hz, Ar-H),
8.42 (d, 1H, J=7.6 Hz, Ar-H), 10.33 (s, 1H, -NH-); *C-NMR (100 MHz, DMSO-dg, 6 ppm):
21.5, 23.3, 121.5, 127.8, 128.0, 128.2, 130.0, 130.9, 137.7, 137.8, 138.6, 142.6, 142.7, 144.9,
155.1, 161.5, 163.9; ESI-MS (m/z): 434 [M-H]"; Analytical calculated formulae C19H13N70aS;
C,52.41; H, 3.01; N, 22.52; S, 7.36: Found: C, 52.46; H, 3.12; N, 22.56; S, 7.40.
2-(6-(4-Fluorophenyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-6-nitro-2,3-dihydro
phthalazine-1,4-dione (27h):
N White solid (0.370g, 84%); m.p.: 225-227°C; IR (KBr, vmax, cm™):
J\N&I (o) 3389 (-NH-), 1800 (-C=0), 1746 (-C=0); *H-NMR (400 MHz,
- 0}\5\ DMSO-ds, 6 ppm): 4.16 (s, 2H, -CH>- of thiadiazine), 7.16 (t, 2H,
NO, J=8.4 Hz, Ar-H), 7.44 (t, 1H, J=8.0 Hz, Ar-H), 7.88 (s, 1H, -NH-),
7.93 (d, 2H, J=8.0 Hz, Ar-H), 8.09 (dd, 2H, J=8.8 Hz, J=5.2 Hz, Ar-
H); 3C-NMR (100 MHz, DMSO-ds, & ppm): 23.2, 116.3, 116.5, 127.2, 130.5, 130.7, 130.8,
134.0, 138.0, 152.9, 153.7, 159.1, 161.0, 162.6, 165.9, 167.1; ESI-MS (m/z): 440 [M-H]";
Analytical calculated formulae C1sH10FN7O4S; C, 49.20; H, 2.29; N, 22.31; S, 7.30: Found: C,
49.25; H, 2.31; N, 22.35; S, 7.34.
5,6,7,8-Tetrabromo-2-(6-phenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-2,3-dihydro
phthalazine-1,4-dione (27i):

N
s—
( N

N
s—
[ N

2
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Br

Br

Br

White solid (0.656g, 95%); m.p.: 251-253°C; IR (KBr, vmax, cm™):
3429 (-NH-), 1783 (-C=0), 1742 (-C=0); H-NMR (400 MHz,
DMSO-ds, & ppm): 3.17 (s, 1H, -NH-), 4.43(s, 2H, -CHz- of
thiadiazine), 7.53 (t, 2H, J=7.2 Hz, Ar-H), 7.60 (t, 1H, J=7.2 Hz, Ar-
H), 7.97 (d, 2H, J=7.6 Hz, Ar-H); *C-NMR (100 MHz, DMSO-ds,

6 ppm): 23.5,121.7, 127.9, 128.2, 129.4, 129.5, 129.7, 132.4, 137.9, 153.4, 154.2, 155.4, 162.0;
ESI-MS (m/z): 692 [M+H]"; Analytical calculated formulae C1gHgBrsNsO:S; C, 31.24; H, 1.17;
N, 12.14; S, 4.63: Found: C, 31.27; H, 1.14; N, 12.12; S, 4.60.
5,6,7,8-Tetrabromo-2-(6-(4-methoxyphenyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-
2,3-dihydrophthalazine-1,4-dione (27j):

s /</N L

H
N’N
N

o

Br
Br

(0]
Br

Br

White solid (0.664g, 92%); m.p.: 245-247°C; IR (KBr, vmax, cm™):
3345 (-NH-), 1804 (-C=0), 1744 (-C=0); H-NMR (400 MHz,
DMSO-ds, & ppm): 4.39 (s, 3H, -OCHs), 4.85 (s, 2H, -CHy- of
thiadiazine), 7.06 (s, 1H, -NH-), 7.93 (d, 2H, J=8.0 Hz, Ar-H), 8.00
(d, 2H, J=8.0 Hz, Ar-H); 3C-NMR (100 MHz, DMSO-ds, 6 ppm):

31.1, 56.0, 114.7, 121.7, 129.5, 129.7, 135.1, 137.9, 1435, 145.5, 154.9, 162.1, 162.7, 166.4,
ESI-MS (m/z): 723 [M+H]*; Analytical calculated formulae C19H10BrsNeOsS; C, 31.61; H, 1.40;
N, 11.64; S, 4.44: Found: C, 31.615; H, 1.44; N, 11.60; S, 4.40.
5,6,7,8-Tetrabromo-2-(6-(p-tolyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-2,3-
dihydrophthalazine-1,4-dione (27Kk):

=N

N
s—< |
U TN

N-
(0)

Br
Br

O
Br

Br

White solid (0.628g, 89%); m.p.: 252-254°C; IR (KB, vmax, cm):
3422 (-NH-), 1783 (-C=0), 1745 (-C=0); 'H-NMR (400 MHz,
DMSO-ds, 6 ppm): 2.39 (s, 3H, -CHz), 4.39 (s, 2H, -CH>- of
thiadiazine), 7.33 (d, 2H, J=8.0 Hz, Ar-H), 7.84 (d, 2H, J=8.0 Hz,
Ar-H), 8.31 (s, 1H, -NH-); ¥C-NMR (100 MHz, DMSO-ds,

ppm): 23.7, 29.2, 125.9, 126.1, 129.7, 137.9, 139.7, 146.7, 147.0, 151.0, 156.6, 160.4, 161.3,
165.1; ESI-MS (m/z): 706; Analytical calculated formulae C19H10BrsN6O2S; C, 32.32; H, 1.43;
N, 11.90; S, 4.54: Found: C, 32.35; H, 1.46; N, 11.94; S, 4.58.
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5,6,7,8-Tetrabromo-2-(6-(4-fluorophenyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-
2,3-dihydrophthalazine-1,4-dione (271):

NN White solid (0.645g, 91%); m.p.: 257-259°C; IR (KBTI, vmax, cm™):
/S%N*N.ﬁl 0 | 3411 (-NH-), 1784 (-C=0), 1742 (-C=0): 'H-NMR (400 MHz,
- o Bri  DMSO-ds, 6 ppm): 4.23 (s, 2H, -CH>- of thiadiazine), 7.21 (t, 2H,
BN e J=B.4 Hz, ArH), 785 (5, TH, -NH-), 803 (dd, 2H, J=88 Hz, J=52

r

Hz, Ar-H); 3C-NMR (100 MHz, DMSO-ds, & ppm): 23.5, 116.6,
130.5, 130.6, 131.1, 137.8, 139.8, 140.0, 154.6, 154.9, 157.6, 160.2, 163.5; ESI-MS (m/z): 710
[M+H]"; Analytical calculated formulae C1sH7BrsFNgO2S; C, 30.45; H, 0.99; N, 11.84; S, 4.52:
Found: C, 30.49; H, 0.94; N, 11.87; S, 4.56.
5,6,7,8-Tetrabromo-2-(6-(4-chlorophenyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-
2,3-dihydrophthalazine-1,4-dione (27m):

NN . White solid (0.699g, 96%); m.p.: 286-288°C; IR (KB, vmax, cm™):
/S%NAN,N (o) 3416 (-NH-), 1783 (-C=0), 1744 (-C=0); 'H-NMR (400 MHz,
o Br| DMSO-ds, & ppm): 3.46 (s, 1H, -NH-), 4.40 (s, 2H, -CHo- of
Br Br| thiadiazine), 7.59 (d, 2H, J=8.4 Hz, Ar-H), 7.99 (d, 2H, J=8.4 Hz,

Br

Ar-H); 3C-NMR (100 MHz, DMSO-dg, 8 ppm): 23.4, 121.7, 129.4,
129.5, 129.7, 132.6, 137.2, 137.8, 138.5, 144.0, 151.5, 154.2, 162.0; ESI-MS (m/z): 727
[M+H]*; Analytical calculated formulae C1sH7BraCINeO2S; C, 29.76; H, 0.97; N, 11.57; S, 4.41:
Found: C, 29.71; H, 0.93; N, 11.53; S, 4.46.
5,6,7,8-Tetrabromo-2-(6-(4-bromophenyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-
2,3-dihydrophthalazine-1,4-dione (27n):

NN B White solid (0.738g, 94%); m.p.: 292-294°C; IR (KBr, vmax, cm™):
Pﬁv‘kN.N 0 3426 (-NH-), 1783 (-C=0), 1746 (-C=0); H-NMR (400 MHz,
- o Br|  DMSO-ds, 6 ppm): 4.41 (s, 2H, -CH»- of thiadiazine), 7.71 (d, 2H,

Br Br| J=8.8 Hz, Ar-H), 7.98 (d, 2H, J=8.8 Hz, Ar-H), 8.18 (s, 1H, -NH-);

Br

BC-NMR (100 MHz, CDCls+DMSO-ds, & ppm): 23.3, 121.7,
129.4, 129.8, 132.4, 132.9, 137.8, 147.1, 147.4, 151.5, 154.5, 160.5, 161.9; ESI-MS (m/z): 768
[M-2]"; Analytical calculated formulae C1sH7BrsNgO-S; C, 28.05; H, 0.92; N, 10.90; S, 4.16:
Found: C, 28.12; H, 0.98; N, 10.95; S, 4.12.
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2-(6-Phenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-2,3-dihydrophthalazine-1,4-
dione (270):

. o| 3440 (-NH-), 1789 (-C=0), 1739 (-C=0); 'H-NMR (400 MHz,
=N o DMSO-ds, 6 ppm): 4.44 (s, 2H, -CH»- of thiadiazine), 7.53 (t, 2H,
J=7.2 Hz, Ar-H), 7.60 (t, 2H, J=7.2 Hz, Ar-H), 7.98-8.00 (m, 5H,
Ar-H), 10.16 (s, 1H, -NH-); 13C-NMR (100 MHz, CDCl3+DMSO-
de, & ppm): 23.5, 124.3, 127.9, 129.3, 129.8, 132.3, 133.8, 135.9, 138.2, 151.6, 155.0, 165.9;
ESI-MS (m/z): 377 [M+H]*; Analytical calculated formulae C1sH12N6O2S; C, 57.44; H, 3.21; N,
22.33; S, 8.52: Found: C, 57.48; H, 3.25; N, 22.38; S, 8.56.
3-Hydrazinyl-6-(4-methoxyphenyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine (28):
An equimolar mixture of 4-amino-5-hydrazino-4H-[1,2,4]triazole-3-thiol (6) (0.001 mol)

N White solid (0.330g, 88%); m.p.: 247-249°C; IR (KBr, vmax, cm™):
¢\ H
S
PN

and 2-bromo-1-(4-methoxyphenyl)ethanone (1) (0.001 mol) was taken in ethanol (3 mL) and
then refluxed for 4 h. After completion of the reaction, the mixture cooled to room temperature.

The solid separated was filtered and recrystallized from ethanol.

( . N Y Yellow solid (0.226g, 82%); m.p.: 192-194°C; IR (KBr, vmax,
% T\J\(N cm?): 3460 (-NHz), 3451 (-NH-), 1605 (-C=N-); H-NMR

=N HN-NH,| (400 MHz, CDCIs+DMSO-ds, & ppm): 3.31 (s, 1H, -NH-),
3.90 (s, 3H, -OMe), 4.31 (s, 2H, -CH>- of thiadiazine), 6.97
. (s, 2H, -NHy), 7.03 (d, 2H, J=8.8 Hz, Ar-H), 8.06 (d, 2H,
J=9.2 Hz, Ar-H); 3C-NMR (100 MHz, CDClI3+DMSO-dgs, 6 ppm): 38.2, 55.7, 114.2, 125.9,
129.3, 131.2, 161.4, 161.5, 168.1; ESI-MS (m/z): 276; Analytical calculated formulae
Cu1H12NsOS C, 47.81; H, 4.38; N, 30.41; S, 11.60; Found: C, 47.85; H, 4.33; N, 30.45; S, 11.67.
Conversion of compound 28 into 27

A mixture of compound 28 (0.001 mol) and phthalic anhydride (3) (0.001 mol) in 3 mL
acetic acid refluxed for 6-7 h, cooled and solid separated was filtered and washed with water and

recrystallized from ethanol.
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DISCOVERY OF 3-(1H-PYRAZOL-1-YL)-6,7-DIHYDRO-5H-
[1,2,4] TRIAZOLO[3,4-b][1,3,4] THIADIAZINE DERIVATIVES WITH
PROMISING ANTICORONAVIRUS AND ANTITUMORAL ACTIVITY
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CHAPTER-1V

INTRODUCTION:

Sulfur-containing heterocyclic compounds exhibit extensive biological applications.
1,2,4-Triazoles and thiadiazines are themselves showing good biological activities such as anti-
microbial, anti-bacterial, anti-viral, anti-inflammatory, anti-oxidant, anti-cancer, anti-analgesic,
anti-tumor, anti-tubercular, anti-candidal, and cytotoxic activities!*8. In the light of the above
literature and abundance of bio-potentials of triazole and thiadiazines, we designed
dihydro[1,2,4]triazole[3,4-b]thiadiazines hoping that these structural frameworks may be useful

for the discovery of new molecules with good biological activity.

S _N
S._N [ TN
R e
N H
[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine dihydro[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine

Fig. 1: General structures of thiadiazines.

Sporadic  reports are available in the literature on the synthesis of
dihydro[1,2,4]triazole[3,4-b]thiadiazines.

Zhang® et al. described the novel synthesis of different dihydro[1,2,4]triazole[3,4-
b]thiadiazines (5) containing furan and thiophene nucleus through a stepwise synthetic route.
Initially, 4-amino-3-(3,4,5-trimethoxyphenyl)-1H-1,2,4-triazole-5(4H)-thione (1) was condensed
with furan or thiophene (2) in the ethanol containing a catalytic amount of conc. HCI to obtain
the triazole Schiff bases (3) bearing furan or thiophene ring. In the next step, these compounds 3
were treated with substituted phenacyl bromides (4) in the presence of ethanol having
triethylamine under reflux condition to generate the target dihydro[1,2,4]triazole[3,4-
b]thiadiazines (5).
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Sujatha and Vedula® reported the one-pot multi-component synthesis of substituted
dihydro[1,2,4]triazolo[3,4-b]thiadiazines containing Schiff bases (8) from the reaction of 4-
amino-5-hydrazinyl-4H-1,2 4-triazole-3-thiol (6), substituted aromatic aldehydes (7) and
different phenacyl bromides (4) in absolute ethanol having the catalytic amount of triethylamine

at reflux temperature.

(0}
N-N NH
| H
NH,
6 + 7 EtOH / Et;N
2eq reflux
(0}
Br
R
8
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Liangun?* et al. synthesized the substituted dihydrospiro[1,2,4]triazolo[3,4-
b][1,3,4]thiadiazine indolinones (12) from two steps synthesis. In the first step different 4-amino-
4H-1,2,4-triazole-3-thiols (9) were treated with indoline-2,3-dione (10) in the presence of
methanol having p-TSA as the catalyst to produce the compounds (11) at reflux temperature.
Then substituted phenacyl bromides (4) were reacted with compounds (11) in methanol
containing a catalytic amount of triethylamine (TEA) under reflux condition to generate the
target derivatives (12) in the second step. The final molecules were subjected to their anti-cancer

activity with good results.
N-N

N-N MeOH / p-TSA R sn
R Psm 7 0’2%@ R
N N reflux N

/
NH, H
0]

9 10 N

11

(0)
Br MeOH/Et3N
R reflux
4
N-N
/ o\
\
HN
o I
v
12
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Pyrazole is one of the versatile heterocyclic compounds exhibiting a wide range of
applications in the field of pharmaceutical, agrochemical, and therapeutic medicines. Pyrazole is
a five-member heterocyclic molecule with two nitrogen atoms positioned at 1,2 or adjacent.
Some of the living organisms are found with pyrazole-based natural products?*?. Most of the
pyrazole derivatives play a significant role in biological applications such as anti-HIV, anti-
malarial, antioxidant, anti-inflammatory, anti-microbial, anti-tumor, anti-pyretic, anti-analgesic,

ant-tubercular, anti-leishmanial, and anti-cancer activities?* (Fig.2).

F /\/\(N.
- N
F F N _N
" B
N._ = F
N F F
¥ F
Voriconazole Sitagliptin
NW I I//N
N
N7
AN %
0" 'NH,
Letrazole Deracoxib Surinabant
N
FQ{O S = CNH
Cl - N7
H,N
Celecoxib Crizotinib

Fig. 2: Marketed drugs based on 1,2,4-triazole and pyrazole scaffold.
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There are many reported methods available for the synthesis of pyrazole derivatives.

Some of the literature reports are presented as below.

Sarkara and Sahoo® described the synthesis of pyrazole derivatives (15) from the
reaction of different dienones (13) with various hydrazines (14) in the acid-catalyzed ethanolic

solvent at room temperature.

0 CH H EtOH / HCI RNJ\I\
P 2 + 3 R »
RJ\//C R” "NH, rt RM
13 14 15

Naveen®? et al. reported recently the synthesis, anti-oxidant activity, and crystal structure
of ethyl 1-(2,4-dimethylphenyl)-3-methyl-5-phenyl-1H-pyrazole-4-carboxylate (18) by refluxing
(E)-ethyl 2-benzylidene-3-oxobutanoate (16) with (2,4-dimethylphenyl)hydrazine (17) in the

presence of ethanol bearing acetic acid as catalyst.

H
N
| 0 N HZN'N/\©\ EtOH / cat.AcOH
reflux

16 17

18

Bhirud*! et al. conducted the reaction between the isonicotinohydrazide (19) and various
chalcones (20) using sulfamic acid as catalyst in the absolute ethanol at reflux condition to give
substituted (3,5-diphenyl-2,3-dihydro-1H-pyrazol-1-yl)(pyridin-4-yl)methanones (21). These

compounds were evaluated for their pharmacological activities.
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(0]
N~ H o Sulfamic acid (20 mol%)

reflux

19 20

Abdelhamida*? and co-worker synthesized the different pyrazole derivatives (24) by the
reaction of various [-ketoesters (22) with oxopropanehydrazonoyl chlorides (23) at room
temperature in EtOH having sodium acetate.

N
Ph)J\/LLO/\ + E \ﬁ/LO EtOH/EtONa . [
Cl g
rt o
o
22 23 /

Toche® et al. described the green synthesis of pyrazole (26) derivatives from the reaction
of 3-(3-methyl-5-0x0-4,5-dihydro-1H-pyrazol-1-yl)-3-oxopropanenitrile (25) with hydrazines

(14) in ethanol solvent at room temperature in good yields.

(0]
O
N
H EtOH N AN
N/K/CN + N
R T
25

Stirr, rt R (6)
14 26

Zhang** et al. developed the cyclocondensation reaction between allylic carbonates (27)
and arylazosulfones (28) using "BusP catalyst in the presence of dichloromethane at room
temperature to yield the pyrazoles (29).

R O "Bu,P (20 mol%) N\ o
R 4 Ar-NA
BocO 0} Ts—N=N-Ar > o

DCM, rt R
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Westermeyer®® et al. reported the regioselective synthesis of different pyrazole
derivatives (32) from the reaction tosylhydrazones (30) with various bromovinyl acetals in

tetrahydrofuran (THF) containing potassium carbonate at reflux condition.

R
(0 -N
\ + K,CO;, THF HN"
N_NH (0) > 0 S
Ts Br R reflux R o
R
PRESENT WORK:

Novel hybrid molecules containing three biological active scaffolds were expected to
possess good anti-viral and anti-cancer activities. Based on the literature survey, we designed a
new hybrid template having triazole, thiadiazine, and pyrazole in search of promising anti-viral
and anti-cancer activities. In the present chapter, we have developed pyrazolyl-
dihydro[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine core heterocyclic compounds via a one-pot,

multi-component reaction.

The synthesis of 3-(1H-pyrazol-1-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-
b][1,3,4]thiadiazine derivatives was carried out by a one-pot four-component reaction. In order
to optimize the chemistry, a model reaction using -amino-5-hydrazinyl-4H-1,2,4-triazole-3-thiol
(6), acetylacetone (33), 2,3-dimethoxybenzaldehyde (7a) and 4-methoxyphenacyl bromide (4a)
as starting materials (Scheme-1). The first step of the reaction was carried out in ethanol as
solvent at reflux temperature, in the presence of a catalytic amount of HCI vyielding the
intermediate 5-(3,5-dimethyl-1H-pyrazol-1-yl)-4-((4-methoxybenzylidene)amino)-4H-1,2,4-
triazole-3-thiol*®. The intermediate was not isolated instead of it 4-methoxyphenacyl bromide
(4a) was added to this reaction mixture. In order to drive the ring closure and to form the
thiadiazine moiety, various reaction conditions were explored (Table-1). On running this
reaction, either at room temperature or reflux temperature failed to yield the desired product.

Upon the addition of an organic base (such as pyridine, piperidine, or triethylamine), the desired
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product was formed. Using triethylamine and carrying the reaction at reflux temperature (entry

4) resulted in the formation of 34a in excellent yield.

/O
N-N o
0}
HS/QN\/\NNH2+ + 7 :é .
NHZH 0 ~o
6 33 Ta

H
H,CO
H,CO

-N N

7
A

2

\>\ A
N N)j
N B

Scheme-1: Model reaction. Reaction conditions: a) 6 (1 mmol), 33 (1 mmol), 7a (1 mmol),

EtOH, HCI; b) 4a (1 mmol), TEA (3 mmol), EtOH, reflux.

Table-1: Screening of the base catalyst.

Entry Solvent Base Yield (%) of 34a
1 EtOH -— 0
2 EtOH Pyridine 55
3 EtOH Piperidine 48
4 EtOH Triethylamine 92
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o._H )
N-N 0 1
HS/QNXENHZ + O;S + /(E[R + é EtOH / HCI
NH, R* R2 o TEA (3 mmol)
R3 X
7

reflux
r 11-15h
6 33 4
34 (a-p)
83 - 94%
N-N
5 N
) B
- o_H R? S N>\1\}j/
is—L Sy N2 + ;g 4 /? o EtOH / HCI NH
N H o
NH, = TEA (3 mmol) 0 A
o reflux —
Br 14-15h
6 33 2 4 34 (g-t)
84-92%

Scheme-2: One-pot, four-component synthesis of pyrazolyl-dihydro[1,2,4]triazolo[3,4-
b][1,3,4]thiadiazine derivatives 34a-t.

Using this methodology, a series of compounds were prepared using various substituted
benzaldehydes/heteryl aldehydes and phenacyl bromides (Scheme-2). This approach is simple
and affords the desired products in 83 to 94% yields (Table-2).

In the present investigation, pyrazole and dihydrothiadiazine skeletons were developed
using a one-pot, four-component reaction. Initially, the hydrazino functional group of compound
6 underwent cyclo condensation with acetylacetone 33 to form a pyrazole ring. Then an
appropriate amount of different aldehydes and substituted phenacyl bromides 4 were reacted
with amine (-NH2) and thiol (-SH) groups of compound 6 respectively by using triethylamine to
establish the dihydrothiadiazines (Scheme-3).
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Table-2: 3-(1H-pyrazol-1-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine derivatives

34a-t.
Product R?! R? R3 R4 R® X Time (h) Yield (%)
34a OCHs OCHs H H OCHs 11.30 92
34b H H CHs H CHs _ 11.00 91
34c H H NO> H NO> _ 14.30 83
34d H OCHs H H Cl . 12.00 86
34e Br H H H F . 12.30 90
34f Br H H H CHs _ 11.50 92
349 H H Cl H Br L 13.00 90
34h H H Cl H CHs _ 12.00 93
34i H OCHs OH OCHz3 H . 11.40 89
34j H F F F CH: 1400 92
34k H F F F H L 13.30 90
341 H OCHz OCHs OCHs3 F . 13.15 88
34m H OCHz OCHs OCHs3 H . 11.40 94
34n Cl H H H OCHzs _ 14.15 86
340 OCH3 H OCH3 H OCHs 12.00 94
34p OCHs; H OCHs H NO, 1400 92
34q . . . OCHs O 14.30 87
34r _ L L o CHs O 14.15 85
34s _ _ _ L NO> S 15.00 89
34t NO- O 14.50 92
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Scheme-3: Plausible reaction mechanism for the synthesis of compounds 34a-t.

The structures of all the final products were confirmed by their spectral data. The FT-IR
spectrum of product 34b showed a characteristic stretching band at 1681 cm™ corresponding to
the —.C=0 functional group, whereas the —~NH— group appeared at 3135 cm™. The 'H-NMR
spectrum of compound 34b showed characteristic peaks, such as two singlets at 2.21 and 2.95
ppm, arising from the two methyl groups on the pyrazole ring. Another two singlets appeared at
2.37 and 2.43 ppm that were assigned to the methyl groups on both phenyl moieties. The two —
CH- protons of the dihydrothiadiazine skeleton were visible as two doublets at 5.05 and 5.25

(J=5.2 Hz) ppm, respectively. The proton of the pyrazole ring showed a singlet at 6.00 ppm,
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whereas the—-NH-proton appeared at 7.42 ppm. The remaining aromatic protons appeared in the
region of 7.11-7.80 ppm. The *C-NMR spectrum of compound 34b showed peaks at 11.9 and
13.6 ppm for the two methyl groups on the pyrazole ring and 21.1 and 21.8 ppm for the two
methyl groups on the phenyl moiety. The characteristic carbons of the dihydrothiadiazine
skeleton appeared at 44.2 and 59.3 ppm, respectively. The pyrazole carbon displayed a peak at
107.8 ppm, whereas the carbonyl peak appeared as the most downfield signal at 193.7 ppm. The
remaining aromatic carbons appeared in the range of 127.3 to 151.8 ppm. Mass spectral analysis

of compound 5b showed a molecular mass ion m/z at 445.

X-ray Crystallography:

To confirm the structure, the crystalline material of compound 34h was isolated, and
single-crystal X-ray diffraction data were obtained. The compound crystallizes in a monoclinic

P21/n space group. The molecular structure of 34h in ORTEP representation was shown in Fig.
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Fig. 3: ORTEP representation of compound 34h.

Compound 34h has a 4-methylbenzoyl group and 4-chlorophenyl group on two adjacent
chiral centers of six-membered dihydrothiadiazine ring. The dihydrothiadiazine moiety is fused
with a triazole ring, which is further connected to a pyrazole ring through a C-N single bond. The
phenyl rings of 4-methylbenzoyl and 4-chlorophenyl groups are almost perpendicular (79.92°
and 82.28° respectively) to the mean plane of the fused six- and five-membered rings. The
pyrazole ring attached to triazole is making an angle of 55.59° with the mean plane of the fused
six- and five-membered rings. The bond distances and angles are consistent with the structure
derived from NMR data. The centrosymmetric space group (P21/n) indicates that the material is
a racemic mixture (Table-4). The unit cell contains two pairs of enantiomers and is connected
through non-covalent interactions.

Non-covalent intermolecular interactions, such as hydrogen bonding, play an essential
role in the binding of drugs to their targets, such as DNA or proteins. In this context, the
possibility of the presence of non-covalent interactions in the solid-state structure of compound
34h was explored. As a result, we were able to identify one N-H ... N hydrogen bonding, one
C-H ... O interaction, and one C-H ... N interaction (Fig. 4). The interactions and
corresponding symmetry transformations are listed in Table-3.

Table-3: Hydrogen bonding interactions

S.No | D-H...A H...A (A) | D...A (A) | D-H...A (°)
1 N(6)-H(6) ... N2)' | 2.50 31298 | 130
2 C(4)-H4)...N@4) |2.38 3.2637 | 150
3 C(19)-H(19) ... O(1)"" | 2.46 3.3727 160

Symmetry transformations used: (i) ¥2-x, Y2+y, Y2+z; (ii) -Y2-X, Y2+y,%-Z;
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Table-4: Important crystallographic data for compound 34h.

Compound

34h

Chemical formula
Formula weight
Crystal system
Space group

a (R)

b (A)

c (A)

a ()

£)

(%)

V (A3

Z

p(gem=)

 (mm)
Reflections collected
Reflections unique
Reflections [1> 26(1)]
Parameters

R1, WR2 [I= 2o(1)]
R1, wR2 [all data]
GOF on F?
Max./Min. Ap (e A-3)

CsH2CINgOS
464.97
Monoclinic
P21/n
14.2063(18)
8.4877(11)
20.022(3)

90

107.576(5)

90

2301.6(5)

4

1.342

0.285

34696

4077

4077

289

0.0471, 0.1330
0.0537, 0.1387
1.136
0.323/-0.710
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Fig. 4: Intermolecular H-bonding interactions of compound 34h in the crystal lattice.

Antiviral screening

The synthesized compounds (34a-t) were subjected to a broad antiviral screening. At a
concentration of 100 uM, no selective antiviral activity was observed for the following viruses:
influenza A (HIN1 and H3N2) and influenza B virus (in MDCK cells), respiratory syncytial
virus (in hep2 cells), yellow fever virus (in Huh7 cells), herpes simplex virus type 1 and 2 (in
HEL cells). However, several derivatives do show antiviral activity against the human
coronavirus 229 (hCoV229E) in HEL cells (Table-5). Especially compounds 34b and 34f
display promising activity with ECso values of 4.7 and 3.2 uM, respectively. Besides, both
derivatives lack cytotoxicity for the HEL cells giving rise to favorable selectivity indexes.
Table-5: Antiviral evaluation of compounds 34a-t against hCoV-229E. CCso: 50% cytotoxic
concentration, as determined by measuring the cell viability with the colorimetric formazan-
based MTS assay. ECs0:50% effective concentration or concentration producing 50% inhibition
of virus-induced cytopathic effect, as determined by measuring the cell viability with the
colorimetric formazan-based MTS assay. UDA: plant lectin Urticadioica agglutinin.

Compound Conc. unit hCoV229E (HEL cells)
CCsxo ECso
34b UM 81.5 4.7+0.5 (*)
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34c UM >100 24.4
34e UM >100 >100
34f UM >100 3.2£1.8 (*)
349 pM >100 >100
34h UM >100 38.0
345j UM 23.8 >100
34k UM >100 >100
34m UM >100 95.7
34n UM >100 >100
34p pM >100 >100
34q pM <0.8 >100
34r UM >100 >100
34s UM >100 >100
34t UM >100 >100
UDA pg/mi >100 2.1

(*) Mean value of three independent experiments =SEM.
Antitumoral screening

To investigate their anticancer potential, compounds 34a-t were tested in vitro for their
antiproliferative properties, using a real-time IncuCyteproliferation assay against an array of
solid and hematological cancers including LN-229 (glioblastoma), Capan-1 (pancreatic
adenocarcinoma), HCT-116 (colorectal carcinoma), NCI-H460 (lung carcinoma), DND-41
(acute lymphoblastic leukemia), HL-60 (acute myeloid leukemia), K-562 (chronic myeloid
leukemia)and Z-138 (non-Hodgkin lymphoma) cell lines. Docetaxel (a microtubule

depolymerization inhibitor) and staurosporine (STS, a pan-kinase inhibitor) were used as positive
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controls. From this screening campaign, two derivatives (compounds 34j and 34q) emerged that
showed low UM activity against the different cell lines (Table-6).

Table-6: Antitumoral evaluation of compounds from 34a-t. ICso: 50% inhibitory concentration,
LN-229: glioblastoma, Capan-1: pancreatic adenocarcinoma, HCT-116: colorectal carcinoma,
NCI-H460: lung carcinoma, DND-41: acute lymphoblastic leukemia, HL-60: acute myeloid
leukemia, K-562: chronic myeloid leukemia, Z-138: non-Hodgkin lymphoma, STS:

staurosporine.

Compd I1Cs0 (UM)
LN-229 Capan- HCT- NCI- DND- HL-60 K-562 Z-138
1 116 H460 41
34b 47.1 57.5 67.8 >100 39.3 50.9 10.4 48.4
34c >100 >100 >100 >100 >100 >100 >100 >100
34e >100 >100 >100 >100 >100 >100 >100 >100
34f >100 >100 >100 >100 >100 >100 >100 >100
34g >100 >100 >100 >100 >100 >100 >100 >100
34h >100 >100 >100 >100 >100 >100 >100 >100
34j* 2.7£0.2 2.3£0.2  2.5+0.09 56.0 2.4+04  13.0£2.8 3.4#0.2 1.9+0.03
34k >100 >100 >100 >100 >100 >100 >100 >100
34m >100 >100 >100 >100 >100 >100 >100 >100
34n 68.3 63.1 >100 >100 91.7 71.2 53.2 53.9
34p >100 >100 >100 >100 >100 >100 >100 >100

34qg* 0.7£0.09 1.1+0.7 1.0+0.4 2.5+0.2 0.6+0.2 2.0£0.4 2.3+16  0.4+0.005

34r 43.9 54.3 69.0 47.0 70.2 54.0 23.5 50.2
34s >100 >100 >100 >100 >100 >100 >100 >100
34t 62.7 >100 >100 >100 >100 745 79.3 49.5

Docetaxel*  0.0087 0.0042 0.0009 0.0038 0.0033 0.0023 0.0037 0.0011
+0.0004  +0.0021  +0.0008 +0.0029  +0.0014  +0.0003  +0.0003 +0.0008

STS* 0.0229 0.0007 0.0004 0.00010 0.0015 0.0043 0.0074 0.0224
+0.0021  #0.0002  +0.0001  +0.0000 +0.0004  +0.0022  +0.0017 +0.0074

(*) Mean value of two independent experiments £SEM.
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Because of the promising anti-tumoral profile of compounds 34j and 34q, their
apoptogenic potential in non-cancerous peripheral blood mononuclear cells (PBMCs) was
determined as counter screening. The activation of the executioner caspases-3 and -7 normally
precedes the manifestation of apoptosis as massive DNA fragmentation. Therefore, the caspase-
3/7 Green reagent was added to the PBMCs, which are also treated with different concentrations
of compounds 34j and 34q. When activated caspase 3 or 7 are intracellularly present, they will
cleave the Caspase-3/7 Green Reagent at the DEVD motif. This results in the release of a DNA
binding dye that fluorescently labels nuclear DNA of apoptotic cells. In addition, in order to
distinguish dead cells from live cells, a propidium iodide (PI) staining was carried out. As can be
derived from Fig. 5, only very high concentrations of compounds 34j and 34q (100 uM) give
rise to a small increase in the number of apoptotic and dead cells. Overall, these data indicate
that compounds 34j and 34q did not inhibit the viability of normal PBMCs and demonstrate

selectivity towards cancer cells over normal cells (Fig. 5).

34j 34
J q Bl Dead
100 1009 EE Apoptotic

80 80 B Live
» )
g 80 g 6o
k<] k<]
& 404 * 40|

20 20

0- 0
100 pM 20 uM 4 pm 08pM 016 pM DMSO 100 yM 20 M 4 M 0.8pyM 0.16yM DMSO

Fig. 5: Analysis of apoptosis induction by compounds 34j (left) and 34q (right) in PBMC
originating from two healthy donors. Apoptosis was determined by staining with IncuCyte®
Caspase 3/7 Green Reagent, whereas dead cells were identified by propidium staining, followed
by live cell monitoring. The percentages of cells with different staining patterns after 72 hours

are shown (mean + standard error bars).

Despite their promising antitumoral profile, the exact molecular target of compounds 34j
and 34qg remained elusive. In order to assess whether they interact with tubulin, an immune
fluorescence analysis of tubulin in HEp-2 cells treated for 3 hours with compounds 34j and 34q
was performed and compared to DMSO (vehicle control) and vincristine (a known tubulin
polymerization inhibitor, used as positive control). It can be observed that both compounds 34;j

and 34q inhibit the polymerization of tubulin in a dose-dependent manner (Fig. 6).
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Fig. 6: Immunofluorescence staining of alpha-tubulin in HEp-2 cells treated for 3 hours with
indicated compounds. (A) Representative images of normal alpha-tubulin after treatment with
DMSO (top) or typical phenotype after treatment with vincristine (bottom), (B) treatment with
compounds 34j and 34q. Green: alpha-tubulin, blue: DAPI. Scale bar: 25 uM

In conclusion, the synthesis of a new series of 3-(1H-pyrazol-1-yl)-6,7-dihydro-5H-
[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine derivatives was carried out in excellent yields via a one-
pot, four-component method using readily available starting materials. The reaction proceeds in
such a way with a high atom economy, leading to the formation of one C=N, two C-N, one C-C,
and one C-S bonds in a single operation, giving multi-annulated products. All the final
compounds were tested for their antiviral and antitumoral activity. It was demonstrated that
subtle structural modifications on the phenyl moieties allowed to tune the biological properties of
the compounds. Among the newly synthesized compounds, a number of derivatives show
promising antiviral activity against the hCoV-229E, whereas other derivatives exhibited
cytotoxicity in various cancer cell lines. In addition, it was demonstrated that the antitumoral

activity of these compounds is caused by the inhibition of tubulin polymerization.
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EXPERIMENTAL:

General procedure for the synthesis of (3-(3,5-dimethyl-1H-pyrazol-1-yl)-6-phenyl-6,7-
dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-7-yl)(phenyl)methanone derivatives (34a-
t).

4-Amino-5-hydrazino-4H-[1,2,4] triazole-3-thiol 6 (0.001 mol), acetylacetone 33 (0.001
mol), and appropriate aromatic aldehydes/heterocyclic aldehyde 7 or 2 (0.001 mol) were taken
into the round bottom flask having 5 mL of dry ethanol, and a catalytic amount of conc. HCI and
then refluxed for 5-7 h. To the reaction mixture substituted phenacyl bromides 4 (0.001 mol) and
triethylamine (TEA) (0.003 mol) were added. Then the reaction was continued under the reflux
condition for 6-8 h by monitoring TLC (CHCI3:CH3OH=95:5). The reaction mixture was cooled
to room temperature, diluted with water and the solid separated was filtered. The final product
was recrystallized from 6-8 mL ethanol.
X-ray Crystallography

The diffraction data was collected on Bruker APEX2 single-crystal X-ray diffractometer
equipped with a CCD area detector system, graphite monochromator, and a Mo-K, fine focus
sealed tube (A = 0.71073 A). Bruker SAINT PLUS*" was used for data reduction, SHELXT-
2014 was used for structure solution and SHELXL-2018* was used for full-matrix least-
squares refinement. Mercury 3.3 was used for molecular graphics®. All non-hydrogen atoms
were refined using anisotropic thermal parameters. All hydrogen atoms bound to carbons were
positioned geometrically and refined using a riding model.
Antiviral assay

The antiviral evaluation of the compounds against hCoV-229E was performed by seeding
HEL 299 cells (ATCC CCL-137; human lung fibroblast) into 384-well dishes. After 24 h at
37°C, serial dilutions of the compounds were added to the cells before infection with hCoV-
229E at 30 CCIDso (50% cell culture infective doses) per well. At 7 days post-infection, the
virus-induced cytopathogenic effect was measured colorimetrically by the formazan-based 3-
(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
(MTS) cell viability assay (Cell Titer 96 Aqueous One Solution Cell Proliferation Assay from
Promega, Madison, WI), and the antiviral activity was expressed as the 50% effective
concentration (ECso). In parallel, the 50% cytotoxic concentration (CCso) was derived from

mock-infected cells.
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Antitumoral assays

Cancer cell lines LN-229, Capan-1, HCT-116, NCI-H460, HL-60, K-562 and Z-138 were
acquired from the American Type Culture Collection (ATCC, Manassas, VA, USA) and the
DND-41 cell line was purchased from the Deutsche Sammlung von Mikroorganismen und
Zellkulturen (DSMZ Leibniz-Institut, Germany). All cell lines were cultured as recommended by
the suppliers. Adherent cell lines LN-229, Capan-1, HCT-116, and NCI-H460were seeded at a
density between 500 and 1500 cells per well, in 384-well tissue culture plates (Greiner). After
overnight incubation, cells were treated with different concentrations of the test compounds.
Suspension cell lines HL-60, K-562, Z-138, and DND-41 were seeded at densities ranging from
2500 to 5500 cells per well in 384-well culture plates containing the test compounds at the same
concentration points. The plates were incubated and monitored at 37°C for 72 h in an IncuCyte®
(Essen BioScience Inc., Sartorius) for real-time imaging of cell proliferation. Brightfield images
were taken every 3 h, with one field imaged per well under 10x magnification. Cell growth was
then quantified based on the percent cellular confluence as analyzed by the IncuCyte® image
analysis software and used to calculate CCso values by linear interpolation.
Apoptosis induction assay

Buffy coat preparations from healthy donors were obtained from the Blood Transfusion
Center in Leuven, Belgium. Peripheral blood mononuclear cells (PBMC) were isolated by
density gradient centrifugation over Lymphoprep (d=1.077 g/ml) (Nycomed, Oslo, Norway) and
cultured in a cell culture medium (DMEM/F12, Gibco Life Technologies, USA) containing 8%
FBS. PBMC were seeded at 28000 cells per well in 384-well, black-walled, clear-bottomed
tissue culture plates containing the test compounds at five different concentrations ranging from
100 to 0.16 uM. Propidium iodide was added at a final concentration of 1 pg/ml, and IncuCyte®
Caspase 3/7 Green Reagent was added as recommended by the supplier. The plates were
incubated and monitored at 37°C for 72 hours in the IncuCyte®. Images were taken every
3hours in the brightfield and the green and red fluorescence channels, with one field imaged per
well under 10x magnification. Quantification of the fluorescent signal after 72 hours in both
channels using the IncuCyte® image analysis software allowed calculating the percentage of
live, dead, and apoptotic cells. All compounds were tested in two independent experiments,

implying PBMC originated from two different donors.
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Tubulin immunofluorescence staining

Human cervix carcinoma HEp-2 cells were seeded at 15000c/well in 8-well chamber
slides (Ibidi). After overnight incubation, they were treated with compound or carrier (DMSO)
for 3h and then fixed with 4% paraformaldehyde (PFA), washed, and permeabilized. Further
treatment was performed according to standard immune fluorescence procedures and cell nuclei
were counterstained with DAPI. Employed antibodies are mouse anti-alpha tubulin (sc-5286,
Santa Cruz Biotechnology) and secondary goat anti-mouse 1gG conjugated to Alexa Fluor® 488
(A11001, Invitrogen). Images were taken with a Leica TCS SP5 confocal microscope employing
a HCX PL APO 63x (NA 1.2)/water immersion objective.
SPECTRAL DATA:

(6-(2,3-Dimethoxyphenyl)-3-(3,5-dimethyl-1H-pyrazol-1-yl)-6,7-dihydro-5H-[1,2,4] triazole
[3,4-b][1,3,4]thiadiazin-7-yl)(4-methoxyphenyl)methanone (34a):
Light yellow color solid (0.465 g, 92%); m.p.: 192-194°C; IR

1‘})/ (KB, vmax/cm 1): 3211 (-NH-), 1668 (-C=0); 'H-NMR (400
A MHz, CDCls, & ppm): 2.24 (s, 3H, -CHs), 2.40 (s, 3H, -CHa),
3.87 (s, 6H, -OCHg), 3.90 (s, 3H, -OCHs), 5.28 (unresolved

doublet, 2H, -CH-), 6.00 (s, 1H, -CH- of pyrazole ring), 6.68
(d, 1H, J=7.6 Hz, Ar-H), 6.88 (d, 1H, J=8.0 Hz, Ar-H), 6.94 (s, 1H, -NH-), 6.97 (d, 2H, J=8.4
Hz, Ar-H), 7.11 (d, 1H, J=8.0 Hz, Ar-H), 7.94 (d, 2H, J=8.8 Hz, Ar-H); *C-NMR (100 MHz,
CDCls, 6 ppm): 11.7, 13.7, 42.6, 54.9, 55.7, 55.8, 61.0, 107.7, 112.9, 114.3, 119.7, 124.4, 127 .4,
129.4, 130.3, 130.8, 131.2, 142.9, 146.1, 151.8, 152.6, 164.6, 193.2; ESI-MS (m/z): 507
[M+H]"; Analytical calculated formulae CasH2sNeO4S: C, 59.27; H, 5.17; N, 16.59; S, 6.33;
Found: C, 59.22; H, 5.22; N, 16.53; S, 6.30.
(3-(3,5-Dimethyl-1H-pyrazol-1-yl)-6-(p-tolyl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]
thiadiazin-7-yl)(p-tolyl)methanone (34b):

N- 1\\1% N White solid (0.408 g, 91%); m.p.: 194-196°C; IR (KBr, vmax/cm’
O N >j 1): 3135 (-NH-), 1681 (-C=0); H-NMR (400 MHz, CDCls, &
J ppm): 2.22 (s, 3H, -CHs), 2.30 (s, 3H, -CHz), 2.38 (s, 3H, -CHy),

O 2.43 (s, 3H, -CHs3), 5.05 (unresolved doublet, 1H, -CH-), 5.25 (d,

1H, J=5.2 Hz, -CH-), 6.00 (s, 1H, -CH- of pyrazole ring), 7.11 (d,
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2H, J=8.0 Hz, Ar-H), 7.29 (d, 4H, J=7.2 Hz, Ar-H), 7.42 (s, 1H, -NH-), 7.80 (d, 2H, J=8.0 Hz,
Ar-H); BC-NMR (100 MHz, CDCls, & ppm): 11.9, 13.6, 21.1, 21.8, 44.2, 59.3, 107.8, 127.3,
128.8, 129.7, 129.8, 132.0, 132.7, 138.8, 141.3, 143.1, 145.6, 145.7, 151.8, 193.7; ESI-MS
(m/z): 445 [M+H]"; Analytical calculated formulae C2sH24N6OS: C, 64.84; H, 5.44; N, 18.90; S,
7.21; Found: C, 64.89; H, 5.40; N, 18.85; S, 7.18.
(3-(3,5-Dimethyl-1H-pyrazol-1-yl)-6-(4-nitrophenyl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-
b][1,3,4]thiadiazin-7-yl)(4-nitrophenyl)methanone (34c):

Yellow solid (0.419 g, 83%); m.p.: 242-244°C; IR (KBr, vmax/cm"
1): 3302 (-NH-), 1641 (-C=0); *H-NMR (400 MHz, CDCls,
ppm): 2.16 (s, 3H, -CHz3), 2.44 (s, 3H, -CH3), 5.05 (d, 1H, J=6.0
Hz, -CH-), 5.20 (d, 1H, J=6.0 Hz, -CH-), 6.00 (s, 1H, -CH- of
pyrazole ring), 7.30 (d, 2H, J=8.4 Hz, Ar-H), 7.38 (d, 2H, J=8.4
Hz, Ar-H), 7.65 (d, 2H, J=8.1 Hz, Ar-H), 7.73 (s, 1H, -NH-), 7.77 (d, 2H, J=8.4 Hz, Ar-H); 13C-
NMR (100 MHz, CDCls, 8 ppm): 12.0, 13.5, 44.1, 59.1, 107.9, 128.9, 129.0, 129.2, 129.9,
131.9, 134.3, 134.9, 141.0, 143.1, 1455, 146.0, 151.8, 193.5; ESI-MS (m/z): 507 [M+H]*;
Analytical calculated formulae C22H1sNgOsS: C, 52.17; H, 3.58; N, 22.12; S, 6.33; Found: C,
52.23; H, 3.54; N, 22.17; S, 6.30.

(4-Chlorophenyl)(3-(3,5-dimethyl-1H-pyrazol-1-yl)-6-(3-methoxyphenyl)-6,7-dihydro-5H-
[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-7-yl)methanone (34d):
N-N Cream color solid (0.412 g, 86%); m.p.: 188-190°C; IR (KBr,
s/&y%“}b/ vmax/cm1): 3241 (-NH-), 1672 (-C=0); *H-NMR (400 MHz,
N CDCls, & ppm): 2.19 (s, 3H, -CHs), 2.41 (s, 3H, -CHs), 3.74 (s,
3H, -OCHs), 5.04 (t, 1H, J=4.0 Hz, -CH-), 5.25 (d, 1H, J=4.4
0~ Hz, -CH-), 6.00 (s, 1H, -CH- of pyrazole ring), 6.83 (d, 1H,
J=6.8 Hz, Ar-H), 6.96 (s, 1H, Ar-H), 6.98 (d, 1H, J=6.4 Hz, Ar-H), 7.23 (t, 1H, J=6.4 Hz, Ar-H),
7.47 (d, 2H, J=6.4 Hz, Ar-H), 7.58 (s, 1H, -NH-), 7.84 (d, 2H, J=6.8 Hz, Ar-H);13C-NMR (100
MHz, CDCls, 6 ppm): 12.0, 13.6, 44.9, 55.3, 59.8, 107.9, 113.3, 114.4, 119.4, 129.5, 130.1,
130.2, 132.9, 137.1, 140.9, 141.2, 143.2, 145.5, 151.8, 160.0 192.9; ESI-MS (m/z): 481 [M+H]";
Analytical calculated formulae C23H21CINsO,S: C, 57.44; H, 4.40; N, 17.47; S, 6.67; Found: C,
57.48; H, 4.45; N, 17.42; S, 6.62.

Cl
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(6-(2-Bromophenyl)-3-(3,5-dimethyl-1H-pyrazol-1-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-
b][1,3,4]thiadiazin-7-yl)(4-fluorophenyl)methanone (34e):

N-N Golden yellow color solid (0.461 g, 90%); m.p.: 195-197°C; IR
F O S/QN»\I‘;:IJ/ (KBr, vmax/cm™1): 3138 (-NH-), 1692 (-C=0); *H-NMR (400
NH MHz, CDCl3, 8 ppm): 2.15 (s, 3H, -CHs), 2.48 (s, 3H, -CHa),
0 O Br 5.22 (d, 1H, J=4.0 Hz, -CH-), 5.50 (t, 1H, J=4.8 Hz, -CH-),
5.99 (s, 1H, -CH- of pyrazole ring), 7.17 (s, 1H, -NH-), 7.20 (d,
2H, J=8.4 Hz, Ar-H), 7.24 (d, 2H, J=2.0 Hz, Ar-H), 7.59 (d, 1H, J=7.6 Hz, Ar-H), 7.78 (d, 1H,
J=5.6 Hz, Ar-H), 8.01 (dd, 2H, J=8.8 Hz, J=5,2 Hz, Ar-H); 3C-NMR (100 MHz, CDCls, &
ppm): 11.9, 13.3, 43.1, 58.3, 107.8, 116.3, 116.5, 123.2, 128.1, 128.6, 130.2, 131.7, 131.8,
133.4, 136.4, 140.0, 142.9, 1455, 151.7, 166.2, 167.8 192.5; ESI-MS (m/z): 515 [M+2]*;
Analytical calculated formulae C22H1sBrFNgOS: C, 51.47; H, 3.53; N, 16.37; S, 6.25; Found: C,
51.42; H, 3.57; N, 16.32; S, 6.20.
(6-(2-Bromophenyl)-3-(3,5-dimethyl-1H-pyrazol-1-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-
b][1,3,4]thiadiazin-7-yl)(p-tolyl)methanone (34f):

Lemon yellow color solid (0.468 g, 92%); m.p.: 201-203°C; IR
(KBr, vmax/lcm™ 1): 3148 (-NH-), 1673 (-C=0); 'H-NMR (400
MHz, CDCls, & ppm): 2.20 (s, 3H, -CHa), 2.44 (s, 3H, -CH3),
2.46 (s, 3H, -CHa), 5.22 (d, 1H, J=4.0 Hz, -CH-), 5.49 (t, 1H,
J=4.8 Hz, -CH-), 6.00 (s, 1H, -CH- of pyrazole ring), 7.19 (t,
2H, J=8.0 Hz, Ar-H), 7.23 (s, 1H, -NH-), 7.31 (d, 2H, J=8.0 Hz, Ar-H), 7.58 (d, 1H, J=7.6 Hz,
Ar-H), 7.65 (d, 1H, J=5.2 Hz, Ar-H), 7.86 (d, 2H, J=8.0 Hz, Ar-H); 3C-NMR (100 MHz,
CDCls, 6 ppm): 11.9, 13.5, 21.8, 42.9, 57.8, 107.8, 123.0, 128.1, 128.6, 128.9, 129.9, 130.2,
131.7, 133.4, 136.6 140.1, 142.9, 145.6, 145.7, 151.8, 193.7; ESI-MS (m/z): 511 [M+2]*;
Analytical calculated formulae C23H21BrNeOS: C, 54.23; H, 4.16; N, 16.50; S, 6.29; Found: C,
54.28; H, 4.21; N, 16.44; S, 6.33.
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(4-Bromophenyl)(6-(4-chlorophenyl)-3-(3,5-dimethyl-1H-pyrazol-1-yl)-6,7-dihydro-5H-
[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-7-yl)methanone (34Q):

White solid (0.476 g, 90%); m.p.: 205-207°C; IR (KBF, vmax/cm"
1): 3291 (-NH-), 1688 (-C=0); *H-NMR (400 MHz, CDCls, &
ppm): 2.16 (s, 3H, -CHa), 2.44 (s, 3H, -CHz), 5.05 (dd, 1H, J=6.0
Hz, J=3.6 Hz, -CH-), 5.2 (d, 1H, J=6.0 Hz, -CH-), 6.00 (s, 1H, -
CH- of pyrazole ring), 7.30 (d, 2H, J=8.4 Hz, Ar-H), 7.38 (d, 2H,
J=8.4 Hz, Ar-H), 7.65 (d, 2H, J=8.1 Hz, Ar-H), 7.72 (s, 1H, -NH-), 7.77 (d, 2H, J=8.4 Hz, Ar-
H); 1*C-NMR (100 MHz, CDClIs, & ppm): 12.0, 13.5, 44.9, 59.5, 107.9, 129.0, 129.3, 132.1,
130.2 132.6, 133.2, 134.2, 135.1, 140.6, 143.1, 145.3, 151.8, 192.8; ESI-MS (m/z): 531 [M+2]*;
Analytical calculated formulae C22H1sBrCINgOS: C, 49.87; H, 3.42; N, 15.86; S, 6.05; Found: C,
49.84; H, 3.48; N, 15.83; S, 6.12.
(6-(4-Chlorophenyl)-3-(3,5-dimethyl-1H-pyrazol-1-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-
b][1,3,4]thiadiazin-7-yl)(p-tolyl)methanone (34h):

White solid (0.431 g, 93%); m.p.: 214-216°C; IR (KBr, vmax/cm1):
3219 (-NH-), 1675 (-C=0); 'H-NMR (400 MHz, CDCl3+DMSO-
de, & ppm): 2.25 (s, 3H, -CHs), 2.31 (s, 3H, -CHa), 2.44 (s, 3H, -
CHs), 3.21 (s, 1H, -NH-), 4.99 (unresolved singlet, 1H, -CH-), 5.69
(d, 1H, J=5.2 Hz, -CH-), 6.06 (s, 1H, -CH- of pyrazole ring), 7.19
(d, 1H, J=7.2 Hz, Ar-H), 7.28 (d, 1H, J=6.4 Hz, Ar-H), 7.33 (d, 2H, J=7.6 Hz, Ar-H), 7.47 (s,
2H, Ar-H), 7.90 (s, 2H, Ar-H); 3C-NMR (100 MHz, CDClz+DMSO-ds, & ppm): 11.4, 13.7,
21.8, 42,5, 58.2, 107.6, 128.9, 129.1, 129.3, 129.8, 132.2, 133.9, 135.2, 141.8, 142.8, 145.6,
146.6, 151.4, 194.3; ESI-MS (m/z): 465 [M+H]"; Analytical calculated formulae
C23H21CIN6OS: C, 59.41; H, 4.55; N, 18.07; S, 6.90; Found: C, 59.45; H, 4.51; N, 18.10; S, 6.85.
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(3-(3,5-Dimethyl-1H-pyrazol-1-yl)-6-(4-hydroxy-3,5-dimethoxyphenyl)-6,7-dihydro-5H-
[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-7-yl)(phenyl)methanone (34i):

Green solid (0.437 g, 89%); m.p.: 196-198°C; IR (KBr, vmax/cm™1):
3435 (-OH), 3134 (-NH-), 1653 (-C=0); 'H-NMR (400 MHz,
CDCI3+DMSO-ds, 8 ppm): 2.21 (s, 3H, -CHs), 2.25 (s, 3H, -CHj3),
3.71 (s, 6H, -OCH3),4.80 (t, 1H, J=6.8 Hz, -CH-), 5.86 (d, 1H, J=6.0
Hz, -CH-), 6.11 (s, 1H, -CH- of pyrazole ring), 6.35 (s, 1H, -OH), 6.77
(s, 2H, Ar-H), 7.07 (s, 1H, -NH-), 7.54 (t, 2H, J=8.0 Hz, Ar-H), 7.67 (t, 1H, J=7.2 Hz, Ar-H),
8.00 (d, 2H, J=7.2 Hz, Ar-H); 3C-NMR (100 MHz, CDCls, & ppm): 11.9, 13.5, 45.4, 56.2,
60.8, 104.8, 107.8, 128.7, 129.1, 131.0, 134.5, 134.7, 138.4, 141.5, 143.2, 145.4, 151.7, 153.5,
194.1; ESI-MS (m/z): 493 [M+H]"; Analytical calculated formulae C24H24Ns04S: C, 58.52; H,
4.91; N, 17.06; S, 6.51; Found: C, 58.57; H, 4.94; N, 17.10; S, 6.47.
(3-(3,5-Dimethyl-1H-pyrazol-1-yl)-6-(3,4,5-trifluorophenyl)-6,7-dihydro-5H-[1,2,4]triazole
[3,4-b][1,3,4]thiadiazin-7-yl)(p-tolyl)methanone (34j):

White solid (0.445 g, 92%); m.p.: 215-217°C; IR (KBr, vmax/cm™1):
3219 (-NH-), 1674 (-C=0); 'H-NMR (400 MHz, CDCls, 8 ppm):
2.19 (s, 3H, -CHs3), 2.43 (s, 3H, -CHa), 2.50 (s, 3H, -CH3), 3.48 (s,
1H, -NH-), 5.035 (t, 1H, J=8.0 Hz, -CH-), 5.48 (d, 1H, J=8.0 Hz, -
CH-), 6.00 (s, 1H, -CH- of pyrazole ring), 6.67 (t, 2H, J=8.4 Hz, Ar-
H), 7.30 (d, 2H, J=8.4 Hz, Ar-H), 7.82 (d, 2H, J=8.0 Hz, Ar-H); 13 C-NMR (100 MHz, CDCls,
6 ppm): 11.9, 135, 21.8, 44.1, 53.1, 101.3, 107.9, 127.5, 128.9, 129.9, 129.8, 131.6, 141.3,
143.2, 145.6, 146.1, 151.8, 160.0, 192.2; ESI-MS (m/z): 485 [M+H]*; Analytical calculated
formulae C23H19F3NgOS: C, 57.02; H, 3.95; N, 17.35; S, 6.62; Found: C, 57.17; H, 3.99; N,
17.39; S, 6.62.
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(3-(3,5-Dimethyl-1H-pyrazol-1-yl)-6-(3,4,5-trifluorophenyl)-6,7-dihydro-5H-[1,2,4]triazole
[3,4-b][1,3,4]thiadiazin-7-yl)(phenyl)methanone (34k):

Light yellow color solid (0.423 g, 90%); m.p.: 182-184°C; IR (KBr,
vmax/cm 1): 3207 (-NH-), 1681 (-C=0); H-NMR (400 MHz, CDCls,
6 ppm): 2.15 (s, 3H, -CH3), 2.49 (s, 3H, -CHs), 5.34 (t, 1H, J=8.0 Hz,
-CH-), 5.56 (d, 1H, J=8.4 Hz, -CH-), 5.99 (s, 1H, -CH- of pyrazole
ring), 6.67 (t, 2H, J=8.4 Hz, Ar-H), 7.15 (s, 1H, -NH-), 7.51 (t, 2H,
J=7.6 Hz, Ar-H), 7.64 (t, 1H, J=7.2 Hz, Ar-H), 7.94 (d, 2H, J=7.6 Hz, Ar-H); 13C-NMR (100
MHz, CDCls, 8 ppm): 11.9, 13.4, 44.3, 53.2, 101.3, 107.9, 127.5, 128.9, 129.1, 129.2, 130.4,
134.8, 134.9, 141.2, 143.2, 145.6, 151.8, 192.7; ESI-MS (m/z): 471 [M+H]"; Analytical
calculated formulae C22H17F3NeOS: C, 56.16; H, 3.64; N, 17.86; S, 6.82; Found: C, 56.12; H,
3.60; N, 17.90; S, 6.87.
(3-(3,5-Dimethyl-1H-pyrazol-1-yl)-6-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-[1,2,4]
triazole[3,4-b][1,3,4]thiadiazin-7-yl)(4-fluorophenyl)methanone (34l):

White solid (0.461 g, 88%); m.p.: 196-198°C; IR (KBr, vmax/cm1):
3175 (-NH-), 1665 (-C=0); 'H-NMR (400 MHz, CDClz+ DMSO-
de, & ppm): 2.18 (s, 3H, -CHs), 2.22 (s, 3H, -CHa), 3.69 (s, 3H, -
OCHpa), 3.70 (s, 3H, -OCHBg), 3.87 (s, 3H, -OCHz3), 4.45 (t, 1H, J=6.8
Hz, -CH-), 5.83 (d, 1H, J=6.4 Hz, -CH-), 6.15 (s, 1H, -CH- of
pyrazole ring), 6.87 (s, 1H, Ar-H), 6.97 (s, 1H, Ar-H), 7.07 (s, 1H, -NH-), 7.12 (d, 2H, J=7.2
Hz, Ar-H), 8.01 (d, 2H, J=8.4 Hz, Ar-H); 3C-NMR (100 MHz, CDCls, é ppm): 11.7, 13.7,
42.5,54.9, 55.7, 55.8, 61.0, 107.7, 112.9, 114.3, 119.7, 124.4, 127.4, 129.4, 131.2, 142.9, 151.7,
152.6, 164.6, 193.2; ESI-MS (m/z): 525 [M+H]*; Analytical calculated formulae C25H25FN6OaS:
C,57.24; H, 4.80; N, 16.02; S, 6.11; Found: C, 57.20; H, 4.85; N, 16.17; S, 6.15.
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(3-(3,5-Dimethyl-1H-pyrazol-1-yl)-6-(3,4,5-trimethoxyphenyl)-6,7-dihydro-5H-[1,2,4]
triazole[3,4-b][1,3,4]thiadiazin-7-yl)(phenyl)methanone (34m):

Golden yellow color solid (0.475 g, 94%); m.p.: 192-194°C; IR (KBr,
vmax/cm™1): 3129 (-NH-), 1680 (-C=0); 'H-NMR (400 MHz, CDCls,
6 ppm): 2.19 (s, 3H, -CHs3), 2.39 (s, 3H, -CH3), 3.48 (s, 6H, -OCH3),
3.78 (s, 3H, -OCHg), 5.00 (t, 1H, J=5.2 Hz, -CH-), 5.31 (d, 1H, J=5.6
Hz, -CH-), 6.00 (s, 1H, -CH- of pyrazole ring), 6.66 (s, 2H, Ar-H), 7.50
(t, 2H, J=7.6 Hz, Ar-H), 7.59 (s, 1H, -NH-), 7.63 (t, 1H, J=7.6 Hz, Ar-H), 7.90 (d, 2H, J=7.6 Hz,
Ar-H); 3C-NMR (100 MHz, CDCls,  ppm): 11.9, 13.5, 45.4, 56.2, 60.6, 60.8, 104.8, 107.8,
128.7, 129.1, 131.0, 134.5, 134.7, 138.4, 141.5, 143.2, 145.4, 151.7, 153.5, 194.1; ESI-MS
(m/z): 507 [M+H]"; Analytical calculated formulae C2sH26Ns04S: C, 59.27; H, 5.17; N, 16.59; S,
6.33; Found: C, 59.24; H, 5.20; N, 16.54; S, 6.38.
(6-(2-Chlorophenyl)-3-(3,5-dimethyl-1H-pyrazol-1-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b]
[1,3,4]thiadiazin-7-yl)(4-methoxyphenyl)methanone (34n):

White solid (0.412 g, 86%); m.p.: 198-200°C; IR (KBr,
vmax/cm-1): 3143 (-NH-), 1671 (-C=0); 'H-NMR (400 MHz,
CDCls, 6 ppm): 2.21 (s, 3H, -CHz), 2.45 (s, 3H, -CHs), 3.90
(s, 3H, -OCHg), 5.18 (d, 1H, J=4.0 Hz, -CH-), 5.50 (t, 1H,
J=4.4 Hz, -CH-), 6.00 (s, 1H, -CH- of pyrazole ring), 6.98 (d,
2H, J=8.8 Hz, Ar-H), 7.16-7.23 (m, 2H, Ar-H), 7.29 (s, 1H, -NH-), 7.40 (d, 1H, J=8.0 Hz, Ar-
H), 7.60 (d, 1H, J=4.8 Hz, Ar-H), 7.94 (d, 2H, J=8.4 Hz, Ar-H); 13C-NMR (100 MHz, CDCls, §
ppm): 12.0, 13.5, 21.8, 44.1, 59.1, 107.9, 128.9, 129.0, 129.2, 129.9, 131.9, 134.3, 134.9, 141.0,
143.1, 145.5, 145.9, 151.8, 193.5; ESI-MS (m/z): 481 [M+H]"; Analytical calculated formulae
C23H21CIN6O2S: C, 57.44; H, 4.40; N, 17.47; S, 6.67; Found: C, 57.40; H, 4.45; N, 17.1; S, 6.62.
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(6-(2,4-Dimethoxyphenyl)-3-(3,5-dimethyl-1H-pyrazol-1-yl)-6,7-dihydro-5H-[1,2,4] triazole
[3,4-b][1,3,4]thiadiazin-7-yl)(4-methoxyphenyl)methanone (340):

Yellow solid (0.475 g, 94%); m.p.: 150-152°C; IR (KBr, vmax/cm"
1): 3210 (-NH-), 1670 (-C=0); *H-NMR (400 MHz, DMSO-ds, &
ppm): 2.19 (s, 3H, -CHs), 2.22 (s, 3H, -CH3), 3.69 (s, 3H, -OCHa),
3.70 (s, 3H, -OCHj3), 3.87 (s, 3H, -OCHa), 4.45 (t, 1H, J=6.8 Hz, -
CH-), 5.83 (d, 1H, J=6.4 Hz, -CH-), 6.16 (s, 1H, -CH- of pyrazole
ring), 6.86 (d, 1H, J=8.4 Hz, Ar-H), 6.98 (d, 1H, J=8.4 Hz, Ar-H), 7.07 (s, 1H, -NH-), 7.10 (d,
2H, J=8.0 Hz, Ar-H), 7.12 (s, 1H, Ar-H), 8.01 (d, 2H, J=8.4 Hz, Ar-H); 3C-NMR (100 MHz,
CDCls, 6 ppm): 11.7, 13.7, 42.6, 54.9, 55.7, 55.8, 61.0, 107.7, 112.9, 114.3, 119.7, 124.4, 127 4,
129.4, 130.3, 130.8, 131.2, 142.9, 146.1, 151.8, 152.6, 164.6, 193.2; ESI-MS (m/z): 507
[M+H]*; Analytical calculated formulae C2sH26NeO4S: C, 59.27; H, 5.17; N, 16.59; S, 6.33;
Found: C, 59.24; H, 5.14; N, 16.63; S, 6.30.
(6-(2,4-dimethoxyphenyl)-3-(3,5-dimethyl-1H-pyrazol-1-yl)-5H-[1,2,4]triazolo[3,4-b][1,3,4]
thiadiazin-7-yl)(4-nitrophenyl)methanone (34p).

17/1\\% N Yellow solid (0.456 g, 88%); m.p.: 236-238°C; IR (KBr, vmax/cm"
Sj\;m N)j 1): 3135 (-NH-), 1681 (-C=0); *H-NMR (400 MHz, CDClz, &
o ppm): 2.35 (s, 3H, -CH3), 2.42 (s, 3H, -CH3), 3.79 (s, 3H, -OCHj3),
3.88 (s, 3H, -OCHj3), 6.08 (s, 1H, -CH- of pyrazole ring), 6.48 (s,
= ) 1H, Ar-H), 6.62 (dd, 1H, J=8.4 Hz, J=6.4 Hz, Ar-H), 7.27 (s, 1H,
-NH-), 7.43 (d, 1H, J=8.8 Hz, Ar-H), 7.95 (d, 2H, J=8.8 Hz, Ar-H), 8.31 (d, 2H, J=8.8 Hz, Ar-
H); 3C-NMR (100 MHz, CDCls, & ppm): 11.7, 13.7, 55.6, 55.7, 98.5, 104.7, 108.1, 112.9,
114.6, 123.9, 131.0, 131.2, 138.3, 141.2, 143.6, 146.5, 149.4, 152.4, 16.2, 159.1, 163.3, 196.0;
Analytical calculated formulae C24H2:N7OsS: C, 55.48; H, 4.07; N, 18.87; S, 6.17; Found: C,

55.43; H, 4.02; N, 18.92; S, 6.21.
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1
A

(3-(3,5-Dimethyl-1H-pyrazol-1-yl)-6-(furan-2-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b]
[1,3,4]thiadiazin-7-yl)(4-methoxyphenyl)methanone (34q):
N-N Brown solid (0.379 g, 87%); m.p.: 152-154°C; IR (KBr,
SAN%\}'NJ/ vmax/cm” 1): 3195 (-NH-), 1672 (-C=0): H-NMR (400
NH MHz, CDCls, 8 ppm): 2.30 (s, 3H, -CHz3), 2.34 (s, 3H, -
CHz), 3.92 (s, 3H, -OCHs3), 5.23 (unresolved singlet, 2H, -
CH- and =CH), 6.03 (s, 1H, -CH- of pyrazole ring), 6.30 (s,
1H, -CH-), 6.32 (s, 1H, =CH), 7.02 (d, 3H, J=8.8 Hz, Ar-H), 7.35 (s, 1H, -NH-), 7.94 (d, 2H,
J=8.4 Hz, Ar-H); ESI-MS (m/z): 437 [M+H]"; Analytical calculated formulae C21H20NsO3S: C,
57.79; H, 4.62; N, 19.25; S, 7.35; Found: C, 57.83; H, 4.66; N, 19.21; S, 7.31.
(3-(3,5-Dimethyl-1H-pyrazol-1-yl)-6-(furan-2-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b]
[1,3,4]thiadiazin-7-yl)(p-tolyl)methanone (34r):
N Brown solid (0.357 g, 85%); m.p.: 149-151°C; IR (KBr,
Nyl\}b/ vmax/cm1): 3204 (-NH-), 1666 (-C=0); *H-NMR (400 MHz,
NH CDCls, & ppm): 2.30 (s, 3H, -CHs), 2.34 (s, 3H, -CHs), 2.46
(s, 3H, -CHa), 5.26 (unresolved singlet, 2H, -CH-), 6.03 (s,
1H, -CH- of pyrazole ring), 6.31 (d, 2H, J=8.0 Hz, Ar-H),
7.03 (s, 1H, -NH-), 7.35 (d, 3H, J=8.8 Hz, Ar-H), 7.85 (d, 2H, J=8.0 Hz, Ar-H); **C-NMR (100
MHz, CDCls, 6 ppm): 11.6, 13.7, 21.9, 39.8, 53.0, 107.7, 109.2, 111.0, 128.9, 130.0, 131.6,
140.6, 142.7, 143.1, 146.1, 146.7, 148.3, 152.0, 194.4; ESI-MS (m/z): 421 [M+H]*; Analytical
calculated formulae C21H20N6O2S: C, 59.98; H, 4.79; N, 19.99; S, 7.63; Found: C, 59.94; H, 4.7;
N, 19.94; S, 7.68.
(3-(3,5-Dimethyl-1H-pyrazol-1-yl)-6-(thiophen-2-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b]
[1,3,4]thiadiazin-7-yl)(4-nitrophenyl)methanone (34s):

N-N Golden color solid (0.415 g, 89%); m.p.: 204-206°C; IR

O N /Q \>\ N\ -1 1
2 SN 1\>j (KBr, vmax/cm- 1): 3281(-NH-), 1696 (-C=0); H-NMR
NH (400 MHz, CDCIl3+DMSO-ds, 8 ppm): 2.26 (s, 3H, -

0 A CHs), 2.27 (s, 3H, -CHs), 5.47 (t, 1H, J=3.6 Hz, -CH-),
= 5.88 (d, 1H, J=3.2 Hz, -CH-), 6.10 (s, 1H, -CH- of
pyrazole ring), 6.97 (t, 1H, J=4.4 Hz, Ar-H), 7.17 (d, 1H, J=4.4 Hz, Ar-H), 7.31 (d, 1H, J=4.8

Hz, Ar-H), 7.35 (s, 1H, -NH-), 8.37 (s, 4H, Ar-H); 3C-NMR (100 MHz, CDCls+DMSO-ds, 5
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ppm): 11.4, 13.8, 42.9, 53.4, 107.5, 124.1, 126.3, 126.5, 127.4, 129.3, 130.8, 139.9, 142.9,
146.9, 149.6, 150.7, 151.3, 194.5; ESI-MS (m/z): 468 [M+H]"; Analytical calculated formulae
C20H17N70sS: C, 51.38; H, 3.67; N, 20.97; S, 13.72; Found: C, 51.34; H, 3.62; N, 20.94; S,
13.76.

(3-(3,5-Dimethyl-1H-pyrazol-1-yl)-6-(furan-2-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b]
[1,3,4]thiadiazin-7-yl)(4-nitrophenyl)methanone (34t):

White solid (0.414 g, 92%); m.p.: 201-203°C; IR (KBr,
vmax/cm” 1): 3278 (-NH-), 1698 (-C=0); H-NMR (400
MHz, CDCl3+DMSO-ds, 6 ppm): 2.25 (s, 3H, -CHz),
2.27 (s, 3H, -CHj3), 5.28-5.32 (m, 1H, -CH-), 5.78 (d, 1H,
J=4.0 Hz, -CH-), 6.08 (s, 1H, -CH- of pyrazole ring), 6.45
(s, 1H, -NH-), 7.14 (d, 1H, J=4.0 Hz, Ar-H), 7.48 (d, 1H, J=4.0 Hz, Ar-H), 7.85 (t, 1H, J=8.4
Hz, Ar-H), 8.29 (d, 2H J=8.4 Hz, Ar-H), 8.33 (d, 2H, J=7.2 Hz, Ar-H); *C-NMR (100 MHz,
CDCI3+DMSO-ds, 6 ppm): 11.2, 13.8, 49.8, 52.5, 107.5, 109.2, 111.0, 124.1, 124.3, 130.4,
130.6, 142.9, 143.0, 148.1, 149.1, 150.7 151.3, 194.0; ESI-MS (m/z): 452 [M+H]*; Analytical
calculated formulae CxoH17N704S: C, 53.21; H, 3.80; N, 21.72; S, 7.10; Found: C, 53.25; H,
3.85; N, 21.7; S, 7.15.
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Mol. Wt.: 436

Fig: Mass Spectrum of Compound 34q
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INTRODUCTION:

Pyrazole belongs to an azole class of five-membered heterocyclic compounds. Pyrazole
structure is a composition of two adjacent nitrogen atoms and three carbon atoms. The synthetic
protocol of pyrazole is very easy and simple!?. Literature review reveals that the pyrazole
derivatives are showing extensive biological, pharmaceutical activities such as apoptotic
inducers®, anti-inflammatory*°, anti-depressant®, anti-malarial’, anti-cancer®, anti-diabetic®,

antimicrobial-antianalgesic®, and anti-HBV (hepatitis B virus)!! and anti-tumor!? activities.

From the past few decades, 1,3,4-thiadiazole derivatives have shown remarkable
applications in the various areas of medicinal, agriculture, and material chemistry!3. 1,34-
Thiadiazole is a five-membered heterocyclic compound with one S and two N-atoms. 1,2,4-
Triazolo[3,4-b][1,3,4]thiadiazole is a fused heterocyclic core motif in the numerous biologically
active compounds and drugs (Fig. 1)}. Based on the literature survey, there are many synthetic
procedures for the preparation of 1,2 4-triazolo[3,4-b][1,3,4]thiadiazole derivatives'®>. 1,2 4-
Triazolo[3,4-b][1,3,4]thiadiazoles have wide range of biological properties such as anti-cancer’-
20 anti-microbial?'??, analgesic-antiinflammatory?-2°, anti-tubercular?®, anti-viral?’, anti-tumor?®,

anti-depressant?®, COX-2 inhibitor®, cytotoxic'2, and pharmocological®*** activities.

..........................................................................

(0]
l\lefHN/ZLN/ M 0
/ N7 780
H NH,
Tebuthiuron Acetazolamide

2 H,N— N
- VS NS )
“ I V/ T~ N
OH

/ NO,

Sulfamethizole Megazol

..........................................................................

Fig. 1: Commercially available thiadiazole containing drugs.
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Herein some of the synthetic procedures and biological applications of pyrazoles and

thiadiazoles from the literature survey are presented below.

Vaarla®® et al. carried out the synthesis of 3-(2-(5-amino-3-phenyl-1H-pyrazol-1-
yl)thiazol-4-yl)-2H-chromen-2-one (4) derivatives using 3-(2-bromoacetyl)-2H-chromen-2-one
(1), hydrazinecarbothioamide (2), and 3-oxo-3-phenylpropanenitrile (3) in ethanol and the
presence of HCI under reflux temperature in good yields. The target compounds were evaluated

for their anti-cancer activity with promising results.

i S
Br

N

0" "0 N=
1 + 2 EtOH,I? _ \ NQ(N Y/,

reflux N\_S NH,
0] N o)
Z o
R
4

1,3,5-Trisubstituted pyrazoles (7) were synthesized by Kong?® et al. by the reaction of
various tosylhydrazones (5) with different terminal alkynes (6) in the t-BtOK, 18-crown-6, and
pyridine at 0°C temperature in maximum yields.

Rl
R! t-BtOK, 18-crown-6 ;

R? N-N
>:N'N + ——R3 > /i h
E 2 7 3
H Ts pyridine, 0°C R &)\R

Krishnaiah® et al. prepared the substituted 1-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)-
3-phenyl-1H-pyrazole-4-carbaldehydes (9) from the reaction of different 3-(2-
bromoacetyl)coumarins (1), thiosemicarbazide (2) and substituted acetophenones (8) using
Vilsmeire-Haack conditions up to 85% vyields. The final analogs were screened for their

biological evaluation with good results.
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S

HZNJ\N'NHZ
H
o

2 . N
0 N
o POCl, 0-60°C GRSV
N Br + 0 S _
R CHO

1

DMF

8

Bade and Vedula® synthesized the substituted (E)-3-(2-(5-(benzylideneamino)-3-
phenyl-1H-pyrazol-1-yl)thiazol-4-yl)-4-hydroxy-6-methyl-2H-pyran-2-ones (12) via a one-pot,
multi-component reaction starting from 3-(2-bromoacetyl)-4-hydroxy-6-methyl-2H-pyran-2-one
(10), hydrazinecarbothioamide (2), phenacylcyanide (3) and various aromatic aldehydes (11) in

ethanol and few drops of AcOH.

OH O S
Br
N HZNJ\N'NHZ
| H
H;C” 070

2

10 . EtOH / AcOH

o o reflux N\
_N )@_R
©)J\// H
3 11 12

Mohamady®® et al. described the synthesis of disubstituted pyrazoles (16) from the
different methods using phenacyl bromides (13), phenylhyrazones (14), acetophenones (8), keto

hydrazones (15) and aromatic aldehydes in their respective one-pot, green synthetic methods.
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Ph)J\/Br +

13

o)
N« _Ph
~ N._Ph
N Ph)J\CH3 + HN
14 8 14
Etha& DM%t. I,, cat. HCI
N
HN
\
Ph
16
DMSO | cat. I,, cat. HCI
o)
HZN,N\YPh .
CH; H™ "Ph
15 11

4-Amino-5-phenyl-4H-1,2,4-triazole-3-thiols (17) and 2,3,4,5,6-pentafluorobenzoic acid
(18) were refluxed in POCI3z to produce the 6-(perfluorophenyl)-3-phenyl-[1,2,4]triazolo[3,4-
b][1,3,4]thiadiazoles® (19).

N-N

/
sH F F POCI, N
NH, F P reflux _N

17

18

Palekar®' et al. synthesized the substituted bis 1,2,4-triazolo{3,4-b][1,3,4]thiadiazoles
(22) from the reflux of 5,5'-(1,4-phenylene)bis(4-amino-4H-1,2,4-triazole-3-thiol) (20) and
aromatic carboxylic acids (21) in presence of POCIz and these compounds exhibited good anti-

bacterial activity.
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/z&r
N. N=
[0 a OH POCI S
HS/LN Ny T 0 : DTNQ—Q—QN\'(
NH,  pgN Ar reflux S*l}l N-N
=N
Ar

N’N

20

2eq.
Simple 5-amino-1,3,4-thiadiazole-2-thiol (24) was synthesized from the reaction of

thiosemicarbazide (2) and carbon disulfide (CSz) at the reflux temperature of ethanol by

Vudhgiri*? et al.

JSL Ethanol N-N

NH, + g-C-= ano I\
reflux

2 23 24

Vaarla and Vedula*® conducted the cyclization reaction between the 5-methylisoxazole-
3-carboxylic acid (25) and 4-amino-4H-1,2,4-triazole-3,5-dithiol (26) in POCIs at 60°C to
generate the 6-(5-methylisoxazol-3-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole-3-thiol  (27).
Further, compound 27 was used as starting material for the synthesis of S-alkylated products.

-N O N-N H,C
0] 3 SN
\ POCI _N
MGH t o ops A Psn : m TN
H3C I 60°C ~N N- \<
NH, SH
25 26 27

Sharma* et al. reported the synthesis of 3-(3-hydrazinyl-[1,2,4]triazolo[3,4-
b][1,3,4]thiadiazol-6-yl)-2H-chromen-2-one (30) from the cyclization reaction of 4-amino-5-
hydrazinyl-4H-1,2,4-triazole-3-thiol (28) and 2-oxo-2H-chromene-3-carboxylic acid (29) in the
presence of POCI3 under the reflux condition. Compound 30 was acted as an intermediate for the

synthesis of pyrazolyltriazolothiadiazole.
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NN
Y\ ~m i POCI )\NH
NH, 00 reflux
28 29
PRESENT WORK:

In view of the biological applications of the 1,2,4-triazole, pyrazole, and 1,3,4-thiadiazole
moieties, we have developed a new synthetic route for the establishment of these motifs in a
single compound via a one-pot, three-component condensation method. Novel hybrid molecules
containing three biological active scaffolds were expected to possess good anti-bacterial
activities. We have synthesized a new hybrid template of pyrazolyl[1,2,4]triazolo[3,4-
b][1,3,4]thiadiazole in search of promising anti-bacterial agents.

In the current method, the anticipated target pyrazolyl[1,2,4]triazolo[3,4-
b][1,3,4]thiadiazole derivatives (32a-q) were synthesized using readily available starting
compounds purpald (28), acetylacetone/dibenzoyl methane (DBM) (31), and substituted benzoic
acids (21) via a one-pot, sequential addition of three-component reaction (Scheme-1).

R4
HO :
R3
(0}
T s 7 R' R? N-N
R . 21 A S GNR
17171:J NH o EtOH HN-N POCI, Rl 57]\]1,\ >:7/
s Nt o r R
\n H R reflux R_N reflux R2
NH, 3-5h T\\/<N 7-9 h
R? R4
R
28 31 L B 32 (a-q)
Rj -CH; (ACAC) Not isolated 85-92%
R=-Ph (DBM) intermediated (A)

Scheme-1: One-pot, three-component synthesis of target title derivatives 32a-q.

Initially, we have conducted a reaction between purpald (28) and acetylacetone/DBM
(31) in presence of dry ethanol under reflux for 3-5 h to generate intermediate (A). The solvent
was evaporated and dried to get the intermediate (A) followed by sequential addition of various

benzoic acids (21) and phosphorous oxychloride (POCIz)* reflux for 7-9 h produced the target
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title derivatives (32a-q) with high yields (85-92%, Table-1) through a one-pot, three-component

reaction.

Table-1: Synthesis of pyrazolyl[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives (32a-q).

Compound R R! R? R3 R4 Time (h)  Yield (%)
32a CHs H H H H 10.00 88
32b CHs H H CHs H 10.30 90
32¢ CHs H H F H 11.10 86
32d CHs H NO2 H H 12.50 85
32e CHs Cl H H H 11.40 87
32f CHs Br H H H 11.00 90
329 CHs H H Cl H 10.30 88
32h CHs H H I H 10.30 86
32i CHs H H NO2 H 11.10 85
32j CHs H NO> H NO> 11.40 89
32k Ph H H NH2 H 12.50 86
321 Ph H H Cl H 11.50 90
32m Ph H H I H 12.20 89
32n Ph H H CHs H 11.30 92
320 Ph H H NO:2 H 13.15 87
32p Ph H NO> H NO2 14.00 86
329 Ph Cl H H H 12.30 88
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When the reaction is operated between 28, 31, and 21 in the above-mentioned reaction
conditions there would be a possibility to form alternative products such as 33 and 34 (Fig. 2). In
the present investigation, compound 32 was formed alone as evidenced by thin-layer
chromatography as a single spot. Based on the spectral data and analytical data the possible
products 33 and 34 were declined.

R4 R3 R4 R.;
R? R?
N 1
1 R
N. R R_S—¢ NA
N
HS—C s N | N/L\NN
NN _—N
OWN R
R
33 34

NN H NN H PN
N\ @
s NN L S HS/QN)\NHN\
0 R o R -H,0 | R
H,N [0%) H,N @ H,N
R R R
l 9
H
g N-N
N-N N-N | /N DN
- U N\ _N_ R A S No-R HSA)\N\R
<—H’$./47VXN>=\7/ — " N B%H 1 ®)J
HN R -H,0  H,N R@H H HN R 0o
A
0o\ O o o
) oo b arbon + =Pl
-cl a -HCl1 Cl
21
N-N 0
o' ANy R0 /?UN\ No-R )OL o
) ) - —N R
AR -PO,CI, N g
H Ar R3 R2
32 (a-q) 21

Scheme-2: Plausible reaction pathway for the synthesis of pyrazolyl[1,2,4]triazolo[3,4-

b][1,3,4]thiadiazoles (32a-q) via a one-pot three component reaction®’.
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In the current investigation, initially, the pyrazole ring was formed by the cyclo
condensation between the hydrazino group (-NH-NH.) of purpald 28 and diketo compounds 31a-
b. Sequentially added third components such as substituted aromatic carboxylic acids 21a-k also
underwent cyclization reaction with intermediate A to form the fused [1,2,4]triazolo[3,4-
b][1,3,4]thiadiazole ring. The role of POCIs in the cyclization reaction is that it converts aromatic
carboxylic acid into its benzoic or substituted benzoic phosphorodichloridic anhydride. This
attacks on thiol group of A to yield the thioester with the loss of phosphorodichloridate
(POCI27) anion. Then the second molecule of POCI3 attacks on thioester followed by ring
closure reaction with the amino group by the elimination of another PO,Cl,™ anion to yield final

products 4a-q (Scheme-2)*,

All the structures of target molecules 32a-q were established based on their analytical
and spectral studies. Compound 32a is taken as an example to explain the FT-IR spectrum. The
compound showed a characteristic peak due to C=N at 1614 cm™. The H-NMR (400 MHz,
CDCl3+DMSO-ds) spectrum of the molecule 32a exhibits two individual singlets at 6 2.33 and
2.46 for both -CHs groups on pyrazole ring, characteristic pyrazole ring proton appeared as a
singlet at & 6.18 ppm. The remaining five aromatic protons displayed peaks in the aromatic range
from & 7.58 to 7.64 ppm. The *C-NMR (100 MHz, CDCl3+DMSO-ds) spectrum of compound
32a recorded two peaks at & 11.6 and 13.8 for the -CHs carbons and peak at & 108.5 for the
pyrazole carbon. The sp? hybridized carbon peaks appeared in the aromatic region from § 126.7-

152.0 ppm. The ESI-MS of compound 32a displayed a molecular ion peak at m/z: 297 [M+H]".
Anti-microbial evaluation:

Assay of in vitro anti-bacterial activity, bacterial strains were purchased from a national
collection of industrial microorganisms, Pune, India. Antibacterial activity was tested against
Gram-positive bacteria Staphylococcus aureus, Bacillus cereus, and Gram-negative bacteria

Escherichia coli, Salmonella paratyphi using streptomycin as the reference drug.

The sterilized nutrient agar medium was distributed 100 mL each in two 250 mL conical
flasks and allowed to cool to room temperature. To these media, 18-24 h grown bacterial sub-
cultures were added and shaken thoroughly to ensure uniform distribution of organisms

throughout the medium.
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Then, agar medium was distributed in equal portions, in sterilized Petri dishes, ensuring
that each petri dish contains about 900 pg/ml of the medium. The medium was then allowed for
solidification. The cups were made with the help of a sterile cork borer (6 mm diameter)
punching into the set of agar media. The solutions of required concentrations (100 pg/ml) of test
compounds were prepared by dissolving the compounds in DMSO were filled into the cups with
1 mL of respective solution. Then, the Petri dishes were kept for incubation in an inverted
position for 24-48 h at 37°C in an incubator. When growth inhibition zones were developed
surrounding each cup, their diameter in mm was measured and compared with that of the

standard drugs. Each experiment was made in triplicate using DMSO as a control“®,
Results:

All the newly synthesized compounds (32a-q) were investigated for their antibacterial
activity. Compounds 32a, 32g, and 32p showed good activity against Staphylococcus aureus,
and compounds 32e, 32f, and 32j showed good activity against Bacillus cereus. Gram-positive
bacteria had a thick cell wall, containing a high amount of peptidoglycan and Gram-negative
bacteria had two layers of cell membrane: the inner membrane contains peptidoglycan and the
outer membrane contains lipopolysaccharides (Table-2).

Table-2: Anti-bacterial evaluation for the newly synthesized compounds 32a-g.

Compd Conc. Minimum Inhibitory Concentration
ug/ml - :
Escherichia Salmonella Bacillus Staphylococcus

coli paratyphi  cereus aureus
32a 900 450 200 200 150
32b 900 400 300 200 450
32c 900 400 450 600 200
32d 900 700 600 370 300
32e 900 160 260 550 500
32f 900 400 500 140 400
329 900 410 340 210 140
32h 900 700 650 600 640
32i 900 500 420 500 550
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32j 900 600 400 130 400
32k 900 00 00 560 700
321 900 700 500 400 440
32m 900 00 00 00 500
32n 900 00 400 00 00
320 900 00 00 700 00
32p 900 00 700 00 120
32q 900 00 500 00 650
Standard 900 110 100 100 100

(Streptomycin)

Molecular Docking Studies:

Molecular docking studies are very useful to examine and to gain a wise observation in
the way of binding interactions of each ligand molecules (32a-q) with receptor structure. All the
chemical structures (new ligands) were drawn by using ChemDraw Ultra 12.0 and 2D structures
drawn and converted to mol2 format by using Open Babel GUI version 2.3.2 (OpenBableGUI,
Chris Morley, USA), Molecular energy was minimized using the Energy Minimization module
of Maestro Tool(Schrodinger software) under the Chemistry at Harvard Macromolecular
Mechanics(CHARMM) force field. The three-dimensional structure of the receptor structure was
retrieved from the RCSB database (PDB ID: 1M17). The structure preparation and correction of
protein were performed using the protein preparation suite. The target protein file was prepared
by removing the structural water molecule, heteroatoms, and co-factors by leaving only the
residues associated with protein. The protein preparation suite (wizard) tool was used to prepare
the target protein file by addition of polar hydrogen atoms to the macromolecule, an essential
step to correct the calculation of partial charge by keeping all other values as default. Further, the
grid was prepared and molecular docking was performed using the Glide docking module, and
the results obtained were scrutinized based on the highest dock score and number of H-bonds by

visualizing in Pymol.

In silico molecular docking studies are made interactions between the donors and

acceptors. In general, Hydrogen bonds are formed between a hydrogen atom bound to a small,
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highly electronegative atom and another small, highly electronegative atom with an unshared
electron pair. The elements that frequently contribute to hydrogen bonds are nitrogen, oxygen,
and fluorine. In our study also proven that the receptor and ligand have made interactions
between the oxygen and nitrogen atoms and the distance measured in angstrom (A) as shown in
Table-3.

Epidermal Growth Factor Receptor (EGFR) is found on the surface of the normal cells
and is involved in cell growth. It is found to be at high levels on some types of cancer cells,
which causes these cells to grow and divide. Blocking EGFR may keep cancer cells from

growing. Some EGFR tyrosine kinase inhibitors are used to treat cancer.

Table-3: Molecular interactions with ligands against Epidermal Growth Factor Receptor tyrosine
kinase (1M17.pdb).

Ligand Receptor Interaction Ligand  Distance (A)  Docking

Atoms Atoms (Kcal/mol)

32a ALA719-0O NH 2.66 -89.324
LEU764-O NH 2.88

32b ALA719-0 NH 2.66 -88.141
LEU764-O NH 2.88

32¢c ALA719-0O NH 2.70 -88.019
LEU764-O NH 2.89

32d ASP831-0D2 NH 2.70 -87.130
THR830-0G1 NH 2.85

32¢ ALAT719-0O NH 2.69 -89.001
LEU764-O NH 2.88

32f ALA719-0O NH 2.70 -89.0125
LEU764-O NH 2.89

329 ALAT719-0 NH 2.69 -89.254
LEU764-O NH 2.87

32h ALA719-0O NH 2.69 -88.911
LEU764-0O NH 2.90
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32i ALAT719-O NH 2.91 -87.021
THR766-0OG1 NH 2.94

32j ASP831-NH @) 2.54 -89.351
THR766-0G1 NH 2.91

32k MET769-O NH 2.80 -87.958

321 ASP831-0D2 NH 2.80 -88.214
ASP831-0D2 NH 2.83

32m ASP831-0D2 NH 2.79 -86.274
THR830-0G1 NH 2.95

32n MET769-O NH 2.79 -88.124

320 THR830-0G1 NH 2.91 -88.017
ASP831-0D2 NH 2.60
ASP831-0D2 NH 2.74

32p ASP831-0D2 NH 2.69 -89.098

32q ALAT719-O NH 2.95 88.316
LEU764-O NH 2.85

Our molecular docking studies revealed that all the synthesized molecules exhibited
excellent binding energies towards the receptor active sites. Molecular docking results were
identified basis on the ideal interacted ligands were scrutinized based on the greatest ligand
binding poses were identified using the low binding energy, high docking score, and the number
of H-bonding, hydrophobic interactions at receptor site i.e., 32a, 32e, 32f, 329, 32j, and 32p
(Fig. 3). Table-3 represents the docking score, Hydrogen bond distance, and interacting atoms.

All the compounds were found to be buried.
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Fig. 3: Good docking interaction images of compounds 32a, 32e, 32f, 329, 32j, and 32p with
receptor 1IM17.

In summary, we have synthesized pyrazolyl[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole
derivatives (4a-q) through a one-pot sequential addition of three-component reaction with

maximum yields (85-92%) using readily available starting compounds in the laboratory. We
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have developed a tricyclic system via a one-pot multi-component approach. Further, all the
compounds were evaluated for the antibacterial activity against Gram-positive and Gram-
negative bacteria, among these 4a, 4e, 4f, 4g, 4j, and 4p gave good results against respective
bacteria. Additionally, In silico molecular docking studies were carried out using EGFR-tyrosine
kinase receptor (1M17) with the newly synthesized compounds. Among all the compounds 4a,

4e, 41, 4qg, 4j, and 4p were exhibited good docking interactions.

EXPERIMENTAL:

General procedure for the synthesis of 6-phenyl-3-(1H-pyrazol-1-yl)-[1,2,4]triazolo[3,4-
b][1,3,4]thiadiazole derivatives (32a-q).

A mixture with purpald 1 (Immol) and diketone 2 (Lmmol) was refluxed for 3-5 h in
presence of 4 mL of ethanol in a 25 mL RB-flask. The solvent was evaporated, to the same flask
substituted benzoic acid 3 (Immol) was added sequentially, and continued the reaction in
presence of 2 mL of POCI3z under the reflux condition for 7-9 h. After the completion of the
reaction was cooled to room temperature, neutralized with NaHCOs3 solution, the separated solid

was filtered and recrystallized from 5-8 mL ethanol.

SPECTRAL DATA:

3-(3,5-Dimethyl-1H-pyrazol-1-yl)-6-phenyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole (32a):

N-N Y Grey color solid (0.260g, 88%); m.p.: 175-177°C; IR (KBr,
SKNﬁ\N-N\ vmax/cm1): 1614 (C=N); 'H-NMR (400 MHz, CDCls+DMSO-ds,

=N — & ppm): 2.33 (s, 3H, -CHs), 2.46 (s, 3H, -CH3), 6.18 (s, 1H, -CH-

of pyrazole ring), 7.58 (t, 3H, J=7.6 Hz, Ar-H), 7.64 (d, 2H, J=8.8

. / Hz, Ar-H); BC-NMR (100 MHz, CDCl3+DMSO-ds, 6 ppm):

11.6, 13.8, 108.5, 126.7, 127.7, 129.1, 129.5, 129.6, 130.1, 133.5, 143.5, 152.0; ESI-MS (m/z):
297 [M+H]"; Analytical calculated formulae C14H12N6S: C, 56.74; H, 4.08; N, 28.36; S, 10.82;
Found: C, 56.70; H, 4.14; N, 28.40; S, 10.86.
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3-(3,5-Dimethyl-1H-pyrazol-1-yl)-6-(p-tolyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole (32b):

N-N Pale green color solid (0.279g, 90%); m.p.: 170-172°C; IR (KBr,
S/QN»\N'N\ vmax/cm?): 1610 (C=N); ‘H-NMR (400 MHz, CDCls, & ppm): 2.29
=N ~ (s, 3H, -CH3), 2.33 (s, 3H, -CHzs), 2.42 (s, 3H, -CHg), 6.06 (s, 1H, -
CH- of pyrazole ring), 7.25 (d, 2H, J=7.6 Hz, Ar-H), 7.66 (d, 2H,
J=7.6 Hz, Ar-H); 13C-NMR (100 MHz, CDCls,  ppm): 11.3, 13.6,
21.8, 107.9, 129.1, 129.4, 129.6, 129.7, 129.9, 1435, 143.7, 152.7, 164.4; ESI-MS (m/z): 311
[M+H]*; Analytical calculated formulae CisH1sNeS: C, 58.05; H, 4.55; N, 27.08; S, 10.33;

Found: C, 58.16; H, 4.51; N, 27.14; S, 10.37.

3-(3,5-Dimethyl-1H-pyrazol-1-yl)-6-(4-fluorophenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole
(32c):

Light green color solid (0.270g, 86%); m.p.: 162-164°C; IR (KBr,

N-N
S /NkN N vmax/cm™?): 1602 (C=N); 'H-NMR (400 MHz, CDCl3+DMSO-ds, 6
=N B ppm): 2.35 (s, 3H, -CHz3), 2.49 (s, 3H, -CHz), 6.16 (s, 1H, -CH- of
pyrazole ring), 7.28 (t, 2H, J=8.8 Hz, Ar-H), 7.97 (dd, 2H, J=8.8 Hz,
K J=5.2 Hz, Ar-H); 3C-NMR (100 MHz, CDCls+DMSO-ds, & ppm):

11.6, 13.8, 108.4, 116.8, 117.0, 117.2, 125.5, 130.2, 134.5, 143.2, 152.1, 166.6; ESI-MS (m/z):
315 [M+H]"; Analytical calculated formulae C14H11FNeS: C, 53.49; H, 3.53; N, 26.74; S, 10.20;
Found: C, 53.53; H, 3.57; N, 26.70; S, 10.24.
3-(3,5-Dimethyl-1H-pyrazol-1-yl)-6-(3-nitrophenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole
(32d):

N-N Yellow color solid (0.289g, 85%); m.p.: 168-170°C; IR (KB, vmax/cm"
SKN%;E/ 1): 1614 (C=N); *H-NMR (400 MHz, DMSO-ds,  ppm): 2.35 (s, 3H, -

- CHs3), 2.48 (s, 3H, -CHa), 6.19 (s, 1H, -CH- of pyrazole ring), 7.89 (t,
1H, J=8.4 Hz, Ar-H), 8.35 (d, 1H, J=8.8 Hz, Ar-H), 8.47 (d, 1H, J=9.2
Hz, Ar-H), 8.79 (s, 1H, Ar-H); 3C-NMR (100 MHz, CDCls+DMSO-
de, & ppm): 11.6, 13.7, 108.4, 121.9, 128.5, 129.7, 132.4, 133.9, 134.4, 141.2, 143.2, 1445,
152.0, 166.7; ESI-MS (m/z): 342 [M+H]"; Analytical calculated formulae C14H11N7O2S: C,
49.26; H, 3.25; N, 28.72; S, 9.39; Found: C, 49.30; H, 3.29; N, 28.76; S, 9.36.

NO,
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6-(2-Chlorophenyl)-3-(3,5-dimethyl-1H-pyrazol-1-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole
(32e):

N-N y  Pale yellow color solid (0.287g, 87%); m.p.: 165-167°C; IR (KBr,
SKNﬁ\N'N\ vmaxcm™): 1614 (C=N); H-NMR (400 MHz, CDCl3+DMSO-d,
=N — & ppm): 2.31 (s, 3H, -CHs), 2.49 (s, 3H, -CHs), 6.15 (s, 1H, -CH-
Cl of pyrazole ring), 7.51-7.55 (m, 2H, Ar-H), 7.77-7.81 (m, 2H, Ar-

H); *C-NMR (100 MHz, CDCl3+DMSO-ds,  ppm): 11.3, 13.7,
108.5, 127.5, 128.6, 130.4, 131.4, 132.0, 132.7, 134.2, 143.4, 152.1, 164.5, 168.5; ESI-MS
(m/z): 331 [M+H]"; Analytical calculated formulae C14H1:CIN6S: C, 50.83; H, 3.35; N, 25.41; S,
9.69; Found: C, 50.80; H, 3.30; N, 25.45; S, 9.65.
6-(2-Bromophenyl)-3-(3,5-dimethyl-1H-pyrazol-1-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole
(32f):

N-N y  Pale yellow color solid (0.337g, 90%); m.p.: 159-161°C; IR (KBr,
SKNﬁ\N-N\ vmaxdem-1): 1608 (C=N): H-NMR (400 MHz, CDCls+DMSO-ds,
=N — & ppm): 2.31 (s, 3H, -CH3), 2.49 (s, 3H, -CHs), 6.15 (s, 1H, -CH-
Br of pyrazole ring), 7.51-7.55 (m, 2H, Ar-H), 7.80 (d, 1H, J=8.8 Hz,

Ar-H), 7.91 (d, 1H, J=9.2 Hz, Ar-H); 3C-NMR (100 MHz,
CDCI3+DMSO-dg, 6 ppm): 11.7, 13.8, 108.4, 121.9, 128.6, 129.7, 132.4, 133.9, 134.4, 141.2,
143.2, 1445, 152.1, 166.7; ESI-MS (m/z): 377 [M+2]"; Analytical calculated formulae
Cu4H11BrNeS: C, 44.81; H, 2.95; N, 22.40; S, 8.55; Found: C, 44.85; H, 2.91; N, 22.44; S, 8.51.
6-(4-Chlorophenyl)-3-(3,5-dimethyl-1H-pyrazol-1-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole
(329):

N-N Pale yellow color solid (0.290g, 88%); m.p.: 163-165°C; IR (KBr,

S /NXN N vmax/cm1): 1614 (C=N); H-NMR (400 MHz, CDCl3+DMSO-ds, &

=N - ppm): 2.34 (s, 3H, -CHz3), 2.47 (s, 3H, -CHg), 6.17 (s, 1H, -CH- of
pyrazole ring), 7.57 (d, 2H, J=8.0 Hz, Ar-H), 7.93 (d, 2H, J=8.0 Hz,

¢l Ar-H); 3C-NMR (100 MHz, DMSO-ds, 8 ppm): 11.3, 13.7 108.7,

127.9, 1295, 129.7, 129.9, 130.2, 138.3, 143.7, 152.4, 167.1; ESI-MS (m/z): 331 [M+H]";
Analytical calculated formulae C14H1:CINeS: C, 50.83; H, 3.35; N, 25.41; S, 9.69; Found: C,
50.80; H, 3.31; N, 25.45; S, 9.72.
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3-(3,5-Dimethyl-1H-pyrazol-1-yl)-6-(4-iodophenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole
(32h):

N-N Yellow color solid (0.362g, 86%); m.p.. 174-176°C; IR (KBr,
/N%;E/ omademd): 1595 (C=N); H-NMR (400 MHz, DMSO-ds, & ppm):
N -~ 2.32 (s, 3H, -CH3), 2.45 (s, 3H, -CHj3), 6.18 (s, 1H, -CH- of pyrazole
ring), 7.71 (d, 2H, J=8.8 Hz, Ar-H), 7.94 (d, 2H, J=8.4 Hz, Ar-H);
L 13C-NMR (100 MHz, CDCl3+DMSO-ds, 8 ppm): 11.4, 13.8, 108.5,
129.2, 129.6, 132.1, 133.8, 138.9, 140.7, 143.6, 152.2, 167.1; ESI-MS (m/z): 424 [M+2]";
Analytical calculated formulae C1sH11INeS: C, 39.82; H, 2.63; N, 19.90; S, 7.59; Found: C,
39.86; H, 2.67; N, 19.94; S, 7.55.
3-(3,5-Dimethyl-1H-pyrazol-1-yl)-6-(4-nitrophenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole
(32i):

N-N Brown color solid (0.289g, 85%; m.p.: 182-184°C; IR (KBr,
S /N»\N i\ vmax/cm™1): 1593 (C=N); *H-NMR (400 MHz, CDCl3+DMSO-ds,
N & ppm): 2.33 (s, 3H, -CHs), 2.46 (5, 3H, -CHs), 6.16 (s, 1H, -CH-
of pyrazole ring), 7.55 (d, 2H, J=5.6 Hz, Ar-H), 7.91 (d, 2H, J=5.6
O,N

Hz, Ar-H); C-NMR (100 MHz, CDCIl3+DMSO-ds, & ppm):
115, 13.7, 108.7, 127.9, 129.5, 130.2, 138.3, 141.1, 143.7, 152.4, 167.1; ESI-MS (m/z): 342
[M+H]*; Analytical calculated formulae C14H1:N7O2S: C, 49.26; H, 3.25; N, 28.72; S, 9.39;
Found: C, 49.22; H, 3.29; N, 28.76; S, 9.36.
3-(3,5-Dimethyl-1H-pyrazol-1-yl)-6-(3,5-dinitrophenyl)-[1,2,4]triazolo[3,4-b][1,3,4]
thiadiazole (32)):

Cream color solid (0.343g, 89%); m.p.: 188-190°C; IR (KBr,
Kwk;b/ vmax/cm 1): 1604 (C=N); 'H-NMR (400 MHz, CDCl3+DMSO-

de, & ppm): 2.33 (S, 3H, -CHj3), 2.47 (s, 3H, -CHj3), 6.23 (s, 1H, -
CH- of pyrazole ring), 9.09 (s, 2H, Ar-H), 9.12 (s, 1H, Ar-H); 3C-
NMR (100 MHz, DMSO-ds, 6 ppm): 16.4, 18.6, 113.4, 126.9,
132.7, 136.9, 146.2, 148.3, 153.9, 156.9, 159.2, 169.2; ESI-MS (m/z): 387 [M+H]"; Analytical
calculated formulae Ci14H10Ng8O4S: C, 43.52; H, 2.61; N, 29.00; S, 8.30; Found: C, 43.55; H,
2.64; N, 28.97; S, 8.33.

NO,
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4-(3-(3,5-Diphenyl-1H-pyrazol-1-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)aniline
(32k):

Green color solid (0.374g, 86%); m.p.: 154-156°C; IR (KBr,
vmadcm®): 1603  (C=N); !H-NMR (400 MHz,
CDCI3+DMSO-ds, 8 ppm): 5.70 (s, 2H, -NH>), 6.67 (d, 2H,
J=8.0 Hz, Ar-H), 7.12 (s, 1H, -CH- of pyrazole ring), 7.35-7.49
(m, 10H, Ar-H), 7.94 (d, 2H, J=8.8 Hz, Ar-H); 3C-NMR (100
MHz, CDCIl3+DMSO-ds, 6 ppm): 110.5, 118.8, 119.7, 131.0, 132.8, 133.4, 134.1, 134.2, 134.5,
136.7, 152.9, 158.9, 159.2, 173.9; ESI-MS (m/z): 436 [M+H]"; Analytical calculated formulae
C24H17N7S: C, 66.19; H, 3.93; N, 22.51; S, 7.36; Found: C, 66.23; H, 3.90; N, 22.55; S, 7.40.
6-(4-Chlorophenyl)-3-(3,5-diphenyl-1H-pyrazol-1-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole
(32I):

White color solid (0.408g, 90%); m.p.: 11-153°C; IR (KBr,
vmax/cm1): 1591 (C=N); 'H-NMR (400 MHz, CDCl3+DMSO-
ds, & ppm): 6.59 (s, 1H, -CH- of pyrazole ring), 7.15-7.30 (m,
6H, Ar-H), 7.60 (d, 2H, J=9.2 Hz, Ar-H), 7.82 (d, 2H, J=6.0
cl Hz, Ar-H), 7.94 (d, 4H, J=8.8 Hz, Ar-H); *C-NMR (100 MHz,
CDCI3+DMSO-ds, 6 ppm): 106.0, 126.3, 127.7, 128.1, 128.3, 129.3, 129.5, 131.3, 131.9, 132.9,
134.3, 136.1, 147.6, 148.2, 154.7, 165.4, 166.3, 167.2; ESI-MS (m/z): 455 [M+H]*; Analytical
calculated formulae CosH1sCINeS: C, 63.36; H, 3.32; N, 18.47; S, 7.05; Found: C, 63.31; H,
3.35; N, 18.51; S, 6.96.
3-(3,5-Diphenyl-1H-pyrazol-1-yl)-6-(4-iodophenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole
(32m):

Brown color solid (0.485g, 89%); m.p.: 158-160°C; IR (KBr,
vmax/cm’ 1): 1598 (C=N); 'H-NMR (400 MHz, CDCIlz+DMSO-
ds, & ppm): 6.59 (s, 1H, -CH- of pyrazole ring), 7.30 (d, 2H,
J=7.2 Hz, Ar-H), 7.37-7.53 (m, 4H, Ar-H), 7.59 (d, 2H, J=8.0
I Hz, Ar-H), 7.72 (d, 2H, J=8.0 Hz, Ar-H), 7.81 (d, 2H, J=7.6 Hz,
Ar-H), 7.94 (d, 2H, J=8.8 Hz, Ar-H); 13 C-NMR (100 MHz, CDCIlz+DMSO-ds, 6 ppm): 101.2,
106.0, 126.2, 127.7, 127.9, 128.1, 128.3, 129.2, 129.5, 130.7, 131.5, 132.9, 137.9, 138.9, 147.7,
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148.2, 154.5, 167.4; ESI-MS (m/z): 547 [M+H]"; Analytical calculated formulae C24H15IN6S: C,
52.76; H, 2.77; N, 15.38; S, 5.87; Found: C, 52.72; H, 2.73; N, 15.34; S, 5.82.
3-(3,5-Diphenyl-1H-pyrazol-1-yl)-6-(p-tolyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole (32n):

Light yellow color solid (0.399g, 92%); m.p.: 173-175°C; IR
(KBr, vmadem?): 1610 (C=N); H-NMR (400 MHz,
CDClI3+DMSO-ds, 6 ppm): 2.43 (s, 3H, -CHz), 7.26 (s, 1H, -
CH- of pyrazole ring), 7.43-7.49 (m, 6H, Ar-H), 7.74 (d, 2H,
J=9.2 Hz, Ar-H), 7.85 (d, 2H, J=7.2 Hz, Ar-H), 7.96 (d, 2H,

J=8.0 Hz, Ar-H), 8.11 (d, 2H, J=9.2 Hz, Ar-H); 3C-NMR (100 MHz, CDCls+DMSO-ds, &
ppm): 21.6, 105.9, 126.3, 127.6, 128.1, 128.3, 128.6, 129.1, 129.2, 129.3, 129.5, 129.7, 130.5,
131.9, 144.2, 148.9, 154.6, 168.7; ESI-MS (m/z): 435 [M+H]"; Analytical calculated formulae
C1sH1sNeS: C, 69.10; H, 4.18; N, 19.34; S, 7.38; Found: C, 69.14; H, 4.14; N, 19.30; S, 7.33.
3-(3,5-Diphenyl-1H-pyrazol-1-yl)-6-(4-nitrophenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole

(320):

O,N

Yellow color solid (0.404g, 87%); m.p.: 159-161°C; IR (KBr,
vmax/cm?t): 1614 (C=N); H-NMR (400 MHz,
CDCI3+DMSO-ds, 6 ppm): 6.88 (s, 1H, -CH- of pyrazole
ring), 7.43 (unresolved singlet, 6H, Ar-H), 7.57 (m, 2H, Ar-H),
7.83 (d, 2H, J=6.0 Hz, Ar-H), 8.17 (d, 2H, J=7.6 Hz, Ar-H),

8.25 (d, 2H, J=7.6 Hz, Ar-H); 13C-NMR (100 MHz, CDCl3+DMSO-ds, 8 ppm): 106.5, 124.4,
126.3, 128.5, 128.6, 129.2, 129.3, 129.6, 129.8, 129.9, 131.5, 136.5, 144.5, 148.1, 150.4, 154.9,
164.4, 168.4; ESI-MS (m/z): 466 [M+H]"; Analytical calculated formulae C24H1sN7O.S: C,
61.93; H, 3.25; N, 21.06; S, 6.89; Found: C, 61.97; H, 3.21; N, 19.96; S, 6.85.
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6-(3,5-Dinitrophenyl)-3-(3,5-diphenyl-1H-pyrazol-1-yl)-[1,2,4]triazolo[3,4-b][1,3,4]
thiadiazole (32p):

Light yellow color solid (0.438g, 86%); m.p.: 160-162°C; IR
(KBr, vma/cm?): 1615 (C=N); !H-NMR (400 MHz,
CDCI3+DMSO-ds, 6 ppm): 6.91 (s, 1H, -CH- of pyrazole
ring), 7.40 (unresolved singlet, 4H, Ar-H), 7.57 (d, 2H, J=2.4
Hz, Ar-H), 7.84 (d, 2H, J=5.6 Hz, Ar-H), 8.93 (s, 1H, Hz, Ar-
H), 9.11 (d, 2H, J=10 Hz, Ar-H), 9.44 (s, 2H, Ar-H); 3C-NMR (100 MHz, CDCl3+DMSO-d,
6 ppm): 107.5, 122.9, 126.3, 128.3, 128.5, 129.2, 129.3, 129.4, 129.9, 133.4, 134.8, 144.3,
148.1, 148.9, 155.0, 157.8, 162.4, 168.3; ESI-MS (m/z): 511 [M+H]*; Analytical calculated
formulae C24H14Ng O4S: C, 56.47; H, 2.76; N, 21.95; S, 6.28; Found: C, 56.42; H, 3.00; N,
21.91; S, 6.24.
6-(2-Chlorophenyl)-3-(3,5-diphenyl-1H-pyrazol-1-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole
(320):

0 NN N Brown color solid (0.399g, 88%); m.p.: 154-156°C; IR
S/</N/\k (KBr, vmaxcm?): 1612 (C=N); 'H-NMR (400 MHz,

=N CDCI3+DMSO-ds, 6 ppm): 6.84 (s, 1H, -CH- of pyrazole
ring), 7.31 (unresolved singlet, 2H, Ar-H), 7.42-7.56 (m,
/ 8H, Ar-H), 7.69 (unresolved single, 2H, Ar-H),
7.98(unresolved single, 2H, Ar-H); *C-NMR (100 MHz, CDCl3+DMSO-ds, 6 ppm): 106.3,
126.4, 127.5, 128.6, 129.2, 129.3, 129.5, 129.7, 129.8, 130.5, 131.0, 131.8, 132.8, 144.7, 148.1,
154.8, 165.1, 168.5; ESI-MS (m/z): 455 [M+H]"; Analytical calculated formulae C24H15CINsS:
C, 63.36; H, 3.32; N, 18.47; S, 7.05; Found: C, 63.32; H, 3.36; N, 18.44; S, 6.95.
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INTRODUCTION:

1,2,4-Triazole is a heterocyclic compound having three nitrogen atoms in the five-
membered ring*?. Most of the 1,24-triazole derivatives exhibit various biological,
pharmaceutical, and agrochemical applications. 1,2,4-Triazoles play an important role in the
medicinal chemistry due their wide range of biological activities such as anti-bacterial®*, anti-
fungal®®, anti-viral”®, anti-tumor®, anti-inflammatory'%3 anti-tubercular'*®, anti-oxidant6-8,
anti-proliferative!® and insecticidal?®® activities (Fig. 1). When two rings of triazoles are fused
that results in the formation of 1,2,4-triazolo[4,3-b][1,2,4]triazole. These are fused heterocyclic

rings are nitrogen ring compounds. They are nitrogen-rich with good biological activity.

OH

NN
N HO
L OH
F 0]
N-N
\Q\é)H HZNW/Q B
N-N N
(0]

) 3
LN
Fluconazole Riba'viltin
(Anti-fungal) (Anti-viral)
F F
FASZ\
N
\ F
/ o
N Cl
sl
HO

H2N77/4 Z
c o} N)\©

Prothioconazole Flupoxam

(Fungicide) (Herbicide)

Fig. 1: Commercially available drugs bearing triazole motifs.

Triazolothiadiazine is a fused heterocyclic scaffold having five-membered triazole and
six-membered thiadiazine core moieties. Important class of triazolothiadiazines are 1,2,4-

triazolo[3,4-b][1,3,4]thiadiazines. They find extensive therapeutic applications such as anti-
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cancer?*??, anti-HIVZ, anti-inflammatory?*?°,  anti-tubercular®®, anti-microbial®?¢, anti-

oxidant?®, analgesic*, anti-viral®! and PDE4 inhibitors®.

The following is a brief literature survey on the synthesis of fused triazolotriazoles and

triazolothiadiazines.

Ghattas® et al. described the synthesis of [1,2,4]triazolo[4,3-b][1,2,4]triazoles (3) from
the reaction of different 3-hydrazinyl-1,2,4-triazoles (1) and substituted aromatic benzoic acids

(2) in presence of methanol under reflux condition in good yields.

N-N 0. _OH
NH
AI'/QN»\N 2 + MeOH X

I|’h H N-N °N
/ _ 1
. reflux Ar/AN)—N

Ph

1 2 3

Chengming3* et al. reported the preparation of 7H-[1,2,4]triazolo[4,3-b][1,2,4]triazole-
3,6,7-triamine (7) from two-step reaction. In the first step diaminomethaniminium chloride (4)

reacted with hydrazine (5) to form compound 6, further, it was converted into compound 7.

NH,
H. Cl & q N—N*\N
NH, CI NH, CI  1.BrCN !
+ H,N-NH H,N NH NN

H,N” “NH, 2 2 2NN 2 N

H H 2. NaOH NH2
4 5 ]
7

Zigiang® et al. described the synthesis of various [1,2,4]triazolo[3,4-
b][1,3,4]thiadiazines (10) using substituted 4-amino-1,2,4-triazole-3-thiols (8) and different
phenacyl bromides (9) in presence of ethanol under microwave irradiation (MW]1) condition. The

final compounds were evaluated for their anti-tubercular activity with good results.
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Br
o
R Ny
RI/AN)\SH + EtOH SN
NH, MWI R!
R2 30min R,
8 9 10

Fathy?® et al. reported the synthesis of different (Z)-3-ethyl-7-hydrazono-6-methyl-7H-
[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines (13) using a mixture of 4-amino-5-ethyl-4H-1,2,4-
triazole-3-thiol (11) and various (Z)-2-oxopropanehydrazonoyl chlorides (12) in

dioxane/triethylamine under reflux condition.

N-N Cl N
oA D _H Dioxane / TEA N\ _§ HN-Ar
N SH + ﬁ])\N‘N\AI' _ \)\\N‘ N
NH, O reflux N=
11 . s

Varun and Rajeswar®’ described the synthesis of a series of 1-phenyl-2-((6-phenyl-7H-
[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)thio)ethanones (15) from the reaction of 4-amino-4H-
1,2,4-triazole-3,5-dithiol (14) with two equivalents substituted phenacyl bromides (9) in presence
of ethanol having triethylamine under reflux condition via a one-pot, multi-component reaction.
Further, the designed target compounds were screened for their anti-cancer activity and they

exhibited moderate results.

Br R
N-N 0 N-N
s\ s 4 EtOH / TEA ©\”/\S/QN§\S
NH, > 0 Nx
R reflux
14 9
leq 2eq 15 R
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Subrahmanya® et al. reported the synthesis and anti-tumor activity of substituted 3-
(2,4-dichloro-5-fluorophenyl)-6-phenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines (17) using a
mixture of 4-amino-5-(2,4-dichloro-5-fluorophenyl)-4H-1,2,4-triazole-3-thiol (16) and various

phenacyl bromides (9) in ethanol with sodium acetate at 80-90°C temperature.

Br
€l NN 0 Cl /1\\3\
/\
N)\SH N EtOH / AcONa N S
Cl NHZ N\
(1]
F K 80-90°C
16 9

Bakr®® et al. published the synthesis of 1,24-triazolo[3,4-b][1,3,4]-thiadiazine

derivatives (19) and these compounds were evaluated for their anti-microbial activity.

N-N
N-N I\
W \ EtOH / TEA /, N)\s
Ph’N—N NH, reflux PK
18 9 19

Mona*® and co-worker described the synthesis of 6-phenyl-3-(pyridin-4-yl)-7H-
[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine (21) analogues from the reaction of 4-amino-5-(pyridin-
4-yl)-4H-1,2,4-triazole-3-thiol (20) with appropriate phenacyl bromides (9) in the presence of
absolute ethanol under reflux condition. The final products were tested for their anti-cancer

activity.

Br N-N

I\
N-N 0 N N)\S
@XN%SH + abs. EtOH N~ A

N >
= NH,
R reflux
20 9 21
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PRESENT WORK:

Taking into consideration of significant biological and pharmaceutical applications of
fused triazole and triazolothiadiazine scaffolds, it was decided to incorporate all these core units

in a single molecule via a one-pot, multi-component approach.

The present chapter describes a facile one-pot, three-component synthesis of 7H-
[1,2,4]triazolo[4',3":1,5][1,2,4]triazolo[3,4-b][1,3,4]thiadiazines (24a-p). The final compounds
were synthesized by the reaction of readily available starting compounds 4-amino-5-hydrazinyl-
4H-1,2,4-triazole-3-thiol (22), phenacyl bromides (9) or 3-(2-bromoacetyl)-2H-chromen-2-ones
(23) and appropriate benzoic acids (2) in absolute ethanol and POCIs under reflux temperature

with good yields (Scheme-1).

In continuation of previous work* we have developed one-pot multi-component
synthesis of [1,2,4]triazolo[3,4-b][1,3,4]thiadiazines by the reaction of 4-amino-5-hydrazinyl-
4H-1,2,4-triazole-3-thiol (22) and various phenacyl bromides (9a-h) or 3-(2-bromoacetyl)-2H-
chromen-2-ones (23i-p) in presence of absolute ethanol under reflux. When the reaction was
carried out between 22 and 9 or 23 there is an initial formation of the intermediate A. This, later
on, undergoes cyclization with benzoic acids (2) in presence of POCIz to give the desired
products (24a-p) with good to excellent yields (80-91%, Table-1).

When the reaction is carried out between 22 and 9 or 23 there is a possibility of the
formation of other alternative products like 25 or 26 or 27 or all of them (Fig. 2) by the way in
which the reaction is taking place. But we got only one product 24 (By TLC). All the other
possible products (25, 26, and 27) were rejected on the ground of their spectral information. The
uniqueness of this reaction is that there is a formation of several bonds like two C=N, C-S, and

C-N in one-pot. Due to the presence of many nitrogen atoms as high energy materials.
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Scheme-1: Novel one-pot, three-component synthesis of 7H-

[1,2,4]triazolo[4',3":1,5][1,2,4]triazolo[3,4-b][1,3,4]thiadiazine derivatives (24a-p).

The formation of the final target compounds can be described by a plausible reaction
mechanism*? (Scheme-2). The highly nucleophilic thiol (-SH) functional group of 4-amino-5-
hydrazinyl-4H-1,2,4-triazole-3-thiol (22) substitutes the bromine atom of phenacyl bromides (9)
or 3-(2-bromoacetyl)-2H-chromen-2-ones (23) to yield the open chain thioketone. This suffers

from the loss of water molecule to give the intermediate A. The role of POCIs in the cyclization
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reaction is that it converts aromatic carboxylic acid into its benzoic or substituted benzoic
phosphorodichloridic anhydride. This attacks on the hydrazino group of A to yield the hydrazide
with the loss of phosphorodichloridate (PO2Cl2™) anion. Then the second molecule of POCIs
attacks on hydrazide followed by ring closure reaction with the nitrogen of triazole ring by the

elimination of another PO2Cl,™ anion to yield final products 24a-p.

(0] N-N
N H
|
NH,
Rl
25

N-N
as—L O~
N
Br =N
Rl

26

N
;j/

N-N R!
s Sy ™
| H
NH,

Br

27

Fig. 2: Other possible alternative products.

Table-1: 7H-[1,2,4]triazolo[4',3":1,5][1,2,4]triazolo[3,4-b][1,3,4]thiadiazines (24a-p).

Product R! R? R® R* R° Time(h) VYield (%)
24a H ~__ CHs H 12.10 88
24b CHs _ _ CHs H 12.30 91
24c OCH3 _ _ CHs H 12.40 86
24d F ___ CHs H 1310 83
24e Cl ___ CHs H 13.20 87
24f Br ___ CHs H  13.00 84
24g NO, __ CHs H 1420 80
24h Ph ___ CHs H 1330 89
24i OCHs F H 14.00 81
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Scheme-2: Plausible reaction pathway for the synthesis of target derivatives (24a-p).
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All the structures of the newly synthesized derivatives were confirmed by their analytical
and spectral data. For example, the FT-IR spectrum of compound 24a showed a stretching band
at 1608 cm™ corresponding to C=N. The 'H-NMR (400 MHz, CDCl3+DMSO-ds) spectrum of
the compound 24a displayed a singlet at 6 2.43 ppm for the methyl group (-CHz3) on the benzene
ring, characteristic thiadiazine methylene protons appeared as a singlet at 6 4.34 ppm. The
remaining nine aromatic protons appeared in the downfield from § 7.32 to 8.15 ppm. The *3C-
NMR (100 MHz, CDCIlz+DMSO-ds) spectrum of the product 24a showed a peak at & 21.6 ppm
for the methyl carbon on the aromatic ring and the methylene (~CH>-) carbon of the thiadiazine
ring appeared at & 23.0 ppm. The remaining sp? hybridized carbons gave peaks in the downfield
from & 114.6 to 162.8 ppm. In the ESI-MS compound 24a exhibited the base peak at m/z: 347
[M+H]".

In summary, we have synthesized 7H-[1,24]triazolo[4',3":1,5][1,2 4]triazolo[3,4-
b][1,3,4]thiadiazines (24a-p) via a one-pot, multi-component reaction approach with readily
available starting compounds under the simple reaction conditions and good yields. All the

newly synthesized compounds were confirmed by their analytical and spectral data.

EXPERIMENTAL:

Typical reaction procedure for the synthesis of 7H-[1,2,4]triazolo[4",3":1,5][1,2,4]triazolo
[3,4-b][1,3,4]thiadiazine derivatives (24a-p):

A mixture of 4-amino-5-hydrazinyl-4H-1,2,4-triazole-3-thiol 22 (1 mmol) and substituted
phenacyl bromide (1 mmol) or 3-(2-bromoacetyl)-2H-chromen-2-one (1 mmol) was taken in a
50 mL round bottom flask having 5 mL of absolute ethanol and the reaction mixture was
refluxed for 4-6 h. Then the solvent was evaporated, appropriate benzoic acid (1 mmol) was
added to the same reaction mixture in RB flask having POCIs (2 mL). Then the reaction was
continued under the reflux condition for 8-10 h. After completion, the reaction mixture was
cooled to room temperature then neutralized with NaHCOs3 solution and the separated solid was

filtered and dried. The final compound was recrystallized from 6-8 mL ethanol.
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SPECTRAL DATA:

8-Phenyl-3-(p-tolyl)-7H-[1,2,4]triazolo[4",3":1,5][1,2,4]triazolo[3,4-b][1,3,4]thiadiazine
(24a):

Coffee color solid (0.304g, 88%); m.p.: 157-159°C; IR
®/( (KBr, vmax/cm): 1608 (C=N); H-NMR (400 MHz,

N/N N CDCI3+DMSO-ds, 6 ppm): 2.43 (s, 3H, -CHz3), 4.34
(s, 2H, -CH»-), 7.33 (d, 2H, J=7.6 Hz, Ar-H), 7.52-7.59
(m, 3H, Ar-H), 8.02 (d, 2H, J=7.2 Hz, Ar-H), 8.14 (d, 2H, J=8.0 Hz, Ar-H); *C-NMR (100
MHz, CDCI3+DMSO-ds, 6 ppm): 21.6, 23.05, 114.6, 122.6, 125.7, 129.0, 129.4, 129.7, 129.8,

140.4, 143.2, 151.1, 153.1, 162.8; ESI-MS (m/z): 347 [M+H]"; Analytical calculated formulae
Ci1sH14N6S: C, 62.41; H, 4.07; N, 24.26; S, 9.26; Found: C, 62.46; H, 4.12; N, 24.30; S, 9.21.

3,8-Di-p-tolyl-7H-[1,2,4]triazolo[4',3":1,5][1,2,4]triazolo[3,4-b][1,3,4]thiadiazine (24b):

Coffee color solid (0.327g, 91%); m.p.: 162-164°C;
/®/[/ IR (KBr, vmadcm®): 1610 (C=N); H-NMR (400

N'N N MHz, CDCls+DMSO-ds, 8 ppm): 2.43 (s, 3H, -
CHa), 2.44 (s, 3H, -CHs), 4.41 (s, 2H, -CH2-), 7.33-
7.36 (M, 4H, Ar-H), 7.93 (d, 2H, J=8.8 Hz, Ar-H), 8.12 (d, 2H, J=8.0 Hz, Ar-H); 13C-NMR (100
MHz, CDCl3+DMSO-ds, 6 ppm): 21.5, 23.2, 123.6, 125.4, 127.7, 128.3, 130.2, 130.6, 130.9,

140.1, 142.7, 151.2, 154.3; ESI-MS (m/z): 361 [M+H]"; Analytical calculated formulae
Ci19H16NeS: C, 63.31; H, 4.47; N, 23.32; S, 8.90; Found: C, 63.35; H, 4.50; N, 23.36; S, 8.94.

8-(4-Methoxyphenyl)-3-(p-tolyl)-7H-[1,2,4]triazolo[4",3":1,5][1,2,4]triazolo[3,4-b][1,3,4]
thiadiazine (24c):

S Pale yellow color solid (0.323g, 86%); m.p.: 165-
4 13:NN 167°C; IR (KBr, vmadcm™®): 1607 (C=N): H-
\ _
o N A NMR (400 MHz, CDCls+DMSO-ds,  ppm):
N-N

2.43 (s, 3H, -CHs), 3.89 (s, 3H, -OCHs3), 4.39 (s,
2H, -CHy-), 7.04 (d, 2H, J=8.4 Hz, Ar-H), 7.34 (d, 2H, J=7.6 Hz, Ar-H), 8.01 (d, 2H, J=8.4 Hz,
Ar-H), 8.12 (d, 2H, J=7.6 Hz, Ar-H); 3C-NMR (100 MHz, CDCls+DMSO-ds, 3 ppm): 21.6,
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23.0, 55.7, 114.6, 122.6, 125.7, 129.0, 129.4, 129.7, 129.8, 140.4, 143.2, 151.1, 153.1, 162.8;
ESI-MS (m/z): 377 [M+H]*; Analytical calculated formulae C19H16NsOS: C, 60.62; H, 4.28; N,
22.33; S, 8.52; Found: C, 60.57; H, 4.24; N, 22.37; S, 8.57.

8-(4-Fluorophenyl)-3-(p-tolyl)-7H-[1,2,4]triazolo[4",3":1,5][1,2,4]triazolo[3,4-b][1,3,4]
thiadiazine (24d):

Brown color solid (0.302g, 83%); m.p.: 158-
/@I 160°C; IR (KBr, vmax/cm™): 1608 (C=N); 'H-

N/N N NMR (400 MHz, CDCIls+DMSO-ds, 6 ppm):
2.43 (s, 3H, -CHg), 4.44 (s, 2H, -CH>-), 7.29 (t, 2H,
J=8.4 Hz, Ar-H), 7.34 (d, 2H, J=8.0 Hz, Ar-H), 8.11 (d, 4H, J=7.6 Hz, Ar-H); 33C-NMR (100
MHz, CDCl3+DMSO-ds, 6 ppm): 26.3, 36.5, 121.3, 130.2, 134.7, 134.9, 135.2, 137.2, 144.5,

155.6, 160.9, 161.4, 166.6, 169.7; ESI-MS (m/z): 365 [M+H]"; Analytical calculated formulae
C18H13FNeS: C, 59.33; H, 3.60; N, 23.06; S, 8.80; Found: C, 59.28; H, 3.56; N, 23.11; S, 8.84.

8-(4-Chlorophenyl)-3-(p-tolyl)-7H-[1,2,4]triazolo[4',3":1,5][1,2,4]triazolo[3,4-b][1,3,4]
thiadiazine (24e):

Light yellow color solid (0.330g, 87%); m.p.:
/Q/(/N N 163-165°C; IR (KBr, vmax/cm™): 1609 (C=N);

'H-NMR (400 MHz, CDCI3+DMSO-ds, &
ppm): 2.40 (s, 3H, -CHg), 4.54 (s, 2H, -CH2-),
7.38 (d, 2H, J=7.6 Hz, Ar-H), 7.64 (d, 2H, J=8.0 Hz, Ar-H), 8.06 (d, 4H, J=8.8 Hz, Ar-H); 13C-
NMR (100 MHz, CDCI3+DMSO-ds, 6 ppm): 21.5, 23.3, 127.8, 128.2, 129.9, 130.9, 137.7,
138.6, 142.6, 142.7, 144.9, 153.1, 161.5, 163.9; ESI-MS (m/z): 381 [M+H]"; Analytical

calculated formulae C1gH13CINgS: C, 56.77; H, 3.44; N, 22.07; S, 8.42; Found: , 56.80; H, 3.40;
N, 22.03; S, 8.47.

321



CHAPTER-VI

8-(4-Bromophenyl)-3-(p-tolyl)-7H-[1,2,4]triazolo[4",3":1,5][1,2,4]triazolo[3,4-b][1,3,4]
thiadiazine (24f):

Pale yellow color solid (0.357g, 84%); m.p.:
/@/[/ 156-158°C; IR (KBr, vmax/cm™): 1611 (C=N);

N’N N IH-NMR (400 MHz, CDCls+DMSO-ds, &
ppm): 2.41 (s, 3H, -CHzs), 4.52 (s, 2H, -CH>-),
7.37 (d, 2H, J=8.0 Hz, Ar-H), 7.77 (d, 2H, J=8.4 Hz, Ar-H), 7.99 (d, 2H, J=8.4 Hz, Ar-H), 8.07
(d, 2H, J=8.0 Hz, Ar-H); 3C-NMR (100 MHz, CDCl3+DMSO-ds, & ppm): 21.6, 23.0, 114.6,
122.6, 125.6, 129.0, 129.4, 129.7, 129.8, 140.3, 143.2, 151.1, 151.8, 153.1 ; ESI-MS (m/z): 425

[M+H]*; Analytical calculated formulae C1sH13BrNeS: C, 50.83; H, 3.08; N, 19.76; S, 7.54;
Found: C, 50.87; H, 3.02; N, 19.73; S, 7.58.

8-(4-Nitrophenyl)-3-(p-tolyl)-7H-[1,2,4]triazolo[4',3":1,5][1,2,4]triazolo[3,4-b][1,3,4]
thiadiazine (249):

Yellow color solid (0.312g, 80%); m.p.: 155-
/@/{ 157°C; IR (KBr, vmax/cm™): 1610 (C=N); 13C-

N’N N NMR (100 MHz, CDCls+DMSO-ds, & ppm):
26.3, 34.1, 122.5, 128.9, 129.5, 130.3 133.0,
134.4, 1345, 134.9, 135.9, 139.3, 148.4, 172.7; ESI-MS (m/z): 392[M+H]*; Analytical

calculated formulae C1sH13N70,S: C, 55.23; H, 3.35; N, 25.05; S, 8.19; Found: C, 55.20; H,
3.31; N, 25.09; S, 8.15.

8-([1,1'-Biphenyl]-4-yl)-3-(p-tolyl)-7H-[1,2,4]triazolo[4",3":1,5][1,2,4]triazolo[3,4-b][1,3,4]
thiadiazine (24h):

S Coffee color solid (0.375g, 89%); m.p.: 172-

< \7:N 174°C; IR (KBr, vmaxcm?): 1598 (C=N);

O O N/N\(NW/Q/ 'H-NMR (400 MHz, CDCIl3+DMSO-ds, &
ppm): 2.38 (s, 3H, -CHs), 4.51 (s, 2H, -CH>-
), 7.32 (d, 2H, J=8.4 Hz, Ar-H), 7.38 (t, 1H, J=7.2 Hz, Ar-H), 7.47 (t, 4H, J=7.6 Hz, Ar-H), 7.69

(d, 2H, J=7.6 Hz, Ar-H), 7.80 (d, 2H, J=8.4 Hz, Ar-H), 8.06 (d, 2H, J=8.0 Hz, Ar-H): 3C-NMR
(100 MHz, CDCls+DMSO-ds, & ppm): 21.6, 23.0, 122.6, 125.7, 128.3, 129.0, 129.2, 129.3,
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129.4, 129.7, 129.8, 130.4, 140.4, 143.2, 143.5, 151.1, 151.8, 153.1, 162.8; ESI-MS (m/z): 423
[M+H]*; Analytical calculated formulae C24H18NeS: C, 68.23; H, 4.29; N, 19.89; S, 7.59; Found:
C, 68.26; H, 4.25; N, 19.85; S, 7.55.

3-(4-Fluorophenyl)-8-(4-methoxyphenyl)-7H-[1,2,4]triazolo[4",3":1,5][1,2,4]triazolo[3,4-
b][1,3,4]thiadiazine (24i):

S Yellow color solid (0.307g, 81%); m.p.: 179-
N O/g ,1?1:NN Y@F 181°C; IR (KBr, vmax/cm): 1604 (C=N); 13C-
0 Y& 4 NMR (100 MHz, CDCl3+DMSO-ds, 6 ppm):
23.3, 56.0, 114.9, 116.2, 116.3, 116.7, 125.8,
129.8, 130.3, 131.4, 132.6, 150.8, 155.0, 162.8; ESI-MS (m/z): 381 [M+H]*; Analytical

calculated formulae C1gH13FNgOS: C, 56.83; H, 3.44; N, 22.09; S, 8.43; Found: C, 56.80; H,
3.40; N, 22.04; S, 8.40.

3-(2-Bromophenyl)-8-(4-bromophenyl)-7H-[1,2,4]triazolo[4",3":1,5][1,2,4]triazolo][3,4-
b][1,3,4]thiadiazine (24j):

Pale yellow color solid (0.406g, 83%); m.p.: 185-
/Q/Q NN @ 187°C; IR (KBr, vmadcm): 1607 (C=N); H-NMR

(400 MHz, CDCl3+DMSO-dg, 6 ppm): 4.35 (s, 2H, -
CHy-), 7.57 (t, 1H, J=8.8 Hz, Ar-H), 8.10 (t, 1H, J=8.8
Hz, Ar-H), 8.91 (d, 2H, J=5.2 Hz, Ar-H), 9.00 (d, 2H, J=5.6 Hz, Ar-H), 9.03 (d, 1H, J=2.8 Hz,
Ar-H), 9.10 (d, 1H, J=6.8 Hz, Ar-H); 33C-NMR (100 MHz, CDCl3+DMSO-ds, & ppm): 23.0,
114.6, 122.6, 125.6, 129.0, 129.4, 129.7, 129.8, 140.4, 143.2, 143.5, 151.1, 151.8, 153.1, 162.8;

ESI-MS (m/z): 493 [M+3]"; Analytical calculated formulae C1sH13Br2NeS: C, 41.65; H, 2.06; N,
17.14; S, 6.54; Found: C, 41.61; H, 2.02; N, 17.12; S, 6.50.
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3-(3-(p-Tolyl)-7H-[1,2,4]triazolo[4',3":1,5][1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-8-yl)-2H-
chromen-2-one (24k):

0.0 Light orange color solid (0.372g, 90%); m.p.:

=N 7/<j/ 192-194°C; IR (KB, vmadcml): 1608 (C=N),
A R 7 1720 (C=0); *C-NMR (100 MHz, DMSO-ds, &
ppm): 21.6, 24.9, 116.8, 125.4, 1287, 129.6,
129.8, 130.2, 130.4, 134.3, 134.4, 134.7, 144.9, 153.7, 154.5, 159.1, 167.8, 169.9; ESI-MS

(m/z): 415 [M+H]"; Analytical calculated formulae C21H14NsO>S: C, 60.86; H, 3.40; N, 20.28; S,
7.74; Found: C, 60.82; H, 3.35; N, 20.31; S, 7.78.

8-Methoxy-3-(3-(p-tolyl)-7H-[1,2,4]triazolo[4',3":1,5][1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-
8-yl)-2H-chromen-2-one (241):

<0 Yellow color solid (0.377g, 85%); m.p.: 195-197°C,;
0.9 S%N\ IR (KBr, vmax/cm™): 1609 (C=N), 1719 (C=0); H-
@X’EN~N\<\NW/©/ NMR (400 MHz, CDCI3+DMSO-ds, 8 ppm): 2.36
N-N (s, 3H, -CHg), 3.95 (s, 3H, -OCHa), 4.42 (s, 2H, -

CHy-), 7.76 (d, 1H, J=7.6 Hz, Ar-H), 7.81 (d, 2H, J=8.0 Hz, Ar-H), 7.90 (t, 1H, J=8.4 Hz, Ar-H),
8.04 (d, 2H, J=8.0 Hz, Ar-H), 8.13 (d, 1H, J=6.4 Hz, Ar-H), 8.56 (s, 1H, Ar-H); 3C-NMR (100
MHz, CDCls+DMSO-ds, 6 ppm): 26.3, 26.4, 61.4, 124.0, 125.9, 126.8, 130.2, 130.4, 130.6,
133.1, 133.4, 134.3, 134.5, 134.9, 135.3, 135.5, 144.5, 148.3, 151.5, 172.6; ESI-MS (m/z): 445

[M+H]*; Analytical calculated formulae C22H1sNsO3S: C, 59.45; H, 3.63; N, 18.91; S, 7.21;
Found: C, 59.42; H, 3.67; N, 18.95; S, 7.25.

6-Chloro-3-(3-(p-tolyl)-7H-[1,2,4]triazolo[4",3":1,5][1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-8-
yl)-2H-chromen-2-one (24m):

0.0 s Yellow color solid (0.367g, 82%); m.p.:
/@;L[ ﬁcNN 7/<j/ 189-191°C; IR (KBr, vmadcm?): 1610
Cl 7 \N’NX\ / (C=N), 1727 (C=0); *H-NMR (400 MHz,
NN CDCl3+DMSO-ds, & ppm): 2.42 (s, 3H, -

CHs), 4.40 (s, 2H, -CH,-), 7.24 (d, 2H, J=8.0 Hz, Ar-H), 7.33 (d, 2H, J=7.2 Hz, Ar-H), 7.64 (d,
1H, J=8.0 Hz, Ar-H), 7.76 (s, 1H, Ar-H), 8.11 (d, 1H, J=8.0 Hz, Ar-H), 8.59 (s, 1H, Ar-H): 13C-
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NMR (100 MHz, CDCI3+DMSO-ds, 6 ppm): 21.6, 24.3, 118.2, 125.5, 128.3, 128.7, 129.0,
129.1, 129.2, 129.7, 130.0, 130.1, 133.7, 143.1, 143.9, 150.7, 152.9, 168.1; ESI-MS (m/z): 449
[M+H]"; Analytical calculated formulae C2:1H13CIN6sO2S: C, 56.19; H, 2.92; N, 18.72; S, 7.14;
Found: C, 56.15; H, 2.96; N, 18.68; S, 7.17.

6-Bromo-3-(3-(p-tolyl)-7H-[1,2,4]triazolo[4',3":1,5][1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-8-
yl)-2H-chromen-2-one (24n):

0. 0 s Yellow color solid (0.414g, 84%); m.p.:
/@;i_( N=N 7/©/ 203-205°C; IR (KBF, vmad/cm): 1610
Br = \N’N\<\N/ (C=N), 1728 (C=0); 'H-NMR (400 MHz,
N-N CDClz+DMSO-ds, 5 ppm): 2.43 (s, 3H, -

CHa), 4.39 (s, 2H, -CHz-), 7.24 (d, 1H, J=8.0 Hz, Ar-H), 7.33 (d, 2H, J=8.0 Hz, Ar-H), 7.97 (d,
1H, J=8.0 Hz, Ar-H), 8.04 (s, 1H, Ar-H), 8.10 (d, 2H, J=8.0 Hz, Ar-H), 8.58 (s, 1H, Ar-H); 13C-
NMR (100 MHz, CDCls+DMSO-de, & ppm): 21.6, 29.5, 117.2, 119.0, 125.4, 127.9, 128.1,
128.4, 128.6, 129.4, 129.5, 129.6, 129.8, 130.2, 132.2, 1435, 153.5, 163.7, 167.8; ESI-MS

(m/z): 495 [M+2]"; Analytical calculated formulae C21H13BrNeO2S: C, 51.13; H, 2.66; N, 17.04;
S, 6.50; Found: C, 51.17; H, 2.62; N, 17.08; S, 6.54.

6,8-Dibromo-3-(3-(p-tolyl)-7H-[1,2,4]triazolo[4',3":1,5][1,2,4]triazolo[3,4-b][1,3,4]
thiadiazin-8-yl)-2H-chromen-2-one (240):

Br Yellow color solid (0.463g, 81%); m.p.: 216-
Jijf/ﬁ)—fsﬁ/){ Y@ 218°C; IR (KBr, vmadcm?): 1611 (C=N), 1730

Br Z N (C=0); *H-NMR (400 MHz, CDCls+DMSO-ds, &
NN ppM): 2.43 (5, 3H, -CHs), 4.37 (5, 2H, -CHz-), 7.32

(d, 2H, J=8.0 Hz, Ar-H), 7.94 (s, 1H, Ar-H), 8.01 (s, 1H, Ar-H), 8.12 (d, 2H, J=8.0 Hz, Ar-H),
8.55 (s, 1H, Ar-H); *C-NMR (100 MHz, CDCl3+DMSO-ds, & ppm): 21.6, 24.2, 110.7, 117.5,
121.3,125.5, 128.1, 128.3, 129.0, 129.1, 129.4, 129.6, 129.7, 131.7, 143.1, 143.5, 150.2, 157.8,

168.0; ESI-MS (m/z): 573 [M+H]"; Analytical calculated formulae C21H12Br2NsO-S: C, 44.08;
H, 2.11; N, 14.69; S, 5.60; Found: C, 44.04; H, 2.15; N, 14.64; S, 5.64.
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2-(3-(p-Tolyl)-7H-[1,2,4]triazolo[4,3":1,5][1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-8-yl)-3H-
benzo[f]lchromen-3-one (24p):

Yellow color solid (0.399g, 86%); m.p.: 208-
210°C; IR (KBr, uvmad/cm?): 1610 (C=N),
N Y\ 1/\1 1719  (C=0); 'H-NMR (400 MHz,
CDCls+DMSO-ds, & ppm): 2.42 (s, 3H, -
CHa), 4.45 (s, 2H, -CHy-), 7.32 (d, 2H, J=8.0 Hz, Ar-H), 7.64 (t, 2H, J=7.2 Hz, Ar-H), 7.78 (t,
2H, J=7.2 Hz, Ar-H), 7.98 (d, 1H, J=7.6 Hz, Ar-H), 8.13 (d, 2H, J=8.4 Hz, Ar-H), 8.44 (d, 1H,
J=8.4 Hz, Ar-H), 9.32 (s, 1H, Ar-H); 3C-NMR (100 MHz, CDCl3+DMSO-ds, & ppm): 21.6,
35.1, 113.1, 113.9, 116.9, 117.0, 117.1, 122.8, 124.3, 125.6, 127.1, 128.4, 128.8, 129.5, 129.6,
129.8, 130.4, 143.6, 154.5, 155.3, 163.6, 167.9, 176.4; ESI-MS (m/z): 465 [M+H]"; Analytical
calculated formulae C2sHi1sNeO2S: C, 64.64; H, 3.47; N, 18.09; S, 6.90; Found: C, 64.72; H,
3.44; N, 18.04; S, 6.94.
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AN EFFICIENT ONE-POT THREE COMPONENT SYNTHESIS OF N-(2,5-
DIMETHYL-1H-PYRROL-1-YL)-7H-[1,2,4]TRIAZOLO[3,4-
b][1,3,4]THIADIAZIN-3-AMINE DERIVATIVES

Rl S (0) O
\ \N
N-N_N 77— 3
¥ R? N\NX\N
HN




CHAPTER-VII

INTRODUCTION:

Heterocyclic chemistry is one of the most important branches of organic chemistry. Most
of the heterocyclic compounds contain nitrogen and sulfur atoms in five and six-membered
isolated and fused ring systems. These compounds have gained significant attention in the fields
of organic synthesis, medicinal chemistry, pharmaceutical, and agrochemical industries.

Numerous heterocyclic compounds exhibit a variety of biological applications.

Thiadiazine skeleton is made up of two nitrogen atoms and one sulfur atom in the six-
membered heterocyclic ring systems. The amino (—-NH>) and thiol (-SH) groups of 1,2,4-triazole
participate in the reaction with a-halo ketones to produce the fused triazolothiadiazine as core
heterocyclic unit. Generally, the 1,3,4-thiadizine ring is combined with 1,2,4-triazole to form the
1,2,4-triazolo[3,4-b][1,3,4]thiadiazines ring system with five and six-membered fused
heterocyclic moiety. Triazolothiadiazines possess therapeutical importance due to their wide
range of biological, medicinal applications such as anti-inflammatory?, anti-HIV?, anti-cancer®4,
anti-bacterial®®, anti-proliferative’, anti-tubercular®, anti-oxidant®, anti-viral, anti-analgesic?, and

plant growth regulators®?,

Pyrrole is a well known five-membered aromatic heterocyclic ring having a nitrogen
atom. Many of the natural products and macrocyclic complexes such as haemoglobin,
chlorophyll, vitamin-B12, and bile pigments were constructed with a pyrrole ring as a core unit.
Pyrrole ring combines with different pharmacophores that lead to the formation of important
heterocyclic compounds. Pyrrole derivatives exhibit remarkable pharmaceutical and biological
activities such as anti-coccodial'®, anti-convulsant*, anti-proliferative'®>®, anti-fungal'’, anti-

mycobacterial®®, anti-cancer'®?, anti-inflammatory?! and anti-tubercular?? activities (Fig. 1).
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N0 Me
H
Sunitinib
Fig. 1: Commercially available drugs having pyrrole ring.
The following literature survey reveals the synthesis of 1,2,4-triazolo[3,4-

b][1,3,4]thiadiazines and pyrrole derivatives.

Alexander? et al. explained the synthesis substituted 6-phenyl-7H-[1,2,4]triazolo[3,4-

b][1,3,4]thiadiazines (3) from the reaction of different phenacyl

thiocarbohydrazide (2) in presence of DMSO at room temperature.

bromides (1) with
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R
Q S
i. DMSO, rt
Br H,N. L NH, . ASNEN
+ N° 'N /‘\ N
H H ii. HC(OCHj), s~ N
R CF;COOH
1 2 rt 3

Sumangala®* et al. carried out the reaction between 4-amino-3-(4-
(methylsulfonyl)benzyl)-1H-pyrazole-5(4H)-thione (4) and various phenacyl bromides (1) in the
presence of absolute ethanol at 80°C temperature to yield the 3-(4-(methylsulfonyl)benzyl)-7H-
[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine derivatives (5). The target compounds were screened for

their cytotoxic and anti-microbial activity with good results.

N-N
| N\>\s
N-NH
o Ethanol \ \2
/ N=
s+ Be -
| R R
NH, 80°C
S<
Y0
s=0 4 1 H;C 0

H.C-S
0

Holla?® et al. reported the synthesis, anti-bacterial, anti-fungal and anti-cancer activities
of the different (2)-3-benzyl-7-benzylidene-6-(2,4-dichloro-5-fluorophenyl)-7H-
[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine (8) derivatives from the reaction between substituted (Z)-
2-bromo-1-(2,4-dichloro-5-fluorophenyl)-3-phenylprop-2-en-1-one (6) and different 4-amino-5-

benzyl-4H-1,2,4-triazole-3-thiol (7) in presence of ethanolic KOH solution under reflux

condition.
Rl
cr o : ! N-N R
_ | H—s

O T @ + N-N Ethanolic KOH N —
cl (CsH N cl

F NHZ reflux Q

6 7 Foa
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Prakash?® et al. published the synthesis, anti-microbial and anti-inflammatory activity of
substituted 6-phenyl-3-(2,3,5-trichlorophenyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4] thiadiazines (10)
from the reaction of 4-amino-5-(2,3,5-trichlorophenyl)-4H-1,2,4-triazole-3-thiol (9) with

substituted phenacyl bromides (1) in the ethanol under reflux condition with good yields.

(0] N-N
Cl N-N \>\
/\ Br | S
N)\SH N Ethanol _a N
| N=<
Cl NH, reflux Cl
cl Cl
9 1 10

A series of N-6-diphenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-amine (12) were
synthesized by Suyog?’ and co-worker by the reaction of 4-amino-5-(phenylamino)-4H-1,2,4-
triazole-3-thiol (11) with phenacyl bromide (1) using potassium carbonate, p-TsOH, and DMF at
95-100°C with moderate yields.

NN 0 i. K,CO,4 NN
RS Br i p-TsOH D~
N ONTTSH O+ - NN
NH, DMF H N=
95-100°C

11 1 12

Bimal?® et al. reported the synthesis of substituted 2,5-dimethyl-1H-pyrroles (15) from
the reaction of different primary amines (13) with hexane-2,5-dione (14) using montmorillonite-
KSF clay with high yields.

0]

Montmorillonite ]\
R_NH2 + )J\/\[( - /[Q\
\
0 KSF R
13 14 15
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Derivatives of 2-methyl-N,1,4-triphenyl-1H-pyrrol-3-amines (19) were synthesized by
Sandeep® et al. via a one-pot reaction of substituted anilines (16), different 4-oxo-N-
phenylpentanamides (17) and (E)-(2-nitrovinyl)benzenes (18) using Zirconocene chloride

catalyst in ethanol under reflux condition with good yields.

RZ
NH, 0 ,
i )WNH )
R
0 Cp,ZrCl, HN©/R
> [\
16 17 EtOH N

reflux
1
x.NO,
R"QN 19

18

Veronica® et al. carried out the multi-component reaction between the substituted 3-(2-
bromoacetyl)-2H-chromen-2-ones (20), acetylacetone (21) and different primary amines (13)
using alum promoted reaction in presence of polyethyleneglycol-400 (PEG-400) and water at
70°C temperature to produce high yields of the 3-(4-acetyl-5-methyl-1H-pyrrol-2-yl)-2H-

chromen-2-one (22) derivatives.

J—w M 15 mol% Alum

21 PEG-400/ H,0
70°C

13

22

Mykhaylo®! et al. conducted the reaction between 4-(trifluoromethoxy)aniline (23) with
hexane-2,5-dione (14) in presence of acetic acid at 120°C temperature to produce the 2,5-

dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-pyrrole (24).
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NH, o

o A 4

Q) AcOH

\J

F
O 120°C F

P F FH—0

23 14 F 24

Joshi®? et al. carried the synthesis N-(2,5-dimethyl-1H-pyrrol-1-yl)-4-(1H-pyrrol-1-
yl)benzamide (26) from the reaction 4-(1H-pyrrol-1-yl)benzohydrazide (25) with
acetonylacetone (14) in presence of glacial acetic acid under heating condition.

@NQ—/(O T AcOH — C a
~ + CN
HN-NH, M = HN-N
(0] —
26

Y

120°C

25 14

PRESENT WORK:

The present chapter delineates the synthesis of a series of N-(2,5-dimethyl-1H-pyrrol-1-
yl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-amine derivatives (28a-j) via a one-pot multi-
component reaction pathway.

In view of the importance of triazolothiadiazines and pyrroles in various fields, we are
interested to develop the compounds with triazolothiadiazine and pyrrole rings in single
heterocyclic scaffolds. There are many procedures reported for the synthesis of the pyrrole ring.
In the current investigation, we have developed the pyrrole ring through Paal-Knorr synthesis.
Initially, we have carried out the reaction between 4-amino-5-hydrazinyl-4H-1,2,4-triazole-3-
thiol (27) and substituted phenacyl bromides (1) or 3-(2-bromoacetyl)-2H-chromen-2-ones (20)
in presence of ethanol at reflux temperature, then hexane-2,5-dione (14) and acetic acid were
added to this reaction mixture in the same reaction vessel under reflux condition to produce the
substituted N-(2,5-dimethyl-1H-pyrrol-1-yl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-amines
(28a-j) with excellent yields (Scheme-1).
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Based on the previous work®, we have conducted the reaction in absolute ethanol and

acetic acid without optimization with other solvents. The designed target compounds were
obtained by the reaction of purpald (27), phenacyl bromides (1), or 3-(2-bromoacetyl)-2H-
chromen-2-ones (20), and acetonylacetone (14) in absolute ethanol containing acetic acid under
reflux for 8-11 h. The yields of the products were 86-94% (Table-1). The solvent selection and

reaction condition have played an important role in the formation of a heterocyclic ring.

The other alternative products that are possible between the reaction of 27, 1, or 2 and 14

would be 29 or 30 or both. In the present investigation, we got a single product (28) as evidenced

by TLC. The expected alternative products 29 and 30 (Fig. 2) can be deleted based on the

analytical and spectral (IR, *H-, 3C-NMR, and Mass) studies. The specialty of this reaction is

the formation of thiadiazine ring and pyrrole rings. Many bands like C-S, C=N, and N-C bonds

are formed in one-pot.
o
1 S
\ ‘N
EtOH / AcOH R! N-N__N
- Y
reflux l-llTl
8-11h N
W
N-N 0}
HS/«N»\N NH, N 28 (a-g)
" H
NH, o
27 14 R2
0.0
EtOH / AcOH S
- g
3 oA
reflux R N-N"SN
=N
8-11h HN
R? N
0_0 M/
R3 Br 28 (hui
0 (h-j)
20
Scheme-1: One-pot synthesis of N-(2,5-dimethyl-1H-pyrrol-1-yl)-7H-[1,2,4]triazolo[3,4-

b][1,3,4]thiadiazin-3-amine derivatives (28a-j).
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N-N N-N
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s NN M DN
OV W H O 8N
_N
o hs
29 30

Fig. 2: Possible alternative products.
Table-1: Series of N-(2,5-dimethyl-1H-pyrrol-1-yl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-
3-amines (28a-).

Compound R! R? R3 Time (h) Yield (%)
28a H . . 8.30 90
28b CHs _ _ 8.40 94
28¢ OCHs o . 8.30 92
28d F . . 9.00 87
28e Cl . . 9.50 91
28f Br . . 9.30 90
289 NO; . o 10.00 87
28h - H H 10.20 89
28i - OCHs H 10.40 86
28] - H Cl 11.00 88

In the present investigation, the plausible reaction mechanism was proposed for the
formation of  N-(2,5-dimethyl-1H-pyrrol-1-yl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-
amines (28a-j) via a one-pot multi-component reaction approach (Scheme-2). Due to the high
nucleophilicity and reactivity of both thiol (-SH) and amino (-NH2) functional groups in the

starting material 28 they participated in the cyclo condensation reaction with a-bromo ketone
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compounds 1 or 20 to give fused 1,2,4-triazolo[3,4-b][1,3,4]thiadiazine ring. The hydrazino (—
NH-NH2) group of compound 28 underwent the Paal-Knorr pyrrole reaction with

acetonylacetone (14) to generate the pyrrole ring.

Ar
N-N N-N 9 ® N-N
.. A ; y H = NH
HS/Q\'\/\A‘JNH2 " rWzAS/QN%NA\HZ H’O/g s
< N H Ar _HBr :Q H S - H
NH, m 0 P NHZ %N HO 61\{1H
27 N_N H
A Ar
1or20 HN\NH
2
W
S QYN‘N . s__N. NN
/A\/\FNN N ah o H L U SN2
Ar N N_ I? N N,l\ N NH S N H
Ar H . A N 2 H,0
HN-NH H r HO-T— H
N 29
Ar
H
S @ )
®
\ e
R —
14
! N N
. N S S
S—¢ "N - N ~ N
T — NA e NAL
V’< @ / .
N NH- N NH-N SH.O N NH-N
AF /ﬁ Ar U - 2 Ar N\
H\G 28 (a-j)

Scheme-2: Reaction pathway for the synthesis of designed compounds 28a-j.

The structures of newly synthesized derivatives were confirmed by their analytical and
spectral studies. In the FT-IR spectrum, the compound 28b gave stretching band at 3294 cm™
belongs to the —~NH— group. The *H-NMR (400 MHz, CDCIs) spectrum of the molecule 28b
exhibited the characteristic singlet for the symmetrical two methyls (six protons, —CHz) groups
on pyrrole at & 2.19 ppm, another singlet recorded at & 2.44 ppm for the methyl on the benzene
ring. The characteristic thiadiazine methylene (—CHz-) two protons appeared as a singlet at &
3.95 ppm. The —NH- proton showed a peak at & 4.13 ppm and the two symmetrical olefinic
protons on the pyrrole ring displayed as a singlet at & 5.79 ppm. The remaining four protons
appeared as two doublet peaks in the downfield § 7.29 to 7.73(aromatic region). In the *C-NMR
(100 MHz, CDCIs) spectrum of compound 28b, the characteristic peaks appeared at 6 11.5, 21.6

and 23.8 ppm belongs to two symmetrical methyl carbons on pyrrole, —CHz carbon on benzene
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ring and thiadiazine carbon respectively. The sp-hybridized two symmetrical carbons on the
pyrrole ring showed a single peak at & 104.1 ppm. The remaining sp? carbons appeared in the
aromatic region from 127.1 to 153.2 ppm. The molecular ion peak of the compound 28b
recorded at m/z: 339 [M+H]" in the ESI-MS.

In the conclusion, we have developed a fused 1,2,4-triazolo[3,4-b][1,3,4]thiadiazine and
pyrrole rings in a single compound through a one-pot multi-component reaction strategy. The
reaction protocol is very easy to operate, with simple reaction conditions, without metals, and a
high atom economy.

EXPERIMENTAL.:

General reaction procedure for an efficient one-pot three component synthesis of N-(2,5-
dimethyl-1H-pyrrol-1-yl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-amine derivatives
(28a-j):

A mixture of equal amounts of 4-amino-5-hydrazinyl-4H-1,2,4-triazole-3-thiol 28 (0.001
mol) and substituted phenacyl bromide 1 (0.001 mol) or 3-(2-bromoacetyl)-2H-chromen-2-one
20 (0.001 mol) and hexane-2,5-dione 14 (0.001 mol) was refluxed in the presence of absolute 4
mL ethanol containing 2 mL glacial acetic acid in a 25 mL round bottom flask at 70-85°C for 9-
11 h to produce the target molecules (28). After completion of the reaction, the mixture was
cooled to the ambient temperature, the separated solid was filtered. The dry final product was

recrystallized from the 6-8 mL ethanol.

SPECTRAL DATA:

N-(2,5-Dimethyl-1H-pyrrol-1-yl)-6-phenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-

amine (28a):

Y Yellow solid (0.291g, 90%); m.p.: 179-181°C; IR (KBr,

N.
S\(l;//? vmax/cm™?): 3329 (-NH-), 1610 (C=N); 'H-NMR (400 MHz,
/
=N HNfN\ CDCls, 6 ppm): 2.21 (s, 6H, two -CHs), 4.00 (s, 2H, -CH>-),
4.04 (s, 1H, -NH-), 5.82 (s, 2H, two =CH- of pyrrole ring), 7.51-

) 7.56 (m, 3H, Ar-H), 7.83 (d, 2H, J=7.2 Hz, Ar-H); 3C-NMR
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(100 MHz, CDCls, é ppm): 11.5, 23.7, 104.2, 128.4, 128.5, 129.4, 131.7, 137.7, 138.5, 152.1,
152.2; ESI-MS (m/z): 325 [M+H]"; Analytical calculated formulae C16H16NeS: C, 59.24; H,
4.97; N, 25.91; S, 9.88; Found: C, 59.28; H, 4.95; N, 25.95; S, 9.84.

N-(2,5-Dimethyl-1H-pyrrol-1-yl)-6-(p-tolyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-
amine (28b):

Light yellow solid (0.317g, 94%); m.p.: 192-194°C; IR (KBr,

S—<
XN J(N ) vmadcml): 3294 (-NH-), 1581 (C=N); H-NMR (400 MHz,
=N HN-N CDCls, 8 ppm): 2.19 (s, 6H, two -CHs), 2.44 (s, 3H, -CHs), 3.95

(s, 2H, -CHy-), 4.19 (s, 1H, -NH-), 5.79 (s, 2H, two =CH- of
pyrrole ring), 7.31 (d, 2H, J=7.6 Hz, Ar-H), 7.72 (d, 2H, J=8.4 Hz,
Ar-H); ¥*C-NMR (100 MHz, CDCls, & ppm): 11.5, 21.6, 23.8, 104.1, 127.2, 128.4, 129.9,
130.5, 137.9, 142.9, 152.1, 153.2; ESI-MS (m/z): 339 [M+H]"; Analytical calculated formulae
C17H18NeS: C, 60.33; H, 5.36; N, 24.83; S, 9.47; Found: C, 60.37; H, 5.40; N, 24.80; S, 9.51.

N-(2,5-Dimethyl-1H-pyrrol-1-yl)-6-(4-methoxyphenyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]

thiadiazin-3-amine (28c):

Yellow solid (0.325g, 92%); m.p.: 198-200°C; IR (KBr, vmax/cm™):
3427 (-NH-), 1604 (C=N); 'H-NMR (400 MHz, DMSO-ds, 6 ppm):
2.11 (s, 6H, two -CHs3), 3.42 (s, 3H, -OCHs3), 4.47 (s, 2H, -CH>-),
o 5.75 (s, 2H, two =CH- of pyrrole ring), 7.62 (s, 2H, Ar-H), 8.15 (s,
\ 2H, Ar-H), 8.38 (s, 1H, -NH-); 3C-NMR (100 MHz, DMSO-ds, &
ppm): 11.7, 23.1, 56.0, 103.5, 114.7, 126.0, 127.9, 129.9, 137.6, 152.9, 154.0, 162.6; ESI-MS
(m/z): 355 [M+H]*; Analytical calculated formulae C17H18N6OS: C, 57.61; H, 5.12; N, 23.71; S,
9.05; Found: C, 57.58; H, 5.16; N, 23.75; S, 9.00.

S\<N‘N
N

N/
N HN- N
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N-(2,5-Dimethyl-1H-pyrrol-1-yl)-6-(4-fluorophenyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]
thiadiazin-3-amine (28d):

\ Brown solid (0.297g, 87%); m.p.: 186-188°C; IR (KBr, vmax/cm’
SKIJF 1): 3416 (-NH-), 1599 (C=N); 'H-NMR (400 MHz, CDCls, &
ppm): 2.19 (s, 6H, two -CHzs), 3.96 (s, 2H, -CH»2-), 5.81 (s, 2H,
two =CH- of pyrrole ring), 7.19 (d, 2H, J=8.4 Hz, Ar-H), 7.22 (s,
1H, -NH-), 7.83 (dd, 2H, J=6.8 Hz, J=3.6 Hz, Ar-H); 13 C-NMR
(100 MHz, DMSO-ds, 6 ppm): 11.7, 23.3, 103.5, 116.3, 116.5, 127.9, 130.8, 153.4, 155.9,
163.4, 165.9; ESI-MS (m/z): 343 [M+H]*; Analytical calculated formulae CisH1sFNeS: C,
56.13; H, 4.42; N, 24.54; S, 9.36; Found: C, 56.10; H, 4.45; N, 24.59; S, 9.40.

6-(4-Chlorophenyl)-N-(2,5-dimethyl-1H-pyrrol-1-yl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]

thiadiazin-3-amine (28e):

\ Light yellow solid (0.325¢, 91%); m.p.: 194-196°C; IR (KBr,
S\g,}i ) vmax/cmt): 3227 (-NH-), 1583 (C=N); H-NMR (400 MHz,
=N HN-N( CDCls, & ppm): 2.19 (s, 6H, two -CHs), 3.95 (s, 2H, -CHz-),
5.80 (s, 2H, two =CH- of pyrrole ring), 7.40 (s, 1H, -NH-), 7.48
Cl (d, 2H, J=8.4 Hz, Ar-H), 7.76 (d, 2H, J=8.8 Hz, Ar-H); *C-NMR
(100 MHz, CDCls, & ppm): 11.5, 23.7, 104.2, 128.4, 128.5, 129.4, 131.7, 137.7, 138.5, 152.1,
152.2; ESI-MS (m/z): 359 [M+H]*; Analytical calculated formulae C16H15CINeS: C, 53.55; H,
4.21; N, 23.42; S, 8.94; Found: C, 53.58; H, 4.25; N, 23.46; S, 8.90.

6-(4-Bromophenyl)-N-(2,5-dimethyl-1H-pyrrol-1-yl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]
thiadiazin-3-amine (28f):

‘ Yellow solid (0.362, 90%); m.p.: 202-204°C: IR (KB, omaxdcm-
SX& J(N V| Y): 3427 (-NH-), 1586 (C=N); *H-NMR (400 MHz, CDCls, 5
SNOHNNC I 5om): 2,49 (s, 6H, two -CHa), 3.95 (s, 2H, -CHa-), 5.80 (s, 2H,
two =CH- of pyrrole ring), 7.63 (s, 1H, -NH-), 7.65-7.69 (m, 4H,
Br Ar-H): 3C-NMR (100 MHz, CDCls, 8 ppm): 11.5, 29.7, 104.2,
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126.5, 128.6, 129.9, 132.2, 132.4, 153.3, 158.8, 160.1; ESI-MS (m/z): 405 [M+2]"; Analytical
calculated formulae C1sH15BrNgS: C, 47.65; H, 3.75; N, 20.84; S, 7.95; Found: C, 47.61; H,
3.78: N, 20.80; S, 7.98.

N-(2,5-Dimethyl-1H-pyrrol-1-yl)-6-(4-nitrophenyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]
thiadiazin-3-amine (28g):

S\(N‘\_ Yellow solid (0.321g, 87%); m.p.: 208-210°C; IR (KBr, vmax/cm™):
\NNﬁmi 3249 (-NH-), 1578 (C=N); H-NMR (400 MHz, CDCls+DMSO-de, 3

ppm): 2.16 (s, 6H, two -CHa), 4.29 (s, 2H, -CHy-), 5.72 (s, 2H, two

O =CH- of pyrrole ring), 8.33 (s, 4H, Hz, Ar-H), 9.93 (s, 1H, -NH-); 13C-

NMR (100 MHz, CDCI3+DMSO-ds, 6 ppm): 11.6, 23.3, 103.9, 106.1, 124.3, 127.9, 129.4,
1495, 153.1, 166.0, 172.8; ESI-MS (m/z): 370 [M+H]"; Analytical calculated formulae
C1sH1sN703S: C, 52.02; H, 4.09; N, 26.54; S, 8.68; Found: C, 52.07; H, 4.04; N, 26.58; S, 8.72.

3-(3-((2,5-Dimethyl-1H-pyrrol-1-yl)amino)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-6-yl)-
2H-chromen-2-one (28h):

0.0 S_N Pale yellow solid (0.348g, 89%); m.p.: 201-203°C; IR (KBr,

@\XJ\NN%N vma/cml): 3426 (-NH-), 1719 (C=0), 1607 (C=N): 3C-NMR

“N\N\/ (100 MHz, CDClz+DMSO-ds, 8 ppm): 21.5, 30.1, 116.5,

119.4, 121.2, 125.7, 125.8, 132.2, 137.1, 143.7, 146.7, 146.9,

152.0, 153.1, 154.8, 159.0; ESI-MS (m/z): 393 [M+H]"; Analytical calculated formulae
C19H16N6O2S: C, 58.15; H, 4.11; N, 21.42; S, 8.17; Found: C, 58.19; H, 4.15; N, 21.46; S, 8.13.

3-(3-((2,5-Dimethyl-1H-pyrrol-1-yl)amino)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-6-yl)-
8-methoxy-2H-chromen-2-one (28i):

R Brown solid (0.362g, 86%); m.p.: 218-220°C; IR (KB, vmax/cm’
@\;LNT N 1): 3415 (-NH-), 1719 (C=0), 1607 (C=N); 'H-NMR (400 MHz,

HN-N"| CDCIs+DMSO-ds, & ppm): 2.16 (s, 6H, two -CH), 4.00 (5, 3H, -
OCHa), 4.21 (s, 2H, -CHz-), 5.74 (s, 2H, two =CH- of pyrrole
ring), 7.27-7.35 (m, 3H, Ar-H), 8.61 (s, 1H, -NH-), 9.72 (s, 1H, Ar-H); *C-NMR (100 MHz,
CDCl3+DMSO-ds, & ppm): 21.5, 30.1, 56.7, 116.5, 119.4, 121.2, 125.7, 125.8, 132.2, 137.1,
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143.7, 146.7, 146.9, 152.0, 153.1, 154.8, 159.0; ESI-MS (m/z): 423 [M+H]"; Analytical
calculated formulae C20H1sNsO3S: C, 56.86; H, 4.29; N, 19.89; S, 7.59; Found: C, 56.85; H,
4.26: N, 19.85; S, 7.62.

7-Chloro-3-(3-((2,5-dimethyl-1H-pyrrol-1-yl)amino)-7H-[1,2,4]triazolo[3,4-b][1,3,4]
thiadiazin-6-yl)-2H-chromen-2-one (28j):

0 O S Yellow solid (0.374g, 88%); m.p.: 213-215°C; IR (KBr,
Q\;_LN N— vmax/cm™?): 3415 (-NH-), 1725 (C=0), 1606 (C=N); 'H-

HN-N"Y1 NMR (400 MHz, CDCls+DMSO-ds, & ppm): 2.08 (s, 6H,
two -CH3), 4.16 (s, 2H, -CH»-), 5.65 (s, 2H, two =CH- of
pyrrole ring), 7.35-7.39 (m, 1H, Ar-H), 7.59 (d, 1H, J=7.2 Hz, Ar-H), 7.71 (s, 1H, -NH-), 8.53 (s,
1H, Ar-H), 9.79 (s, 1H, Ar-H); C-NMR (100 MHz, CDCl3+DMSO-dg,  ppm): 21.2, 24.3,
118.3, 119.6, 123.9, 128.7, 128.9, 130.1, 130.2, 130.3, 133.5, 133.7, 152.8, 152.9, 158.6, 158.8;
ESI-MS (m/z): 427 [M+H]*; Analytical calculated formulae C19H15CINsO-S: C, 53.46; H, 8.31;
N, 19.69; S, 7.51; Found: C, 53.49; H, 8.28; N, 19.65; S, 7.56.
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SUMMARY

SUMMARY

The thesis entitled “MCR Approach for the synthesis of new heterocyclic compounds

from 4-amino-5-hydrazinyl-4H-1,2,4-triazole-3-thiol” consists of seven chapters, out of which
chapter-1 describes multi-component reactions and their utility in the synthesis of biologically
active compounds. The remaining six chapters deal with the synthesis of different heterocyclic
compounds relying on the use of a multi-component approach as a common theme.
CHAPTER-I: A micro review on multi-component reactions and their utility in the
synthesis of biologically active compounds.

Chapter-I describes multi-component reactions (MCRs). MCRs are also known as Multi-
Component Assembly Process (MCAP). Multi-component reactions find outstanding results in
organic chemistry. These reactions involve the condensation of three or more functional groups
of the molecules in a single reaction vessel. The protocol of the MCRs is very simple and easy to
operate the reaction with high yields. Most of the MCRs are used for the formation of C-C, C-N,
C-0, and, C-S bonds in the different types of heterocyclic and hetero acyclic compounds. Plenty
of advantages are there for the MCR process to produce the single target compound without by-
products, duration of the reaction is less, green solvents, eco-friendly, metal-free, economical
effective, mild reaction conditions, effortless, etc. Multi-component reactions are used in several
fields such as agrochemicals, combinatorial chemistry, medicinal chemistry, natural products,
and polymers synthesis. Most of the biologically active compounds have been effectively
synthesized through multi-component reactions.}*®

However, the functionalization of heterocyclic compounds with diversified
pharmacophores to develop effective therapeutic scaffolds with efficient, rapid, and clean
synthetic strategies is of great importance. Without any doubt, the most efficient, and rapid
synthetic techniques involve MCRs'®*®, which have evolved as an efficient tool for the
introduction of molecular diversity in therapeutically important heterocyclic structures.

In this research work, we have synthesized various new heterocyclic compounds via a
one-pot, multi-component approach and developed novel synthetic methodologies. The entire
research work is converted into the thesis.

Objectives of the present work are mentioned and outlines of the work carried out in the
present investigations are also given.
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4-Amino-5-hydrazinyl-4H-1,2,4-triazole-3-thiol?°, 3-acetyl coumarins®?> and 3-(2-
bromoacetyl) coumarins?32* were prepared and used as starting materials for the synthesis of
heterocyclic compounds.

CHAPTER-II: Synthesis of benzylideneamino-3,5-dimethyl-1H-pyrazoles, synthesis of
various aralkyl/alkyl thio-3,5-dimethyl-1H-pyrazolyl-4H-1,2,4-triazol-4-amines and their
docking studies, and four-component, one-pot synthesis of (E)-N-benzylidene-3-
(benzylthio)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2 4-triazol-4-amines and their DNA
binding and molecular docking studies.

Chapter-I1 is divided into three parts.

PART-A: A facile one-pot, three-component synthesis of benzylideneamino-3,5-dimethyl-
1H-pyrazoles.

The title compounds were synthesized by the reaction of 4-amino-5-hydrazino-4H-
[1,2,4]triazole-3-thiol (1), acetylacetone (2), and aromatic aldehydes (3) in absolute ethanol
containing two drops of concentrated HCI. The products were obtained in good yields (Scheme-
1). All the synthesized compounds were well characterized by analytical and spectral (IR, H-
NMR, *C-NMR, and Mass) data.

NN CHO 1 HS}N
/ W _NH, 0 O R'  EtOH/HC1  R? =
HS/4 N > N_N
N | + )J\/U\ + ) , X SN A
NH, R R reflux R N.
R? 5-6h R M
1 2 3 (a-p) 4 (a-p)
72 - 88%
Entry  Product R! R? RrR® R*
1 4a H H CHs H
2 4b H NO2 H H
3 4c OH H H H
4 ad OH OCHs H H
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5 4e cl H H H
6 4f OH H N(CzHs)2 H
7 4g H OCH; OCHj H
8 4h OCH; OCH; H H
9 4] OCH; H OCHj H
10 4 H OCH; OCH;  OCHs
11 4K H OCH; H H
12 41 OH OC;Hs H H
13 4m H H OCH; H
14 4n H H cl H
15 40 H H OH H
16 4p H H NO, H

Scheme-1: One-pot synthesis of substituted benzylideneamino-3,5-dimethyl-1H-pyrazoles (4a-
p).

In conclusion, a facile, one-pot three-component reaction for the synthesis of
benzylideneamino-3,5-dimethyl-1H-pyrazoles (4a-p) has been achieved via a multi-component
approach using readily available starting materials. This method provides various advantages,
such as good vyields, neat reaction conditions, easy workup, and purification. The synthesized

heterocyclic compounds may be beneficial for drug discovery.

PART-B: One-pot, multi-component cascade reaction for the synthesis of various
aralkyl/alkyl thio-3,5-dimethyl-1H-pyrazolyl-4H-1,2,4-triazol-4-amines and their docking

studies.

The title compounds were obtained by the reaction of 4-amino-5-hydrazino-4H-
[1,2,4]triazole-3-thiol (1), acetylacetone (2), and aralkyl/alkyl halides (5) in a mixture of dry
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ethanol and dimethylformamide (DMF) (1:1) under reflux. By using this condition 13 derivatives
(6a-m) were synthesized (Scheme-2). All the synthesized compounds were well characterized by
analytical and spectral data such as IR, *H-NMR, *C-NMR, and Mass spectral data.

N-N
EtOH + DMF
0 - L

N-N
HS/QN»\N.NHZ + )(J)\/U\ + R—X

N
N N
NH, 8-10h R NH,

reflux /

1 2 5 (a-m) 6 (a-m)

78 - 90%

Entry Product R-

17 6a @
C —
H
18 6b H,
on—{ )

19 6¢ HC=C-CH,-
20 6d H H;
H,C=C-C -
H 0]
2
H,C-C oo
21 6e H,
O
HO)kC~
22 6f H,
23 69 H,

H;C-(HyC),—C —

24 6h H3C_(CH2)10‘C-
H,
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25 6i H,
HSC_(H2C)8_C -

26 6j H,
H3C-(CH,)6~C -

27 6k H,
H3C_(H2C)5_C -

28 6l H,
H3C—(H2C)4_C -

29 6m H,
H3C—(H2C)3_C -

Scheme-2: Synthesis of various aralkyl/alkyl thio-3,5-dimethyl-1H-pyrazolyl-4H-1,2,4-triazol-4-

amines (6a-m).

In summary, a facile and simple procedure for the synthesis of various aralkyl/alkyl thio-
3,5-dimethyl-1H-pyrazolyl-4H-1,2,4-triazol-4-amines (6a-m) has been achieved via a multi-
component approach using readily available chemicals. The attractive and notable features of
this approach are that good yields, neat reaction conditions, easy product purification, metal-free,
atom economy, and avoiding toxic catalyst.

PART-C: Four-component, one-pot synthesis of (E)-N-benzylidene-3-(benzylthio)-5-(3,5-
dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazol-4-amines and their DNA binding and molecular
docking studies.

The target compounds 8a—p were synthesized by the reaction of 4-amino-5-hydrazinyl-
4H-1,2,4-triazole-3-thiol (1) with pentane-2,4-dione (2), substituted aromatic aldehydes (3), and
aralkyl/allyl/propargyl bromides (7) via a one-pot, four-component condensation as shown in the
Scheme-3. All the synthesized compounds were well characterized by analytical and spectral
(IR, *H-NMR, ¥C-NMR, and Mass) data.
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Entry Compound

30

31

32

33

34

35

36

37

38

39

40

41

42

43

8a
8b
8¢
8d
8e
8f
89
8h
8i
8
8k
8l
8m

8n

OCHj3;

OH

OH

OH

OH

EtOH / HCI
R4+ R®™Br reflux
12-14h

R? R® R?

H OH H
OC:zHs H H
OCHs OCHs OCHs

NO2 H H
H Cl H
H Cl H

NO2 H H

H OCHs H

F F F
OCH3 H H

H H NO2
OCHs;  H NO2

H H NO;
OCHs;  H NO2

8 (a-p)
82 - 94%
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Benzyl
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4-Nitro benzyl
4-Nitro benzyl
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44 80 H H  OCHs H Allyl
45 8p H H CHs H Allyl

Scheme-3: A one-pot, four-component synthesis of (E)-N-benzylidene-3-(benzylthio)-5-(3,5-
dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazol-4-amines (8a—p).

In conclusion, (E)-N-benzylidene-3-(benzylthio)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-
1,2,4-triazol-4-amines (8a-p) were synthesized in good yields via a one-pot four-component
reaction by readily available starting materials, and no column chromatography is needed for the
purification of the products. This method is operationally simple. Further, DNA binding studies
were also carried out by using UV-Visible and Fluorescence experiments. Furthermore,

molecular docking studies were confirmed the binding interactions with the EGFR receptor.

CHAPTER-III: One-pot, multi-component synthesis of substituted 2-(6-phenyl-7H-
[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-2,3 dihydrophthalazine-1,4-diones.

This chapter describes brief literature on the synthesis and biological applications of
dihydro-1,4-phthalazinediones and 1,3,4-thiadiazines.

To synthesize the title compounds initially, we have screened the reaction conditions
using compound 1, 2-bromo-1-(4-methoxyphenyl)ethanone (9), and isobenzofuran-1,3-dione
(phthalic anhydride) (10) as starting materials. The reaction was initially conducted in the water
under reflux condition and no product was observed even after 10 hours. When the same reaction
was operated in methanol only a 10% yield of the product was observed. On the other hand,
when the same reaction was carried out in ethanol under reflux condition the yield of the product
was 20%. Finally, when the reaction was operated in the acetic acid (AcOH) under reflux
condition gave the desired compound 1la in 86% vyield. Hence, the 2-(6-phenyl-7H-
[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-2,3-dihydrophthalazine-1,4-diones  (11a-0) were
synthesized in acetic acid under reflux condition (Method I, Scheme-4). All the synthesized
compounds were well characterized by analytical and spectral (IR, *H-NMR, *C-NMR, and
Mass) data.
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Method I:
0 2
_N HN R
S0 T N
NN R} AcOH N R3
s S . o — % N
1\‘1 H R* reflux { RS R*
NH, RS O  10-12h
1 9 10 11 (a-o0)
82 -96%
Method I1: Alternative route for the synthesis of 11a-0
N-N ’<N‘N
. S—¢ |
P EtOH (NN _NH, 10
N + —N N
‘' H —_— =N H — > 1la-0
NH, reflux reflux
3-4h
Isolated 6-7h
1 9 12
Entry Product R! R? RrR? R? R®
46 lla OCHs H H H H
47 11b CHs H H H H
48 1ic NO> H H H H
49 11d Br H H H H
50 1le Cl H H H H
51 11f F H H H H
52 119 CHs H NO2 H H
53 11h F H NO2 H H
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54 11i H Br Br Br Br
55 11j OCHjs Br Br Br Br
56 11k CHs Br Br Br Br
57 111 F Br Br Br Br
58 11m Cl Br Br Br Br
59 11n Br Br Br Br Br
60 110 H H H H H

Scheme-4:  Synthesis of  2-(6-phenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-2,3-
dihydrophthalazine-1,4-dione (11a-0) derivatives.

The target compounds 11 can also be synthesized through an alternative method
involving condensation of 4-amino-5-hydrazino-4H-[1,2,4]triazole-3-thiol (1) with substituted 2-
bromo-1-phenylethanone (9) to produce the respective intermediates 3-hydrazinyl-6-phenyl-7H-
[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines. These intermediates were subsequently converted into
final products by condensation with phthalic anhydrides (10). The products obtained by Method
I and Method Il were the same (by mixed melting points and co-TLC). In the present
investigation, Method-1 was preferred over Method II, because of the high yields of the

products in Method-1.

In conclusion, we have synthesized 2-(6-phenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]
thiadiazin-3-yl)-2,3-dihydrophthalazine-1,4-diones 1la-0 via a one-pot, multi-component
reaction using readily available starting materials. This approach is very simple to operate, it
involves clean and simple reaction conditions with high yields. The advantage of this method is
that the reaction was carried out without using metals and toxic catalysts and the products were

obtained in a single step with the high atom-economy.
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CHAPTER-1V: Discovery of [1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-7-yl)(phenyl)methanone
derivatives with promising anti-coronavirus and anti-tumoral activity.

The synthesis of the [1,2,4]triazolo[3,4-b][1,3,4]dihydrothiadiazin-7-yl-
(phenyl)methanone derivatives was carried out in a one-pot procedure. To optimize the
chemistry, a model reaction using 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (1),
acetylacetone (2), 2,3-dimethoxybenzaldehyde (3a), and 4-methoxyphenacyl bromide (9a) as
starting materials was performed. The first step of the reaction was carried out in ethanol at
reflux temperature, in the presence of a catalytic amount of HCI yielding the intermediate 5-(3,5-
dimethyl-1H-pyrazol-1-yl)-4-((4-methoxybenzylidene)amino)-4H-1,2,4-triazole-3-thiol. The
intermediate was converted into the final product upon reaction with 4-methoxyphenacyl

bromide.

Hs/4 X NH; ;S :é -

Model reaction. Reaction conditions: a) 1 (1 mmol), 2 (1 mmol), 3a (1 mmol), EtOH, HCI ; b)
9a (1 mmol), TEA (3 mmol), EtOH, reflux.

O_H R®
1
HS/< k NH, ? + R 4 EtOH / HCI
NH2 R* R? o TEA (3 mmol)
R3

reflux
Br 11-15h

1 2

13 (a-p)
83-94%
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N
5 D) NENRTAN
N-N o O H R S™°N IEJ
HS/Q »\NNHZ + + Ax + EtOH / HCI NH
o -

NH, o TEI? e(f?al:;mol) o 7 X
Br 14-15h
1 2 3 9 13 (g-t)
84 - 92%
Entry  Product R! R? R3 R* R® X
61 13a OCHs OCHs H H OCHs _
62 13b H H CHs H CHs .
63 13c H H NO2 H NO:2 _
64 13d H OCH; H H cl .
65 13e Br H H H F _
66 13f Br H H H CHs _
67 13g H H Cl H Br .
68 13h H H cl H CHs _
69 13i H OCHs OH OCHs H .
70 13 H F F F CHs -
71 13k H F F F H _
72 13| H  OCHs OCH; OCH; F _
73 13m H  OCHs OCH; OCH; H _
74 13n cl H H H OCHs
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75 130 OCH; H OCHs H OCHs

76 13p OCH; H OCHs H NO, _
77 13q N _ _ _ OCHs 0
78 13r o o - - CHs 0
79 13s o o - - NO, S
80 13t NO, 0

Scheme-5: One-pot, four-component synthesis of pyrazolyl-dihydro[1,2,4]triazolo[3,4-
b][1,3,4]thiadiazine derivatives (13a-t).

Using this methodology, a series of compounds were prepared with various substituted
benzaldehydes and phenacyl bromides. This approach is simple and affords the desired products
in yields ranging from 83 to 94% (Scheme-5). All the synthesized compounds were well
characterized by analytical and spectral (IR, H-NMR, BC-NMR, and Mass) data. The

compound 13h structure was further confirmed by single-crystal X-ray analysis (Fig. 1).

Fig. 1: ORTEP representation of compound 13h.
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In summary, the synthesis of a series of [1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-7-
yl)(phenyl)methanone derivatives was carried out in excellent yields via a one-pot, four-
component method using readily available starting materials. The reactions proceeded with high
atom economy, leading to the formation of three C—N, one C—C, and one C-S bonds in a single
operation, giving multi-annulated products. Some of the compounds showed the anti-viral
activity against the human coronavirus 229E (hCoV229E) in HEL cells. The compounds 13b and
13f display promising activity with ECso values of 4.7 and 3.2 uM, respectively. From anti-
tumoral screening, it was observed that two derivatives (compounds 13j and 13p) showed low
MM activity against the different cell lines.

CHAPTER-V: An efficient one-pot synthesis of 6-phenyl-3-(1H-pyrazol-1-yl)-
[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives and their antimicrobial evaluation and
molecular docking studies.

In this chapter pyrazolyl[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives (15a-q) were
synthesized using readily available starting compounds. Compound 1, acetylacetone/dibenzoyl
methane (2), and substituted benzoic acids (14) via a one-pot, sequential addition of three-
component reaction. The yields of the products were 85-92% (Scheme-6). All the synthesized
compounds were well characterized by analytical and spectral (IR, *H-NMR, *C-NMR, and
Mass) data.

R4

r 7 R!' R?
HS N
R ; : A
EtOH H,N-N S N

N-N 0 \ POCI MQ\TR
as— »\N.NHz + YN 3 R! \=nN =
N H o reflux R__N reflux R

NH R N R?

NH, 3-5h \L( 7-9h

3
1 2 R R R4

-N

Not isolated
intermediated (A)
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Entry Compound
81 15a
82 15b
83 15c
84 15d
85 15e
86 15f
87 15g
88 15h
89 15i
90 15j
91 15k
92 151
93 15m
94 15n
95 150
96 15p
97 15q

Scheme 6: One-pot, three-component synthesis of title derivatives 15a-q.

In gist, we have synthesized new pyrazolyl[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole
derivatives (15a-q) through a one-pot sequential addition of three-component reaction with good

yields (85-92%). Further, all the synthesized compounds were evaluated for their antibacterial
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activity against Gram-positive and Gram-negative bacteria. Among these 15a, 15e, 15f, 15g, 15j,

and 15p gave good results against Gram-positive and Gram-negative bacteria.

CHAPTER-VI: One-pot, three component synthesis of new 7H-[1,2,4]triazolo[4",3":1,5]
[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines.

In the present chapter, we have synthesized the 7H-[1,2,4]triazolo[4',3"1,5][1,2,4]
triazolo[3,4-b][1,3,4]thiadiazine derivatives (16a-p) via a one-pot, three-component reaction
using compound 1, various aromatic bromoethanones (9) and substituted benzoic acids (14) in
ethanol and POCIs with good yields (Scheme-7). All the synthesized compounds were well
characterized by analytical and spectral (IR, *H-NMR, *C-NMR, and Mass) data.

0
R4
HO : R*

R;
NN 0 N-N N2 14
AN NH, S/QN»’NH N 5
HS N N + EtOH R POCI, s—¢ N~ K

NH, © N/A\N N
i reflux reflux =N
1 4-6h 8-10h
9 (a-j) 16 (a-j)
R] Rl
Not isolated
intermediate (A)
R4
: R2
N-N
NH 0o__0 S N
HS/QN»\E tr EtOH s .N\(Q
NH, R3 7 Br SNV RS
0 reflux N
1 4-6h
9 (k-0)
R3 16 (k-0)

Not isolated
intermediate (A)
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112 160 Br Br CHs H

113 16p CHs H

Scheme-7: One-pot, three-component synthesis of 7H-[1,2,4]triazolo[4',3":1,5] [1,2,4]triazolo
[3,4-b][1,3,4]thiadiazine derivatives (16a-j, 16k-0 and 16p).

In summary, we have synthesized novel 7H-[1,2,4]triazolo[4',3":1,5][1,2,4] triazolo[3,4-
b][1,3,4]thiadiazine derivatives (16a-j, 16k-o0 and 16p) through a one-pot multi-component
reaction in good yields. In the present investigation, we have developed a methodology for the

synthesis of fused heterocyclic compounds.

CHAPTER-VII: An efficient one-pot three component synthesis of N-(2,5-dimethyl-1H-
pyrrol-1-yl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-amine derivatives.

In view of the importance of triazolothiadiazines and pyrroles in various fields such as
therapeutic, medicinal, and biological applications, we became interested to synthesize the title
compounds with triazolothiadiazine and pyrrole rings in a single heterocyclic scaffold by a one-
pot synthesis. There are many procedures reported in the literature for the synthesis of pyrroles
and triazolothiadiazine rings. But no report is available to synthesize the title compounds by the
MCR process. The present investigation involves the reaction between 4-amino-5-hydrazinyl-
4H-1,2,4-triazole-3-thiol (1), substituted phenacyl bromides or 3-(2-bromoacetyl)-2H-chromen-
2-ones (9) and hexane-2,5-dione (17) in a mixture of ethanol and acetic acid to give final
products 18a-j in excellent yields (Scheme-8). All the synthesized compounds were well
characterized by analytical and spectral (IR, *H-NMR, *C-NMR, and Mass) data.

Br
N-N o N-N
/ W\ NH, I YN S
HsANXi\l AN
NH, EtOH / AcOH N
1 reflux
1 * R 8§-11h
9 (a-g) 18 (a-g)
0 R!
o)
17
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Scheme-8: One-pot synthesis of N-(2,5-dimethyl-1H-pyrrol-1-yl)-7H-[1,2,4]triazolo[3,4-
b][1,3,4]thiadiazin-3-amine derivatives (18a-j).

In conclusion, we have synthesized 18a-j by a one-pot multi-component reaction
strategy. The reaction protocol is very easy to operate, simple reaction conditions, without

application of metals, with high atom economy.
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benzylideneamino-3,5-dimethyl-1H-pyrazoles
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A facile, one-pot three-component protocol for the synthesis of sub- Received 21 December 2017
stituted 4-(benzylideneamino)-5-(3,5-dimethyl-1H-pyrazol-1-yl)}-4H-1,2,

4-triazole-3-thiols have been reported by the reaction of 4-amino-5- KEYWORDS

hydrazinyl-4H-1,2 4-triazole-3-thiol with acetyl acetone and wvarious ’:’;‘f"_"” 5':”_":_"?”2"4"" |
substituted benzaldehydes via multi component reaction. The newly alcéto::aa-?;dir:\el;l Ia—:ilt}r
synthesized derivatives were characterized by 'fheir elemental .analysis pwamlé; t,hree—com:;onent
and spectral data. The cument strategy provides heterocyclic com-

pounds in good yields with broad substrate scope.

GRAPHICAL ABSTRACT

OQ_\—’H
HoN EtOH: |
N ’_'w.lrr . ﬁo o Jom H> H
N e e —_—
N—~g o L A
N o Ri“SSR2 =
- L
R* 72-88 %
1 2 Ja-p 4a-p

Introduction

Multi-component reactions (MCRs) are convergent reactions, in which three or more start-
ing materials react to form a complex product, where basically all or most of the atoms
contribute to the newly formed single product. In an MCR, a product is assembled accord-
ing to a cascade of elementary chemical reactions. Multi-component reactions play an
insignia part in organic chemistry because they produce maximum yield of product and
selectivity, at the same time produce very less by-products compared to stepwise synthesis.
Additionally, multi-component reactions are operationally simple, less expensive, rapid,
economical and involve easy experimental procedures.

Triazole and its hetero cycic compounds exhibits many biological activities,’””) such as
antimicrobial, anti-HIV, CNS-stimulatory, antivirus, analgesic and antifungal activities.* ®
Likewise, there are known drugs consisting the triazole ring, e.g., Triazolam, Alprazolam,
Etizolam, and Puracylm.w_m] Pyrazoles are hetero cyclic compounds with two nitrogen

[2
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A facile and simple one-pot procedure for the synthesis of varous aralkyValkylthio-3,5-dimethyl-1H-
pyrazolyl-4H-1.2 4-triazol-4-amines has been described wia a multicomponent reaction of 4-amino-5-
hydrazinyl-4H-1,2,4-triazole-3-thiol, acetylacetone, and various arylfalkyl halides in good yields. All the
newly synthesized compounds were characterized by using analytical and spectral smdies. Our in silico stud-
ies confirmed that de, 41, 4g, and 4j have the best inhibition activity among the synthesized compounds with
a high selective index against the Tubulin protein and showed best interactions with receptor structure. The
present study provides a novel seres of compounds with a promising inhibitor to prevent on Tubulin protein.

J. Heterveyelic Chem.., 00, 00 (2019).

INTRODUCTION

Chemical reactions that use three or more different
starting materials as chemical structures and yields the
final product in a one-pot procedure are usually called as
multicomponent reactions. In multi component reaction
(MCR), a product is accomplished according to a cascade
of elementary chemical reactions. MCRs play an insignia
part in organic chemistry because they produce the
maximum yield of product and selectivity. They produce
very less by-products compared with stepwise synthesis.
Additionally, MCRs are operationally simple, cost-effective,
rapid, and involve easy experimental procedures [1].

Trazole heterocyclic compounds is having a wide
range of biological activities [2], like antifungal, CNS-
stimulatory, antimicrobial, anticancer, antivirus, anti-HIV,
and analgesic activities [3—6]. Likewise, there are known
drugs consisting the triazole core ring, for example,
etizolam, triazolam, furacilin, and alprazolam [7-10].
Pyrazole, which is a five-membered heterocyclic
compound consisting of two nitrogen atoms at adjacent
positions, and synthesis of pyrazoles were reported using
various procedures in the literature [11]. Pyrazole motifs
have been exhibiting interesting biological activities such
as anticancer, analgesic, antimicrobial, antidiabetic, anti-
inflammatory, and immunosuppressive activity [12-17].

Organosulfur chemistry is one of the most useful and
important branch in organic synthesis. Compounds

possessing C—S bonds are important in organic
chemistry [18-21]. Thioethers are beneficial and
important compounds in different branches such as
materials, agriculture, industry, pharmaceutical, medicine,
heterocyclic chemistry, and biological processes [22-30].
In the field of medicine, organosulfur compounds are
broadly used for treatment of different types of diseases
such as Alzheimer’s, cancer, tuberculosis, and Parkinson
[31-34].

RESULTS AND DISCUSSION

In view of the importance of triazoles, pyrazoles, and
thioethers, we would like to incorporate all these units in
single heterocyclic system so that the resulting molecule
may exhibit good biological activity. In continuation of
earlier work on MCR [35-37], in the present work, we
are reporting the one-pot, multicomponent cascade
reaction for the synthesis of various amlkyl/alkylthio-3,5-
dimethyl-1H-pyrazolyl-4H-1,2,4-triazol-4-amines and
their docking studies.

For the optimization of reaction conditions, the reaction
was conducted with 4—amino—5—hyd.razinc—4H—[l,2,4]
triazole-3-thiol (1), acetylacetone (2), and aralkyl/alkyl
halides (3) in the water under reflux condition, and no
product was formed. On the other hand, when the same
reaction was carried out in a mixture of equal amount of

© 2019 Wiley Periodicals, Inc.
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A series of 2-(6-phenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)-2,3-dihy- Received 31 March 2019
drophthalazine-1,4-diones (4a—40) have been synthesized via a one-pot Accepted 21 December 2019
multi-component reaction. The reaction of 4-amino-5-hydrazineyl-4H-1,2,4-
triazole-3-thiol (1), substituted 2-bromo-1-phenylethanone (2), and phthalic
anhydride (3) in the presence of acetic acid under reflux conditions
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afforded the title ccmpoun(_is in excellent yields. All the synthesized com- anhydride; thiadiazine;
pounds were fully characterized. triazole
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Introduction

Multi-component reactions (MCRs) are those reactions in which three or more reactants come
together to form a new product with complex architecture in one vessel. MCRs are efficient and
effective methods in the sustainable and diversity-oriented synthesis of heterocyclic compounds.
MCRs are new methods for the one-pot synthesis of various new heterocyclic compounds and
nowadays MCRs are widely used in the drug discovery also. There are many environmental
benign protocols producing excellent yields in mild reaction conditions and require short reaction
timings, operationally simple medium. Generally, these are easy to operate, very simple experi-
mental procedure to carry out the reaction without by-products, rapid, and low cost reactions.
These are also referred as multi-component assembly process (MCAP).'

Nitrogen heterocycles are one of the important class in the organic compounds particularly,
1,2,4-triazoles and their derivatives are showing promising biological activities.”* Fused hetero-
cyclic compounds related to 1,2,4-tiazoles have many applications in wvarious fields such as

CONTACT Rajeswar Rao Vedula @ rajeswarnitw@gmail.com e Department of Chemistry, National Institute of Technology,
Warangal, Telangana 506004, India.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/gpol.
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1. Introduction

In recent years multi-component reactions (MCRs) are growing
interest and these are also referred as multi-component assem-
bly process. In these three or more reactants assemble in a one-
pot to generate compled: malecules. In these process by-products
formation is wery less and produces maximum yields of prod-
ucts because all the reactants participate in the reaction. Most of
the multi-component reactions produce pure products and there
is mo need of column chromatography purification, MCRs are eco-
friendly, atom ecomomy, involve short reaction time, selective and
high yields of products are formed in a single vessel with mini-
mum effort. Mow a day's most of chemists prefer multi-component
reactions for the synthesis of new dmugs [1-2].

1,2, 4-Triazoles, their fused heterocycle derivatives hawve been
playing a remarkable role in the pharmaceutical industry. Most of
the 1,2 4-triazole containing compounds are showing biological ac-
tivities such as anti-tuberculosis |3, anti-inflammatory [4], anti-
cancer 5], anti-microbial [&], anti-fungal [7], anti-eidant [&], anti-
HIV [9], anti-comvulsant [10], anti-analgesic [11] and ant-malarial
[12]. Some of the drugs having 1.2 4-triazole ring is core moiety

* Corresponding author
E-meil address: rajeswamitwi@Pzmal com (RE. Vedula)

hitps: [ doiorg 10,1016/} molstrec. 2030 25140
0022-2BG0JE 220 Elkevier BV_ All rights resereed.

for example Fluconazole, Ribavirin, Flupaxam and Prothioconazole
(Fig. 1),

Among heterocycles, pyrazoles are interesting skeletons. There
are many literature procedures to synthesise the pyrazoles [13-
16]. Compounds possessing pyrazole moiety play a vital role due
to its pharmaceutical and biological activities such as anti-bacterial
[17]. anti-angiogenic [18], anti-proliferative [19], anti-cancer [20],
anti-microbial [21], insecticidal [2Z]. anti-wiral [23], and anti-
diabetic [24], Few pyrazole-based potent biological active drugs
were shown in the Fig, 2 [25].

Condensation of carbonyl compounds with primary amines pro-
duces Schiff bases. They hawve imine or an azomethine functional
group [26-29]. In the formation of metal complexes Schiff bases
act as ligands [30]. Compounds with Schiff base are exhibiting a
wide range of applications such as biolegical, catalysts, dyes and
stabilizers [31]. Many compounds having 5chiff bases are reported
to exhibit broad range of biological activities such as anti-viral [32],
anti-bacterial [33], anti-oxidant [34], anti-prodiferative [35], anti-
microbial [36], anti-tuberculosis [37], herbicidal [38]. insecticidal
[39]. Compounds hawving thio-ether linkage are of important in or-
ganic chemistry, agrochemicals, pharmaceuticals and they possess
good biological applications [40-434],
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Abstract

An efficient rapid synthesis of a new class of diversely functionalized 6-phenyl-3-(1H-
pyrazol-1-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives (4a-q) is described via a

facile one-pot, three-component cascade reaction with high yields. It is a multi-

functional cyclization reaction to form two new heterocycles. The structures of newly

formed compounds were confirmed bv using spectral and analvtical studies. Simple
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reaction conditions, the good isolated yield of the product, and no column
chromatographic purification are attractive features of the present protocol. Furthel

the newly synthesized compounds were screened for anti-microbial activity and

molecular docking interactions.
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