

Cite this: *Nanoscale*, 2014, **6**, 4830

Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C₃N₄ core–shell nanoplates with excellent visible-light responsive photocatalysis†

Santosh Kumar,^a Arabinda Baruah,^b Surendar Tonda,^a Bharat Kumar,^b Vishnu Shanker^{*a} and B. Sreedhar^c

N-doped ZnO/g-C₃N₄ hybrid core–shell nanoplates have been successfully prepared via a facile, cost-effective and eco-friendly ultrasonic dispersion method for the first time. HRTEM studies confirm the formation of the N-doped ZnO/g-C₃N₄ hybrid core–shell nanoplates with an average diameter of 50 nm and the g-C₃N₄ shell thickness can be tuned by varying the content of loaded g-C₃N₄. The direct contact of the N-doped ZnO surface and g-C₃N₄ shell without any adhesive interlayer introduced a new carbon energy level in the N-doped ZnO band gap and thereby effectively lowered the band gap energy. Consequently, the as-prepared hybrid core–shell nanoplates showed a greatly enhanced visible-light photocatalysis for the degradation of Rhodamine B compare to that of pure N-doped ZnO surface and g-C₃N₄. Based on the experimental results, a proposed mechanism for the N-doped ZnO/g-C₃N₄ photocatalyst was discussed. Interestingly, the hybrid core–shell nanoplates possess high photostability. The improved photocatalytic performance is due to a synergistic effect at the interface of the N-doped ZnO and g-C₃N₄ including large surface-exposure area, energy band structure and enhanced charge-separation properties. Significantly, the enhanced performance also demonstrates the importance of evaluating new core–shell composite photocatalysts with g-C₃N₄ as shell material.

Received 3rd October 2013
Accepted 5th February 2014

DOI: 10.1039/c3nr05271k
www.rsc.org/nanoscale

1. Introduction

In recent years, semiconductor photocatalysis technology has attracted considerable interest for environmental remediation, for example for air and water remediation, as well as for clean energy production, for example hydrogen energy production by water splitting, because solar energy is readily available, cost-free, environmental-friendly, and a renewable energy source.^{1–4} To date, a large number of semiconductor materials have been studied for environmental remediation and water-splitting.^{3,5–7} Among them, ZnO has been extensively studied due to its fascinating features including wide band gap, cost-free, non-toxicity, high electron mobility and high efficiency.^{3,8,9} Unfortunately, ZnO is active in only UV light. One of the potential pathways for achieving high visible-light efficiency is to shift its absorption form the UV region into the visible region, for

receiving and utilizing solar energy. Many efforts have been made to improve the visible-light active photocatalysis of ZnO by doping with metal and non-metal ions, co-doping with two or more ions, surface sensitization with organic dye or metal complex and coupling with metal or another semiconductor.^{8,10,11} However, the metal and non-metal doping have attracted remarkable attention.^{12,13} In particular, N-doping is thought to be the most suitable p-type dopant due to the both atomic size and electronic structure considerations. The nitrogen atom is closest in atomic size and electronegativity to oxygen and therefore, it results minimum strain in ZnO. Moreover, a small formation energy is required for the substitution of O in ZnO. Due to these features N-doping has been successfully applied to ZnO for visible-light photocatalysis.^{13–15} However, N-doped ZnO did not exhibit much photocatalytic efficiency unlike widely studied N-doped TiO₂ counterpart.¹⁶ It is also well known that ZnO usually suffers from serious photocorrosion in long term photocatalytic processes.^{17–19} Therefore, the strategies for making ZnO a visible-light active photocatalyst have been continuously pursued.

On the other hand, coupling with a metal or another semiconductor which exerts a substantial influence in modifying the electronic band structure and construction of favourable surface structure in semiconductors, resulting in high quantum

^aDepartment of Chemistry, National Institute of Technology, Warangal-506004, A.P., India. E-mail: vishnu@nitw.ac.in; Fax: +91-870-2459547; Tel: +91-870-2462675

^bDepartment of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India

^cInorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad-506004, A.P., India

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05271k

efficiency for photocatalytic reactions has been also extensively investigated.²⁰ ZnO based heterostructures such as ZnO/CdS, ZnO/CuO, ZnO/GaN, and ZnO/reduced graphene oxide have been actively studied and show the ability to improve the photocatalytic activity of ZnO under visible-light irradiation by extending its absorption range to visible-light region and promoting the photoinduced charge carrier transfer process.^{10,11,21,22} For heterostructured photocatalysts besides the prolong life time of charge carrier transfer, two more aspects can also play important role in determining the photocatalytic efficiency in particular for long term applications. One is the photostability of different semiconductor materials in heterostructure. The other is the effective contacting between two materials in heterostructure. The intimate and lasting contact can effectively promote the photoinduced charge carrier transfer between different semiconductor materials in heterostructures and consequently, achieve a higher photocatalytic activity. One of these drawbacks or both together have been observed in the traditional ZnO based heterostructures. Therefore, the performance of present ZnO based photocatalysts does not meet the needs of practical applications. As a result, the development of a new efficient photocatalyst or the modification of existent ones is still in progress.

More recently, graphitic carbon nitride ($\text{g-C}_3\text{N}_4$) a typical metal-free polymeric semiconductor material has attracted a great deal of scientific interest in photocatalytic water splitting and degradation of environmental pollutants under visible-light irradiation due to its suitable band gap to absorb the visible-light and unique properties.^{23–25} However, the efficiency of this metal-free polymeric photocatalyst is still limited due to the high recombination rate of photogenerated electron–hole pairs, and the low surface area which make it inefficient to absorb visible-light effectively. Therefore, coupling with N-doped ZnO nanoplates makes $\text{g-C}_3\text{N}_4$ a valuable material for visible light driven photocatalysts. The combination of these two photocatalysts is of potential interest for overall water splitting under solar light since $\text{g-C}_3\text{N}_4$ is a newly developed metal free hydrogen evolution photocatalyst, whereas the N-doped ZnO could serve as water oxidation photocatalyst.

In principle, core–shell heterostructures have the obvious merit of forming more favourable interface combination and superior charge transport capability by lowering grain boundary recombination.^{25–27} Moreover, the interactions between different semiconductor materials of the core and shell can significantly improve the overall performance including long-term photostability of core of the core–shell heterostructures and even produce beneficial synergistic effects.²⁸ It is also important to promote the direct Z-scheme charge carrier transfer process by creating a favorable interface in core–shell heterostructures.²⁹ Significantly, the evaluation of potential photocatalytic Z-schemes is of critical importance given the growing need for an efficient and inexpensive means of harnessing the huge energy potential of solar irradiation to drive chemical reactions such as clean hydrogen energy from water splitting and the degradation of organic pollutants.^{30–32}

Herein we report a facile, cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/ $\text{g-C}_3\text{N}_4$ hybrid

core–shell photocatalyst with Z-scheme mechanism to achieve the improved visible-light responsive photocatalysis by prolong life time of charge carrier transfer. The novel N-doped ZnO/ $\text{g-C}_3\text{N}_4$ organic–inorganic hybrid nanoplates were characterised by powder X-ray diffraction (XRD), Thermogravimetric analysis (TGA), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (FESEM), energy dispersive elemental spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR), photoluminescence (PL) and surface area analyser. Based on our experimental results, a proposed mechanism is discussed for enhanced visible-light photocatalysis. However, to the best of our knowledge there is no report on the synthesis of N-doped ZnO/ $\text{g-C}_3\text{N}_4$ organic–inorganic hybrid nanocomposite photocatalyst.

2. Experimental details

2.1 Materials

Melamine (Aldrich, 99.0%), zinc nitrate (Aldrich, 99.0%), ammonium oxalate (Aldrich, 99.0%), and Rhodamine B (Aldrich, 85.0%) were used as received. All other reagents used in this work were of analytically pure and used without further purification.

2.2 Method

2.2.1 Preparation of bulk $\text{g-C}_3\text{N}_4$ and $\text{g-C}_3\text{N}_4$ nanosheet. Bulk $\text{g-C}_3\text{N}_4$ was prepared by direct heating melamine to 550 °C for 2 h in N_2 atmosphere and named as BCN.³³ Pure $\text{g-C}_3\text{N}_4$ nanosheet is prepared by liquid phase exfoliation. In brief, 0.05 g of $\text{g-C}_3\text{N}_4$ was ultrasonicated in 50 mL of water for 1 h and centrifuged to remove the unexfoliated $\text{g-C}_3\text{N}_4$. This pure $\text{g-C}_3\text{N}_4$ nanosheet is named as CNNS.

2.2.2 Preparation of pure ZnO nanoparticles and N-doped ZnO nanoplates. The ZnO nanoplates were prepared by using a co-precipitation method. 0.1 M metal precursor solution was directly mixed with 0.1 M aqueous solution of ammonium oxalate while stirring and kept for 1 h at room temperature. The solution became cloudy and a white precipitate of zinc oxalate was obtained. The oxalate precursor was centrifuged, washed (thrice) with water and ethanol and dried at 80 °C for 1 h. Furthermore, the oxalate precursor calcined at 500 °C for 12 h to obtain the ZnO nanoparticles. For the preparation of N-doped ZnO nanoplates, the oxalate precursor was mixed and grinded well with urea and calcined under same experimental conditions. Here, the pure ZnO is named as ZO and N-doped ZnO is named as ZON.

2.2.3 Preparation of N-doped ZnO/ $\text{g-C}_3\text{N}_4$ hybrid nanoplates. In brief, an appropriate amount of $\text{g-C}_3\text{N}_4$ was ultrasonicated in 50 mL of water for 1 h. To this dispersion, 0.1 g of N-doped ZnO was added and stirred for 48 h. After evaporation of the water, a powder sample of N-doped ZnO/ $\text{g-C}_3\text{N}_4$ nanoplates were obtained and dried at 100 °C for 1 h. The N-doped ZnO/ $\text{g-C}_3\text{N}_4$ nanoplates with 5 wt% loaded $\text{g-C}_3\text{N}_4$ are named as CNZON5 and 10 wt% loaded $\text{g-C}_3\text{N}_4$ are named as CNZON10.

2.3 Characterization

X-ray diffraction studies (XRD) were carried out on a Bruker D8 Advance diffractometer using Ni filtered Cu $\text{K}\alpha$ radiation. Thermo gravimetric and differential thermal analysis (TG/DTA) was carried out on PerkinElmer Pyris Diamond TGA/DTA system on well ground samples in flowing nitrogen atmosphere with a heating rate of $10\text{ }^{\circ}\text{C min}^{-1}$. The Fourier transform infrared (FTIR) spectra were recorded in transmission mode from 4000 to 400 cm^{-1} on a Nicolet Protégé 460 FTIR spectrometer using KBr discs. Field emission scanning electron microscopy (FESEM) studies of samples were carried out on a FEI quanta 3D FEG-FESEM operated at 10 kV by coating the powder sample with gold. Transmission electron microscopy (TEM) was done on a JEOL, JSM-6700F instrument. Chemical compositions of the samples were analysed by X-ray photo-electron spectroscopy (Kratos Axis ULTRA incorporating a 165 mm hemispherical electron energy analyzer). Electron spin resonance measurements were recorded with a Bruker A300E spectrometer. UV-Vis diffuse reflectance spectra were recorded on a Lambda/20 Instruments (UV-Vis NIR spectrophotometer), equipped with an integrating sphere to record the diffuse reflectance spectra of the samples, and BaSO_4 was used as a reference. The nitrogen adsorption–desorption isotherms were recorded by using Quanta chrome NOVA 1200e. The photoluminescence (PL) spectra were recorded on TSC solutions F96PRO fluorescence spectrophotometer with excitation wavelength of 365 nm.

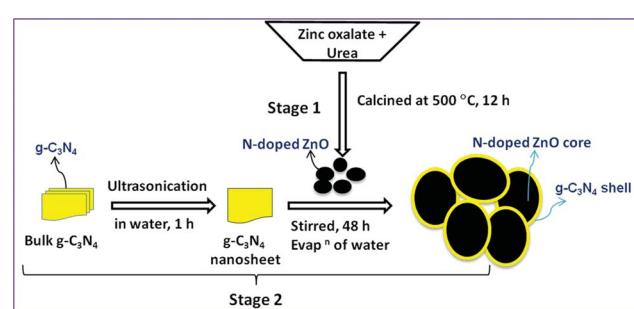
2.4 Photocatalytic activity

Rhodamine B (RhB), a widely used dye, was chosen as a model pollutant to examine the visible-light responsive photocatalysis of the different samples. The photocatalytic activity of all the prepared samples (0.025 g) was evaluated for the degradation of RhB aqueous solution (100 mL, 5 mg L^{-1}) in a beaker under stirring condition at 250 rpm throughout the test at room temperature under visible-light irradiation. The visible-light source for the photo-irradiation is a solar simulator 300 W Xe lamp (Asahi Spectra Co., Ltd) with a super cold filter, which provides the visible light region ranging from 400 nm to 700 nm and a light intensity of 115 mW cm^{-2} . Prior to irradiation, solutions suspended with photocatalysts were stirred in dark condition for 30 min to ensure that the surface of the catalyst was saturated with RhB. During photocatalytic processes, the sample was periodically withdrawn, centrifuged to separate the photocatalyst from the solution, and used for the absorbance measurement. The absorption spectra were recorded on a UV-Vis spectrophotometer. The photocatalytic activity of the novel hybrid core–shell nanoplates compared with the pure ZnO, pure $\text{g-C}_3\text{N}_4$ and N-doped ZnO powders under the same experimental conditions.

2.5 Detection of reactive species

The reactive species detection process is similar to the photo-degradation experimental process. Various scavengers were subjected into the RhB solution prior to addition of

photocatalyst. Furthermore, photoluminescence (PL) spectra with terephthalic acid (TA) as a probe molecule were used to disclose the formation of $\cdot\text{OH}$ on the surface of photocatalyst under visible-light irradiation. In a brief experimental procedure, photocatalyst (0.05 g) was dispersed in a 40 mL of the TA ($5 \times 10^{-4}\text{ mol L}^{-1}$) aqueous solution with NaOH ($2 \times 10^{-3}\text{ mol L}^{-1}$) at room temperature. The above suspension was subjected for the photocatalytic activity evaluation of the catalyst under visible-light irradiation and the PL intensity measured using a fluorescence spectrophotometer with excitation wavelength of 365 nm.


2.6 Electrochemical impedance spectroscopy (EIS)

EIS measurements were performed on an electrochemical workstation (ZAHNER IM6e Electrik, Germany) based on a conventional three-electrode system comprised of carbon paste as the working electrode, platinum wire as the counter electrode, and Ag/AgCl (3 N KCl) as the reference electrode. The EIS were performed in a 0.1 M Na_2SO_4 solution containing 5 mM $[\text{Fe}(\text{CN})_6]^{3-}/[\text{Fe}(\text{CN})_6]^{4-}$ with a frequency range from 0.01 Hz to 100 kHz at 0.24 V, and the amplitude of the applied sine wave potential in each case was 5 mV.

3. Results and discussion

3.1 Formation of N-doped ZnO/ $\text{g-C}_3\text{N}_4$ hybrid core–shell nanoplates

The general pathway used to prepare N-doped ZnO/ $\text{g-C}_3\text{N}_4$ hybrid core–shell structures is shown in Scheme 1. The formation sequences are as follows. Stage 1: N-doped ZnO nanoplates were prepared *via* a simple calcination method from zinc oxalate as a precursor and urea as a N source. However, the zinc oxalate precursor was prepared by a co-precipitation method using zinc acetate and ammonium oxalate as the starting materials. Stage 2: first, the exfoliated sheet structure of $\text{g-C}_3\text{N}_4$ prepared by direct heating of the melamine under N_2 atmosphere is dispersed in water solvent by sonicating at the ambient temperature for 1 h. Second, the N-doped ZnO nanoplates (stage 1) were introduced into the exfoliated $\text{g-C}_3\text{N}_4$ dispersion. As time progresses these exfoliated sheets spontaneously coat the N-doped ZnO nanoplates to minimize the surface energy by forming core–shell nanoplates after 48 h,

Scheme 1 Schematic illustration of the preparation of N-doped ZnO/ $\text{g-C}_3\text{N}_4$ core–shell nanoplates.

resulting the formation of a heterojunction at the interface of g-C₃N₄ and N-doped ZnO.

3.2 Characterization

The content of g-C₃N₄ shell in the N-doped ZnO/g-C₃N₄ hybrid core-shell nanoplates was determined by thermogravimetric analysis (TG/DTA) as shown in Fig. S1.† The weight loss region can be seen in the N-doped ZnO/g-C₃N₄ hybrid core-shell sample. The decomposition of g-C₃N₄ starts at 550 °C and is completed at ~720 °C which can be attributed to the burning of g-C₃N₄.³⁴ Therefore, the g-C₃N₄ content in the hybrid core-shell nanoplates was easily determined from the corresponding weight loss. It is found 5.4 wt% and this amount is nearly consistent with the dosage of g-C₃N₄ in the hybrid sample.

The XRD pattern of ZnO, N-doped ZnO, g-C₃N₄ and N-doped ZnO/g-C₃N₄ samples were shown in Fig. 1. It can be seen from Fig. 1a that the diffraction pattern of N-doped ZnO was broader than that of pure ZnO. A significant diffraction peak broadening after N doping indicates a decreasing crystallinity due to incorporation of nitrogen into the ZnO. Moreover, the diffraction peak positions for N-doped ZnO are located at slightly higher angles than those for ZnO, suggesting an overall contraction of the lattice parameters as shown in Fig. 1b.¹³ All the reflections in pure ZnO and N-doped ZnO can be readily indexed as the hexagonal Wurtzite structure (JPCDS#36-1451). For graphitic carbon nitride (g-C₃N₄), a strong peak at $2\theta = 27.5^\circ$ corresponding to the characteristic inter planar staking peak (002) of aromatic system is observed.³⁴ This characteristic peak was also presented in the N-doped ZnO/g-C₃N₄ core-shell nanostructure (see the inset of Fig. 1). It is also seen that the crystal phase of N-doped ZnO did not change after hybridization with g-C₃N₄ but the diffraction peak positions for N-doped ZnO/g-C₃N₄ are located at slightly lower angles than those for N-doped ZnO, suggesting a strong interaction between N-doped ZnO and g-C₃N₄. The intensity of the g-C₃N₄ peak in the composite increased with the content of loaded g-C₃N₄. Moreover, no other impurity phase was seen, indicating the N-doped ZnO/g-C₃N₄ is a two phase composite.

Fig. 2 shows the FTIR spectra of ZnO, N-doped ZnO, g-C₃N₄ and N-doped ZnO/g-C₃N₄ samples. The peaks in the region from 400 to 550 cm⁻¹ of ZnO and N-doped ZnO is corresponding to

Zn–O bending vibrations. In the FTIR spectrum of g-C₃N₄, the peaks at 1243 cm⁻¹ and 1637 cm⁻¹ were corresponding to the C–N and C=N stretching vibrations, respectively. The peak at 808 cm⁻¹ was related to the s-triazine ring vibrations.²⁰ It can be seen clearly that the main characteristic peaks of g-C₃N₄ and N-doped ZnO presented in the N-doped ZnO/g-C₃N₄ hybrid core-shell nanoplates. It can also be seen that these main characteristic peaks of g-C₃N₄ shifted to a lower wave number in the hybrid core-shell nanoplates (Fig. 2b). The red shift in the bands, suggesting that the bond strengths of C–N and C=N were weakened *i.e.* the conjugated system of C₃N₄ was stretched and a more widely conjugated system containing C₃N₄ and ZnO appeared. The FTIR spectra show the presence of a C₃N₄ structure and it is an evidence of a covalent bond between C₃N₄ and ZnO.³⁵ This bond may be of significance to transfer carriers and promote a synergistic effect to enhance the photocatalytic activity.

The morphology and nanostructures of these samples were then investigated by FESEM and TEM. Fig. 3 shows typical SEM images of the prepared different samples. Fig. 3a shows the sheet structures of pure g-C₃N₄ after ultrasonic treatment. Fig. 3b shows the FESEM image of N-doped ZnO sample. It can be seen that the N-doped ZnO nanoplates have a relatively uniform diameter of about 50 nm. Fig. 3c and d show the low- and high-magnification FESEM images of the CNZON5 nanoplates, respectively. It can be seen that the CNZON5 nanoplates also have a relatively uniform diameter of about 55 nm. However, the FESEM images have not enough resolution for analysis of the core-shell structure. The amount of N in the N-doped ZnO nanoplates was also determined by elemental analysis (EDAX) as shown in Fig. S2† and 0.5 atomic weight percentage of N was found.

Fig. 4 shows the TEM images of the prepared different samples. Fig. 4b shows the TEM image of the g-C₃N₄ nanosheet with soft edges after exfoliating the bulk g-C₃N₄ (Fig. 4a). The SAED pattern of g-C₃N₄ nanosheet shows a full diffraction ring which can be indexed as the 002 reflection of g-C₃N₄, indicating that the material consists of extremely small crystallites which are randomly oriented (inset of Fig. 4b).³⁶ Fig. 4c shows the TEM image of N-doped ZnO nanoplates with average size of 50 nm. Fig. 5a and b show the TEM and HRTEM images of the CNZON5 core-shell nanoplates. The thickness of the g-C₃N₄ layer coated

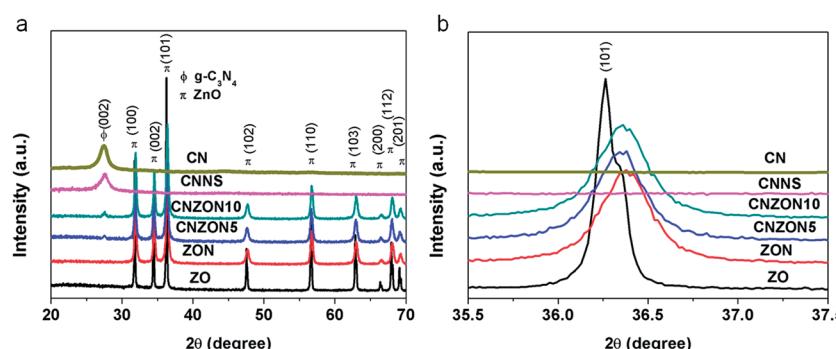


Fig. 1 XRD patterns of the prepared g-C₃N₄, ZnO, N-doped ZnO and N-doped ZnO/g-C₃N₄ photocatalysts (a) and the Bragg angle shift of 101 peak (b).

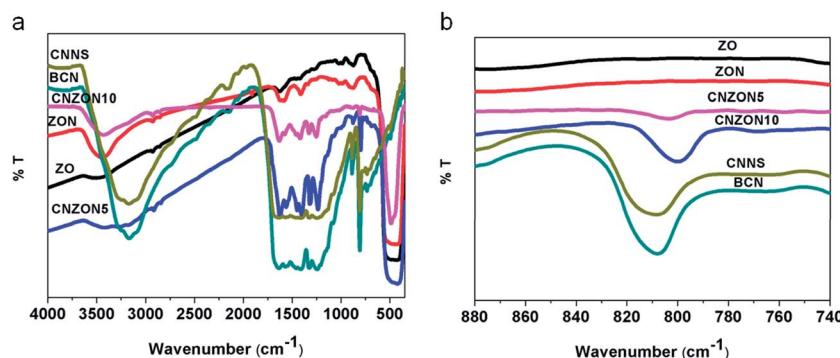


Fig. 2 FTIR spectra of the prepared $\text{g-C}_3\text{N}_4$, ZnO , N-doped ZnO and N-doped $\text{ZnO}/\text{g-C}_3\text{N}_4$ photocatalysts (a) and the peak shift in N-doped ZnO after hybridisation with $\text{g-C}_3\text{N}_4$ (b).

on the N-doped ZnO is about 3 nm for CNZON5. It can be also seen from Fig. 5b, the lattice structure of N-doped ZnO possess high order. The outer layer of the as-prepared N-doped $\text{ZnO}/\text{g-C}_3\text{N}_4$ sample was distinctly different from the N-doped ZnO core. The measured interplanar spacing of the core is 0.24 nm which corresponds to the ZnO (101) plane and the measured interplanar spacing of the shell is 0.32 nm (inset of Fig. 5b) which corresponds to the $\text{g-C}_3\text{N}_4$ (002) plane. Fig. 5c shows the core-shell morphology of CNZON10, which is prepared with 10 wt% of $\text{g-C}_3\text{N}_4$ to N-doped ZnO . As can be seen from Fig. 5d, for

CNZON10, the $\text{g-C}_3\text{N}_4$ shell is thicker, \sim 6 nm. Therefore, it is observed that the thickness of the $\text{g-C}_3\text{N}_4$ shells increases with increasing the wt% of $\text{g-C}_3\text{N}_4$ to N-doped ZnO .

X-ray photoelectron spectroscopy (XPS) measurements were carried out to know the chemical states of C, N, Zn, and O species in the as-prepared samples. Fig. S3[†] shows the survey scan XPS spectra of N-doped ZnO sample, which indicates the presence of Zn, O, and N in the N-doped ZnO . High resolution spectra of $\text{Zn}2\text{p}$, $\text{O}1\text{s}$, and $\text{N}1\text{s}$ are shown in Fig. 6a–c. As shown in Fig. 6a, the binding energy values of $\text{Zn}2\text{p}_{3/2}$ and $\text{Zn}2\text{p}_{5/2}$ are

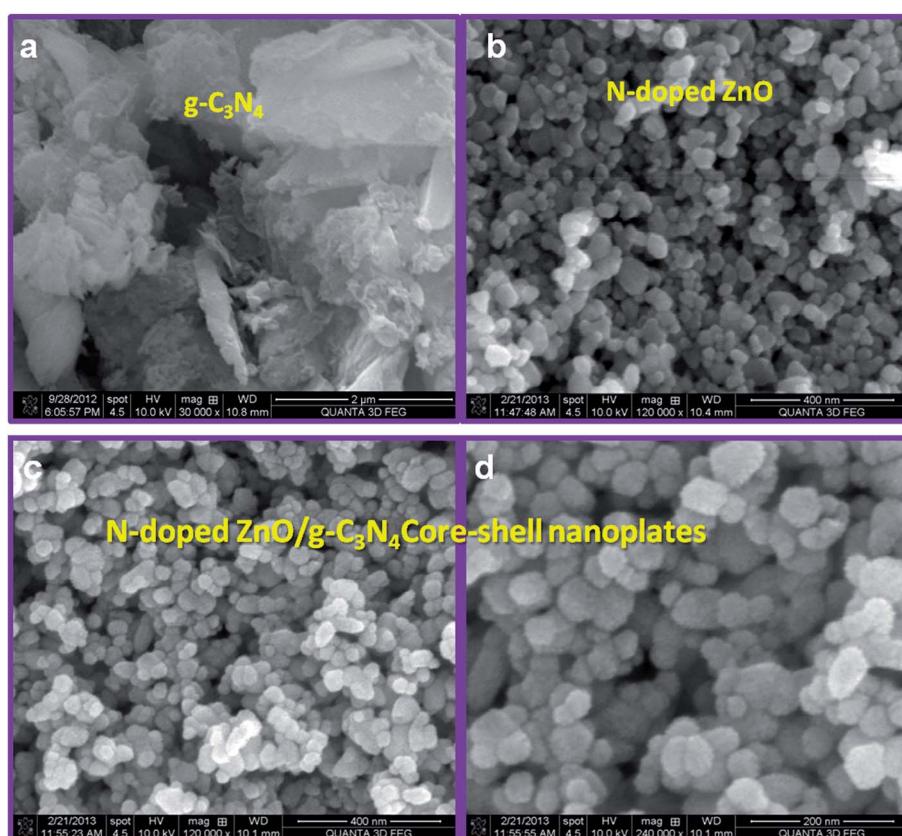


Fig. 3 FESEM images of the prepared $\text{g-C}_3\text{N}_4$, N-doped ZnO and N-doped $\text{ZnO}/\text{g-C}_3\text{N}_4$ photocatalysts: (a) bulk $\text{g-C}_3\text{N}_4$, (b) N-doped ZnO , (c) CNZON5 and (d) CNZON5 (magnified).

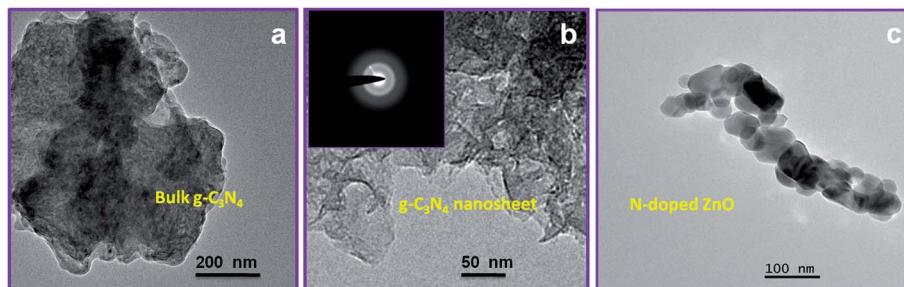


Fig. 4 TEM images of the prepared photocatalysts: (a) bulk g-C₃N₄, (b) g-C₃N₄ nanosheet (inset figure shows the SAED pattern of g-C₃N₄ nanosheet), (c) N-doped ZnO.

observed at 1021.96 eV and 1045.01 eV, respectively, suggesting the typical binding energies of Zn²⁺.^{14,20} The O1s peak at 530.31 eV is mainly assigned to the oxygen atoms coordinated with Zn atoms (Fig. 6b). The other O1s peak at 531.70 eV is associated with the presence of an OH group or a water molecule on the surface of N-doped ZnO/g-C₃N₄ core-shell composite.¹⁴ In the N1s spectrum (Fig. 6c), the N1s peak at a binding energy of 398.3 eV can be assigned to nitrogen (Zn–N).^{13,14} Therefore, N is successfully doped at the O sites of ZnO.

Fig. S4† shows the survey scan XPS spectra of the N-doped ZnO/g-C₃N₄ (5.4%) composite samples. The results indicate the presence of Zn, O, C, and N in the N-doped ZnO/g-C₃N₄ (5.4%) core-shell composite. High resolution spectra of Zn2p, O1s, C1s, and N1s are shown in Fig. 7a–d. However, the binding

energy values of Zn 2p_{3/2} and Zn 2p_{5/2} in the N-doped ZnO/g-C₃N₄ (5.4%) composite are observed at 1021.78 eV and 1044.81 eV, which are slightly lower than those for pure N-doped ZnO (Fig. 7a). The binding energy values of O1s in the N-doped ZnO/g-C₃N₄ (5.4%) composite are observed at 530.11 eV and 531.40 eV that are also slightly lower than those for pure N-doped ZnO (Fig. 7b). Such a shift may be attributed to the interaction between N-doped ZnO and g-C₃N₄. Fig. 7c shows the carbon (1s) spectrum, which can be fitted into 2 peaks at 284.3, and 285.8 eV. The C1s peak at 285.4 eV is assigned to a C–N–C coordination. The other C1s peak at 284.6 eV is attributed to the adventitious carbon on the surface of N-doped ZnO/g-C₃N₄ composite photocatalyst.³⁷ N1s spectrum (Fig. 7d) can also be fitted into three peaks. The main N1s peak at a binding energy

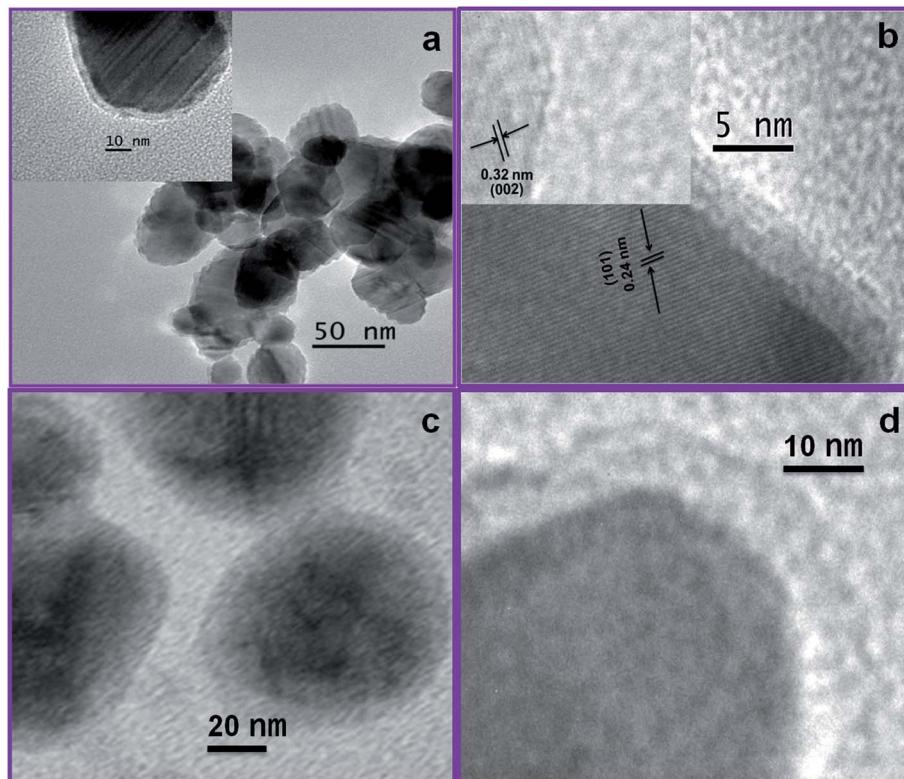


Fig. 5 TEM and HRTEM images of the prepared N-doped ZnO/g-C₃N₄ core–shell photocatalysts: (a) TEM image of CNZON5, (b) HRTEM image of CNZON5, (c) TEM image of CNZON10 and (d) HRTEM image of CNZON10.

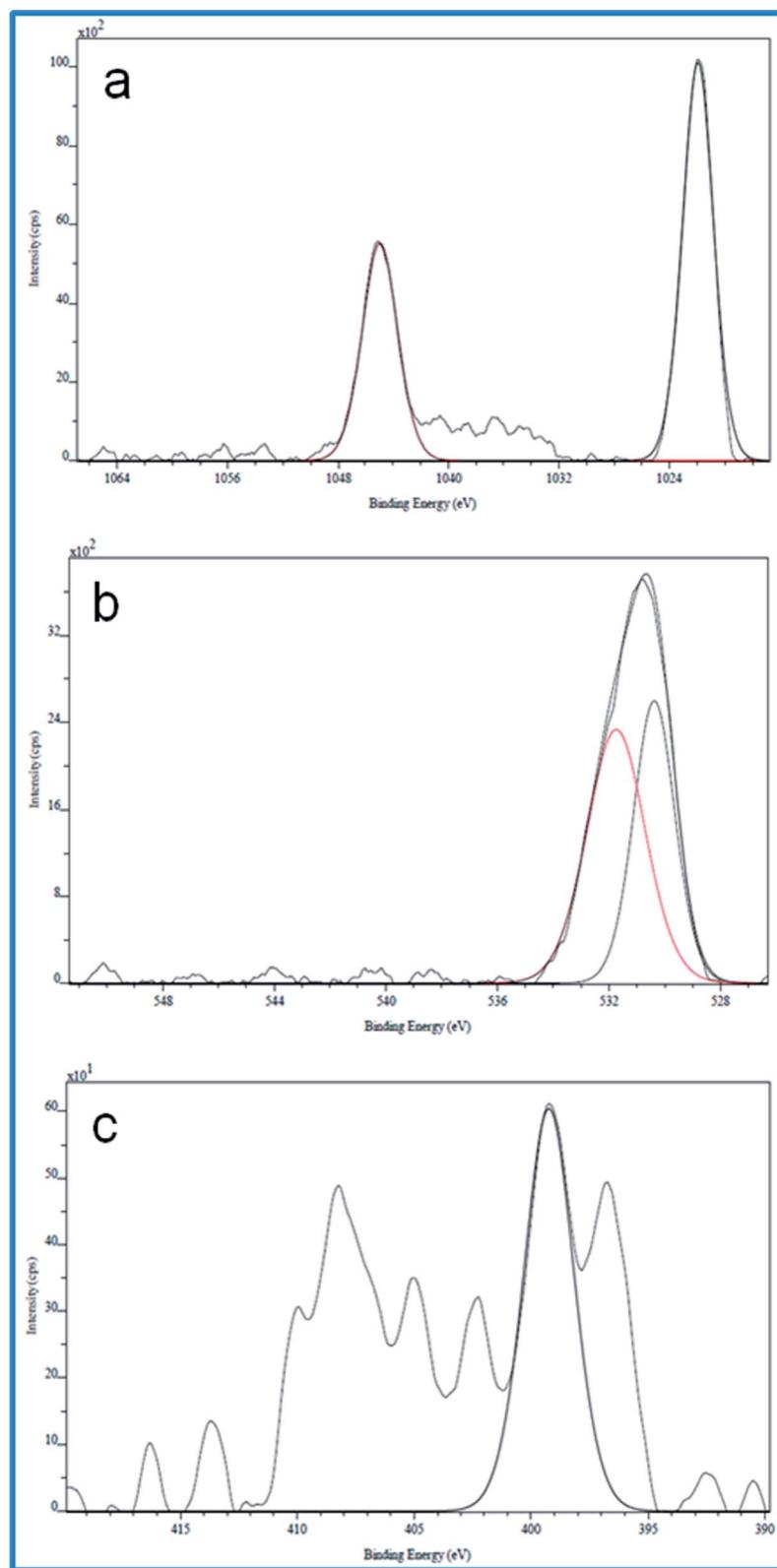


Fig. 6 XPS spectra of N-doped ZnO: (a) Zn 2p, (b) O1s, (c) N1s.

of 398.7 eV can be assigned to sp^2 -hybridized nitrogen (Zn–N) and (C=N–C).^{14,37} The other peaks at 400.8 eV are attributed to quaternary nitrogen.³⁷ Therefore, with the combination of the

XRD, SEM-EDS, TEM and XPS investigation, the results confirmed that there were both N-doped ZnO and g -C₃N₄ species in the heterojunction structure.

Fig. 7 XPS spectra of N-doped ZnO/g-C₃N₄: (a) Zn 2p, (b) O1s, (c) C1s (d) N1s.

The UV-Vis DRS spectra of the prepared different samples are shown in Fig. 8. As expected, a sharp fundamental absorption cut off edge at 385 nm for ZnO appeared, corresponding to a band gap of 3.25 eV, whereas g-C₃N₄ nanosheet has an absorption cut off edge at 454 nm, corresponding to a band gap of 2.73 eV showing a red shift from its bulk counterpart (2.69 eV). As shown in Fig. 8, after nitrogen doping, the band gap of ZnO is reduced from 3.25 to 3.14 eV and the contribution of nitrogen to the top of the valence band (VB) of ZnO can play an important role *i.e.* driving the absorption of N-doped ZnO to the visible region. Further N-doped ZnO/g-C₃N₄ (3.06 eV for

CNZON5 and 2.99 eV for CNZON10) shows the broader absorption edge and extends to the visible region as compared to that of N-doped ZnO due to the presence of g-C₃N₄ on the N-doped ZnO surface. It is notable that compared with N-doped ZnO surface, the absorption edge of N-doped ZnO/g-C₃N₄ experiences a red-shift of about 10–20 nm. However, these band gap energies estimated by using Kubelka–Munk function as shown in Fig. S5.^{†38} The valence band edge potential and the conduction band edge potential of a semiconductor material can be determined by using the following equation:³⁹

$$E_{VB} = X - E_e + 0.5E_g \quad (1)$$

$$E_{CB} = E_{VB} - E_g \quad (2)$$

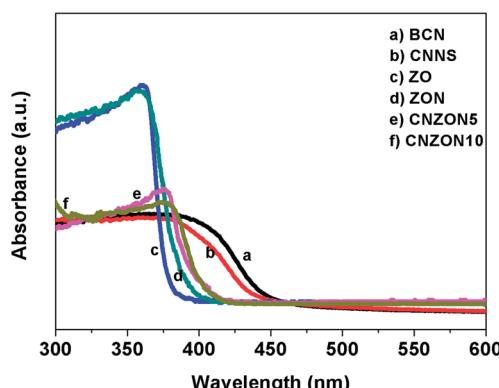


Fig. 8 UV-Vis DRS spectra of the prepared g-C₃N₄, ZnO, N-doped ZnO and N-doped ZnO/g-C₃N₄ photocatalysts.

where E_{VB} is the valence band edge potential, X is the absolute electronegativity of the semiconductor, which is determined as the geometric mean of the electronegativity of the constituent atoms, E_e is the energy of free electrons on the hydrogen scale (~ 4.5 eV) and E_g is the band gap energy of the semiconductor. The E_{CB} of N-doped ZnO and g-C₃N₄ are calculated and found to be -0.17 eV and -1.22 eV, respectively. The E_{VB} of N-doped ZnO and g-C₃N₄ are estimated to be 2.97 and 1.51 eV, respectively.

The specific surface area of N-doped ZnO and N-doped ZnO/g-C₃N₄ samples were investigated by nitrogen adsorption–desorption analysis, as shown in Fig. 9. The specific surface area of N-doped ZnO/g-C₃N₄ core–shell nanoplates is $45.17\text{ m}^2\text{ g}^{-1}$ which is much higher than that of N-doped ZnO nanoplates

($23.45 \text{ m}^2 \text{ g}^{-1}$), and g-C₃N₄ ($8 \text{ m}^2 \text{ g}^{-1}$). Relatively, a large specific surface area of N-doped ZnO is useful for the better adsorption and also provides a higher number of reactive sites for photocatalytic process, thereby it has a significant contribution to the enhancement of the photocatalytic efficiency.

3.3 Photocatalytic performance

The photocatalytic activity of the prepared samples was evaluated *via* photodegradation of RhB under visible-light irradiation, as shown in Fig. 10. As can be seen from Fig. 10, the N-doped ZnO/g-C₃N₄ hybrid core–shell photocatalysts exhibited significantly higher photocatalytic activity for the photodegradation of RhB than that of pure g-C₃N₄ and N-doped ZnO. However, the simple photolysis of RhB was also examined for comparison under the same experimental conditions in the absence of catalyst and it was observed that the efficiency was negligible which indicates that RhB is stable under visible-light irradiation. The adsorption ability of the ZON and CNZON5 photocatalysts was also investigated in the dark condition for 30 min duration. The adsorption ability of CNZON5 photocatalyst was significantly higher than that of pure ZON photocatalyst, indicating the adsorption of RhB in the composite system is not simple physical adsorption but it is also contributed from π – π stacking between RhB and g-C₃N₄ which is similar to the conjugation between aromatic molecules and graphene.⁴⁰ The results show that both light and catalyst are necessary for the effective photodegradation of RhB. The experimental data were fitted in the pseudo first-order kinetic equation $\ln(C/C_0) = -kt$ (Fig. 10b). The apparent rate constant of RhB photodegradation is about 0.0679 min^{-1} for CNZON5 and 0.0441 min^{-1} for CNZON10 core–shell nanoplates. The optimum photocatalytic activity of CNZON5 is more than 10 times higher than that of ZON (0.0065 min^{-1}) and almost 5 times higher than that of g-C₃N₄ nanosheets (0.0140 min^{-1}). Moreover, the rate of CNZON5 core–shell nanoplates is forty times higher than that of pure ZnO (0.0014 min^{-1}) and 6 times higher than that of bulk g-C₃N₄ under visible-light irradiation. The results imply that ZnO/g-C₃N₄ hybrid core–shell is a much better photocatalyst than that of pure ZnO or g-C₃N₄. The enhanced photocatalytic activity may be due to a significant synergistic effect at the interface of the g-C₃N₄ and N-doped ZnO.

3.4 EIS

In addition, EIS measurement was carried out to investigate the charge transfer resistance and the separation efficiency of the photoinduced charge carrier in the core–shell photocatalyst. As can be seen from Fig. 11, the diameter of the Nyquist semicircle for the core–shell photocatalyst is smaller than that of g-C₃N₄ and N-doped ZnO which indicates that the core–shell photocatalyst has a lower resistance than that of g-C₃N₄ and N-doped ZnO. This result demonstrates that the interface of the N-doped ZnO/g-C₃N₄ can enhance the separation and transfer efficiency of photoinduced electron–hole pairs⁴⁰ which is favourable condition for improving the photocatalytic activity.

3.5 Proposed photocatalytic mechanism

3.5.1 Role of reactive species. In general, many reactive species including h⁺, ·OH and O₂^{·-} are expected to be involved in the photocatalytic reaction. The effects of some scavengers and N₂ purging on the photodegradation of RhB were examined in an attempt to propose the possible photocatalytic reaction mechanism. The tertiary butyl alcohol (tBuOH), N₂ purging and ammonium oxalate (AO) were used as ·OH, O₂^{·-} and h⁺ scavengers, respectively.^{33,41} As shown in Fig. 12a, the photocatalytic activity of the hybrid core–shell nanoplates was greatly suppressed by the addition of tBuOH as ·OH scavenger, indicating that ·OH is the main active species in the photocatalytic reaction. A significant decrease in the photocatalytic activity was also observed by the addition of AO as h⁺ scavenger and N₂ purging as O₂^{·-} scavenger, respectively. It is suggested that O₂^{·-} and h⁺ play an almost equally important role in the photocatalytic reaction. In summary, the main reactive species involved in the photocatalytic degradation of RhB over the core–shell photocatalyst are ·OH, O₂^{·-} and h⁺. Moreover, the formation of ·OH during the photocatalytic reaction under visible-light irradiation was confirmed by the photoluminescence spectra with terephthalic acid (TA) as a probe molecule as shown in Fig. 12b. The details of the experimental procedures have been reported in some earlier reports.^{42,43} The results show that an obvious photoluminescence signal at about 425 nm of 2-hydroxy terephthalic acid is observed. The peak intensity of the photocatalyst increases with the increase in the irradiation time, suggesting that a high formation rate of ·OH

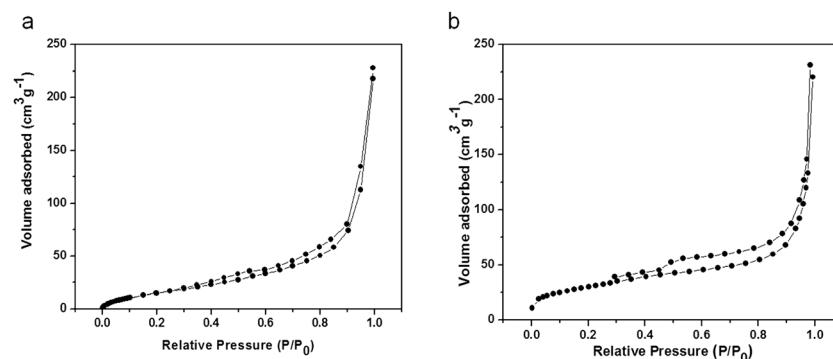


Fig. 9 Nitrogen adsorption–desorption isotherm, and specific surface area of the prepared (a) N-doped ZnO and (b) CNZON5 photocatalysts.

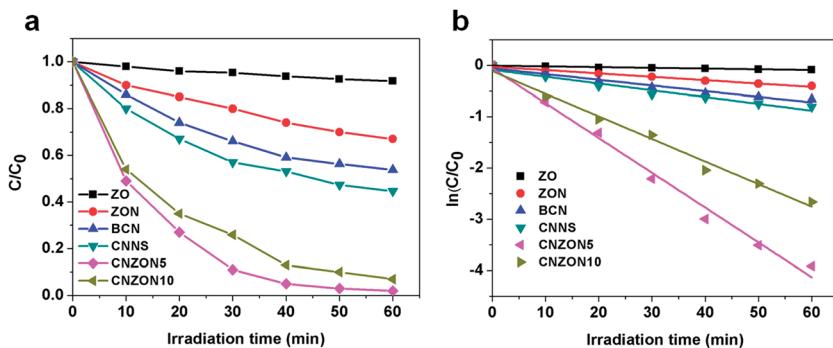


Fig. 10 (a) Photocatalytic activity for the degradation of RhB solution by using pure ZnO, N-doped ZnO, g-C₃N₄ and N-doped ZnO/g-C₃N₄ photocatalyst under visible-light irradiation; (b) The $\ln(C/C_0)$ vs. time curves.

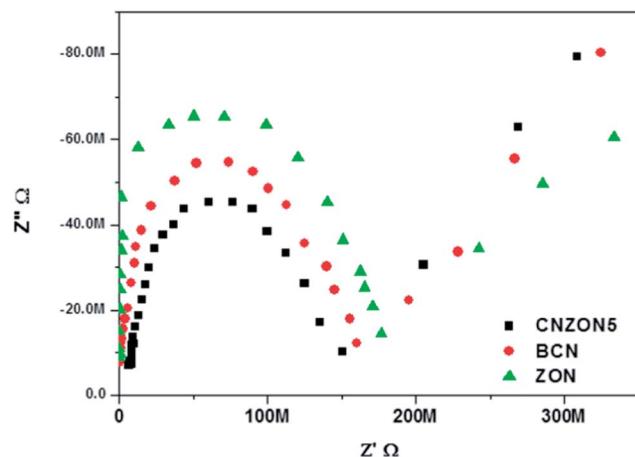


Fig. 11 EIS profile of N-doped ZnO, g-C₃N₄ and N-doped ZnO/g-C₃N₄ photocatalyst.

on the surface of the photocatalyst and results in higher photocatalytic activity. It is also in good agreement with the results of *t*BuOH quenching.

3.5.2 Proposed mechanism. On the basis of above results, a possible photocatalytic mechanism for the photo-degradation of RhB over N-doped ZnO/g-C₃N₄ core-shell photocatalyst is proposed. The most common separation

process of photoinduced electron-hole pairs for a great number of composite photocatalysts is shown in Fig. 13a. If the photoinduced electron-hole pair separation in the N-doped ZnO/g-C₃N₄ photocatalyst is as according to Fig. 13a, the photoinduced electrons in the CB of g-C₃N₄ can migrate to the CB of N-doped ZnO, and the photoinduced holes in the VB of N-doped ZnO can migrate to the VB of g-C₃N₄. Unfortunately, these accumulated electrons in the conduction band of N-doped ZnO cannot produce O₂^{•-} from dissolved O₂ by photoreduction process, because the conduction edge potential of N-doped ZnO (-0.2 eV vs. NHE) is more positive than the standard redox potential $E^0_{(O_2/O_2^{\cdot-})}$ (-0.3 eV vs. NHE). Meanwhile, the photoinduced holes of g-C₃N₄ also cannot oxidize the adsorbed H₂O molecules to 'OH because the valence edge potential of g-C₃N₄ (+1.3 eV vs. NHE) is more negative than the standard redox potential $E^0_{(-OH/H_2O)}$ (+2.8 eV vs. NHE), suggesting that the charge carrier transfer in accordance with the most common model (Fig. 13a) is not favorable for the generation of the main reactive species O₂^{•-} and 'OH, resulting in a lower photocatalytic activity for the N-doped ZnO/g-C₃N₄ photocatalyst. However, under the experimental conditions, the results show the presence of O₂^{•-} and 'OH, the strong oxidizability of h⁺ and the high photocatalytic activity. So the photoinduced electron-hole separation process is proposed *via* Z-scheme mechanism, as shown in Fig. 13b. Namely, the photoexcited electrons in the CB of N-doped ZnO

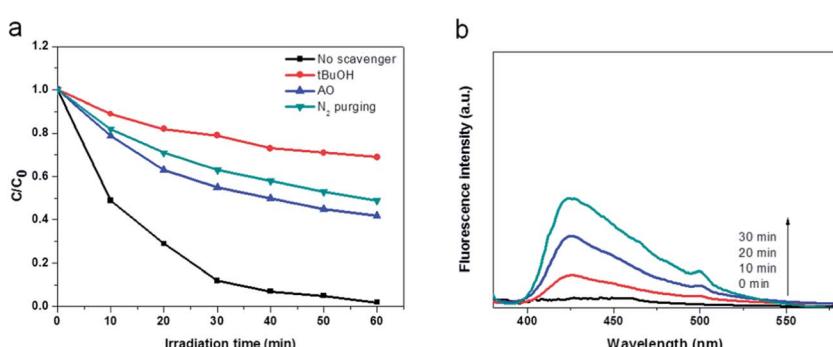


Fig. 12 (a) Effects of different scavengers on the degradation of RhB in the presence of N-doped ZnO/g-C₃N₄ core-shell photocatalyst under visible-light irradiation. (b) ·OH trapping PL spectra of ZnO/g-C₃N₄ core-shell photocatalyst with TA solution under visible-light irradiation.

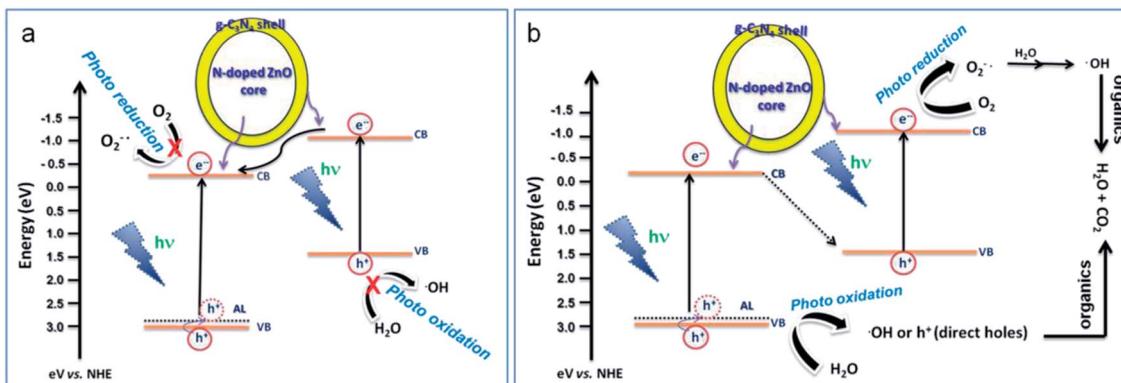


Fig. 13 Schematic diagram illustrating the mechanism for photoinduced charge carrier transfer in most common composites (not Z-scheme photocatalysts) (a) and N-doped ZnO/g-C₃N₄ core-shell (Z-scheme photocatalysts) (a) under visible-light irradiation.

transfer to the VB of g-C₃N₄ quickly, resulting in the combination of the electrons in the CB of N-doped ZnO and photoexcited holes in the VB of g-C₃N₄, and accumulated rich electrons in the CB of g-C₃N₄ and holes in the VB of N-doped ZnO participate in the reduction and oxidation reactions, respectively. As a result, the electrons in the CB of g-C₃N₄ have more negative potential to reduce the molecular oxygen to yield O₂^{·-}, which then induces the degradation of RhB.³ The holes in the valance band of N-doped ZnO have more positive potential to generate abundant active ·OH with powerful oxidation capability. Therefore, the photocatalytic activity is significantly promoted, and RhB is degraded through the O₂^{·-} and ·OH or direct h⁺ oxidation pathway. According to the results, it is proposed Z-scheme mechanism that shows the real separation process of photoinduced electron-hole pairs. Therefore, the N-doped ZnO/g-C₃N₄ system is a type of Z-scheme photocatalyst under our experimental conditions.

3.5.3 ESR measurements. ESR measurements were carried out to confirm the generation of O₂^{·-} to prove the rationality of the proposed photocatalytic reaction mechanism. DMPO in methanol was used for the detection of O₂^{·-}.^{44,45} No obvious peaks of O₂^{·-} are observed in the ESR pattern for pure N-doped ZnO as shown in Fig. 14a. However, the strong characteristic peaks of O₂^{·-} are observed for the N-doped ZnO/g-C₃N₄ core-shell sample and the weaker peaks of O₂^{·-} are also observed for pure N-doped ZnO. It is clear that O₂^{·-} is produced in the process of photocatalytic reaction over N-doped ZnO/g-C₃N₄ core-shell photocatalyst under visible light irradiation. These ESR results clearly suggested that the N-doped ZnO/g-C₃N₄ core-shell sample is more favourable for the formation of O₂^{·-} than that of pure N-doped ZnO and g-C₃N₄ samples. Based on the ESR results, it can be concluded that the transfer of the photoinduced charge carriers is according to Fig. 13b in the N-doped ZnO/g-C₃N₄ system.

3.5.4 Photoluminescence. It is well known that the photoluminescence emission spectra results from the recombination of free carriers.^{46,47} In order to determine the role of photoinduced electron-hole pairs in the as-prepared core-shell sample and understand the proposed mechanism, photoluminescence

studies were carried out. Fig. 14b shows the PL spectra of ZnO, N-doped ZnO, g-C₃N₄ and N-doped ZnO/g-C₃N₄ photocatalyst with an excitation wavelength of 365 nm at room temperature. It can be seen that the pure g-C₃N₄ and ZnO have a strong emission peak around 460 nm and 510 nm, respectively. However, after N incorporation into the ZnO crystal structure, the photoluminescence intensity was greatly suppressed, suggesting that the recombination rate of the photoinduced electron-hole in N-doped ZnO is lower than that of pure ZnO. The result means that lower photoluminescence intensity indicates a higher photocatalytic activity under the experimental conditions. It is notable that the change in intensity agrees well with that of the photocatalytic activity of the N-doped ZnO as shown in Fig. 10. Furthermore, after hybridization of N-doped ZnO with g-C₃N₄ (N-doped ZnO/g-C₃N₄ core-shell), the photoluminescence intensity has slightly increased and is higher than that of pure N-doped ZnO. This is opposite to that of general photoluminescence experiments. The reason may be that, as it is well known, the photoluminescence peak intensities are strongly dependent on the recombination of photoinduced electron-hole pairs. In theory, if the photoexcited electrons and holes are transferred as shown in Fig. 13a, the photoluminescence intensity of the N-doped ZnO/g-C₃N₄ core-shell nanoplates must be lower than that of pure N-doped ZnO because the photoinduced electrons and holes of g-C₃N₄ and N-doped ZnO are separated effectively. However, the results show that the photoexcited electrons and holes are not transferred as shown in Fig. 13a. In contrast, as shown in Fig. 13b, the higher photoluminescence intensities of the samples are attributed to the higher recombination rate between photoexcited electrons in the CB of N-doped ZnO and photoexcited holes in the VB of g-C₃N₄, suggesting that the rich electrons in the CB of g-C₃N₄ with more negative potential and holes in the VB of N-doped ZnO with more positive potential undergo reduction and oxidation reactions to produce O₂^{·-} and ·OH, respectively, so the photocatalytic activity of N-doped ZnO/g-C₃N₄ core-shell nanoplates is significantly improved. Based on the analysis, it is clear that the recombination and transfer of photoinduced electrons and holes for the core-shell photocatalyst are indeed as shown in Fig. 13b *i.e.* N-doped ZnO/g-C₃N₄

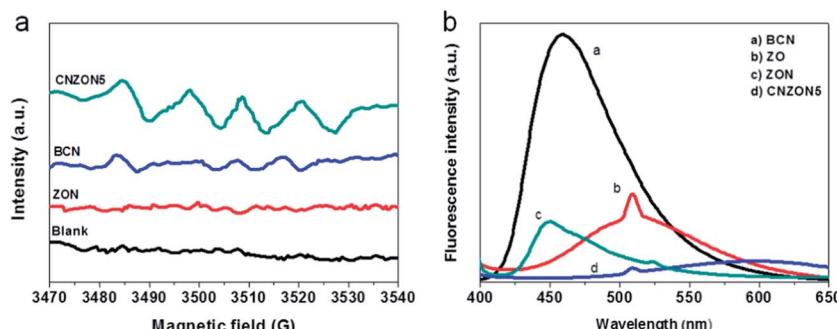


Fig. 14 (a) ESR signals of DMPO- $\text{O}_2^{\cdot-}$ with irradiation for 20 s in methanol dispersion. (b) Room temperature photoluminescence spectra (excited at 365 nm) of pure ZnO, N-doped ZnO, g-C₃N₄ and N-doped ZnO/g-C₃N₄ photocatalyst under visible-light irradiation.

core-shell photocatalyst is a typical Z-scheme photocatalyst with high photocatalytic oxidation and reduction performance.

3.6 Reusability

For the practical applications, it is necessary to investigate the long-term stability of a photocatalyst during photocatalytic reaction. To study the reusability of the N-doped ZnO/g-C₃N₄ hybrid core-shell photocatalyst, six successive photocatalytic experiments were carried out by adding used CNZON5 photocatalyst to fresh RhB solutions under visible-light irradiation. However, the concentration of catalyst and RhB in the solution remained constant for each cycle. The photocatalytic activity of CNZON5 is retaining over 90% of its original activity value after six successive experimental runs under the same experimental conditions as shown in Fig. 15. The XRD and FTIR spectra were recorded for the reused hybrid core-shell photocatalyst and no change was observed in the resulting spectra which indicates the high structural stability of N-doped ZnO/g-C₃N₄ (ESI, Fig. S6†). The N-doped ZnO/g-C₃N₄ hybrid nanocomposite photocatalysts can be easily reused by a simple filtration or by low-speed centrifugation and thus avoiding the second pollution. Therefore, g-C₃N₄/N-doped ZnO composites can be used as high-performance visible-light photocatalysts and for potential applications in environmental protection.



Fig. 15 Recyclability of the CNZON5 photocatalyst for the degradation of RhB under visible-light irradiation (six successive experimental runs).

4. Conclusion

In summary, we have successfully prepared N-doped ZnO/g-C₃N₄ hybrid core-shell nanoplates *via* a facile ultrasonic dispersion method. Significantly, the enhanced visible-light photocatalysis is achieved due to the prolonged life time of charge carrier transfer at the interface of N-doped ZnO/g-C₃N₄. Direct Z-scheme mechanism is proposed for the prolonged life time of charge carrier transfer at the interface of N-doped ZnO/g-C₃N₄ by trapping experiments of photoinduced electrons and holes under visible-light irradiation. More importantly, the as-prepared N-doped ZnO/g-C₃N₄ hybrid core-shell nanostructure possesses high photostability. This ideally versatile hybrid core-shell nanostructure prepared from a cost-effective and environmentally friendly process would be useful for various applications, including catalysis, drug delivery system, sensors, photonics and energy storage and conversion.

Acknowledgements

The corresponding author thanks the Department of Science and Technology, Government of India for financial support (SR/FT/CS-096/2009). Santosh Kumar thanks the Ministry of Human Resource Development, Government of India for providing fellowship. Authors also thank Prof. A. K. Ganguli, Indian Institute of Technology Delhi, for carrying out part of this work in his lab.

References

- 1 M. R. Hoffmann, S. T. Martin, C. Wonyong and D. W. Bahnemann, *Chem. Rev.*, 1995, **95**, 69.
- 2 V. K. Prashant, *J. Phys. Chem. C*, 2007, **111**, 2834.
- 3 K. Rajeshwara, M. E. Osugi, W. Chanmanee, C. R. Chenthamarakshan, M. V. B. Zanoni, P. Kajitvichyanukul and R. Krishnan-Ayer, *J. Photochem. Photobiol. C*, 2008, **9**, 171.
- 4 R. M. Mohamed, D. L. McKinney and W. M. Sigmund, *Mater. Sci. Eng., R*, 2012, **73**, 1.
- 5 C. Xiaobo, S. Shaohua, G. Liejin and S. M. Samuel, *Chem. Rev.*, 2010, **110**, 6503.

6 S. Li, F. Zheng, S. Cai, W. Liang and Y. Li, *Sens. Actuators, B*, 2013, **188**, 280.

7 C. Janáky, K. Rajeshwar, N. R. de Tacconi, W. Chanmanee and M. N. Huda, *Catal. Today*, 2013, **199**, 53.

8 S. Rehman, R. Ullah, A. M. Butt and N. D. Gohar, *J. Hazard. Mater.*, 2009, **170**, 560.

9 T. Chungui, Z. Qi, W. Aiping, J. Meijia, L. Zhenglan, J. Baojiang and F. Honggang, *Chem. Commun.*, 2012, **48**, 2858.

10 K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi and K. Domen, *J. Am. Chem. Soc.*, 2005, **127**, 8286.

11 L. Zhaooyang, B. Hongwei, X. Shiping and D. S. Darren, *Int. J. Hydrogen Energy*, 2011, **36**, 13473.

12 P. Yin, Q. Shuchun, W. Wan-Sheng and X. An-Wu, *CrystEngComm*, 2013, **15**, 6518.

13 Z. Xu, S. Chenghua, Y. Hua, G. C. Zhi, X. Zheng, Y. Delai, Q. L. Gao, L. Xinyong and W. Lianzhou, *J. Phys. Chem. C*, 2013, **117**, 4937.

14 S. Chen, W. Zhao, S. Zhang and W. Liu, *Chem. Eng. J.*, 2009, **148**, 263.

15 Q. Hongchun, L. Weiyi, X. Yujing and H. Tao, *ACS Appl. Mater. Interfaces*, 2011, **3**, 3152.

16 H. Fu, T. Xu, S. Zhu and Y. Zhu, *Environ. Sci. Technol.*, 2008, **42**, 8064.

17 Y. Guidong, J. Zheng, S. Huahong, X. Tiansun and Y. Zifeng, *J. Mater. Chem.*, 2010, **20**, 5301.

18 X. Fang, Y. Yafei, H. Huijuan, W. Dapeng, G. Zhiyong and J. Kai, *CrystEngComm*, 2012, **14**, 3615.

19 W. Jinfeng, T. Takuya, T. Bin, H. Xueliang, S. Lu and W. Xungai, *ACS Appl. Mater. Interfaces*, 2012, **4**, 3084.

20 W. Yajun, S. Rui, L. Jie and Z. Yongfa, *Energy Environ. Sci.*, 2011, **4**, 2922.

21 Z. Liwu, C. Hanyun, Z. Ruilong and Z. Yongfa, *J. Phys. Chem. C*, 2009, **113**, 2368.

22 Z. Hao, Z. Ruilong and Z. Yongfa, *J. Phys. Chem. C*, 2009, **113**, 4605.

23 W. Xinchen, K. Maeda, A. Thomas, K. Takanabe, X. Gang, J. M. Carlsson, K. Domen and M. Antonietti, *Nat. Mater.*, 2008, **8**, 76.

24 S. Kumar, T. Surendar, B. Kumar, A. Baruah and V. Shanker, *J. Phys. Chem. C*, 2013, **117**(49), 26135.

25 G. C. Rajib and P. Santanu, *Chem. Rev.*, 2012, **112**, 2373.

26 P. Chengsi, X. Jing, W. Yajun, L. Di and Z. Yongfa, *Adv. Funct. Mater.*, 2012, **22**, 1518.

27 K. Sunita, K. Simanta, P. Amitava and A. K. Ganguli, *J. Phys. Chem. C*, 2012, **116**, 23653.

28 W. Xuewen, L. Gang, Q. L. Gao and C. Hui-Ming, *Int. J. Hydrogen Energy*, 2010, **35**, 8199.

29 K. Maeda, L. Daling and K. Domen, *ACS Catal.*, 2013, **3**, 1026.

30 X. Lin, M. P. S. Ellen and E. S. Sara, *J. Phys. Chem. C*, 2012, **116**, 871.

31 F. Ning, J. Zhiliang, W. Yuqi, L. Gongxuan and L. Dongyang, *J. Phys. Chem. C*, 2011, **115**, 8586.

32 J. Y. Hyeong, L. Hyunjoo, D. K. Nam, M. L. David, Y. Sungju and Y. Jongheop, *ACS Nano*, 2011, **5**, 4084.

33 S. Kumar, T. Surendar, A. Baruah and V. Shanker, *J. Mater. Chem. A*, 2013, **1**, 5333.

34 S. Kumar, B. Kumar, T. Surendar and V. Shanker, *Mater. Res. Bull.*, 2014, **49**, 310.

35 L. Wei, W. Mingliang, X. Chunxiang and C. Shifu, *Chem. Eng. J.*, 2012, **209**, 386.

36 Y. Zhang, Q. Pan, G. Chai, M. Liang, G. Dong, Q. Zhang and J. Qiu, *Sci. Rep.*, 2013, **3**, 1943.

37 N. Xiao, D. Lau, W. Shi, J. Zhu, X. Dong, H. H. Hng and Q. Yan, *Carbon*, 2013, **57**, 184.

38 A. Srinivasan, O. Naoki and M. Masahiro, *Appl. Catal., B*, 2010, **100**, 502.

39 L. Yongyu, W. Jianshe, Y. Hongchang, D. Liyun and L. Zhongjun, *J. Mol. Catal. A: Chem.*, 2011, **334**, 116.

40 H. Zhang, L. Xiaojun, L. Yueming, Y. Wang and L. Jinghong, *ACS Nano*, 2010, **4**, 380.

41 X. Tongguang, Z. Liwu, C. Hanyun and Z. Yongfa, *Appl. Catal., B*, 2011, **101**, 382.

42 B. Cheng, L. Yao and Y. Jiaguo, *J. Hazard. Mater.*, 2010, **177**, 971.

43 I. Ken-ichi, A. Fujishima, T. Watanabe and K. Hashimoto, *Electrochem. Commun.*, 2000, **2**, 207.

44 H. Ji, F. Chang, X. Hu, W. Qin and J. Shen, *Chem. Eng. J.*, 2013, **218**, 183.

45 C. Shifu, J. Lei, T. Wenming and F. Xianliang, *Dalton Trans.*, 2013, **42**, 10759.

46 J. Liqiang, Q. Yichun, B. Wang, L. Shudan, J. Baojiang, L. Yang, F. Wei, F. Honggang and S. Jiazhong, *Sol. Energy Mater. Sol. Cells*, 2006, **90**, 1773.

47 F. Xianliang, T. Wenming, J. Lei and C. Shifu, *Chem. Eng. J.*, 2012, **180**, 170.