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Linear and weakly nonlinear properties of magnetoconvection in a sparsely packed porous medium are investigated. We have
obtained the values of Takens-Bogdanov bifurcation points and codimension two bifurcation points by plotting graphs of
neutral curves corresponding to stationary and oscillatory convection for different values of physical parameters relevant to
magnetoconvection in a sparsely packed porous medium near a supercritical pitchfork bifurcation. We have derived a nonlinear
two-dimensional Ginzburg-Landau equation with real coefficients by using Newell-Whitehead (1969) method. The effect of the
parameter values on the stability mode is investigated and shown the occurrence of secondary instabilities namely, Eckhaus and
Zigzag instabilities. We have studied Nessult number contribution at the onset of stationary convection. We have also derived
two nonlinear one-dimensional coupled Ginzburg-Landau-type equations with complex coefficients near the onset of oscillatory
convection at a supercritical Hopf bifurcation and discussed the stability regions of standing and travelling waves.

1. Introduction

Magnetoconvection in a porous medium uniformly heated
from below is of considerable interest in geophysical fluid
dynamics, as this phenomena may occur within the mushy
layer of Earth’s outer core. Earth’s outer core consists of
molten iron and lighter alloying element, sulphur in its
molten form. This lighter alloying element present in the
liquid phase is released as the new iron freezes due to
supercooling onto the solid inner core. Hence we get mushy
layer near the inner core boundary where the problem
becomes convective instability in a porous medium [1].
The effect of geomagnetic field on the magnetoconvection
instability is of interest in geophysics, particular in the study
of Earth’s interior where the molten liquid Iron is electrically
conducting, which can become convectively unstable as a
result of differential diffusion.

Magnetoconvection in an electrically conducting fluid in
a nonporous medium has been studied extensively [2–8].
However, magnetoconvection in a porous medium has not

received any attention inspite of its application in geophysical
fluid dynamics problems. Palm et al., [9] investigated
Rayleigh-Benard convection problem in a porous medium.
Brand and Steinberg [10, 11] investigated convecting insta-
bilities in binary liquid in a porous medium; However, Plam
et al. [9] and Brand et al. have made use of Darcy’s law
(−ν∇2V is replaced by KV where K is the permeability of a
porous medium. for nonporous medium K is infinity). They
have also not considered usual convective nonlinearity. It is
well known that Darcy’s law breaks down in situations where
in other effects like viscous shear and inertia come into play.
In fact Darcy’s law is applicable to densely packed porous
medium. An alternative to Darcy’s equation is Brinkman
equation and is of the form

∇′ρ′ − ρ′g = − μ

K
V
′

+ μe∇′2V ′
, (1)

where μ is the fluid viscosity and μe is the effective fluid
viscosity. Brinkman model is valid for a sparsely packed
porous medium wherein there is more window fluid to flow
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so that the distortion of velocity give rise to the usual shear
force. Lapwood [13] was the first to suggest the inclusion
of convective term (V

′ · ∇′)V ′
in the momentum equation

and study the Rayleigh-Benard convection in a sparsely
packed porous medium. Recently, Tagare and Benerji [14]
have investigated the problem of nonlinear convection in
a sparsely packed porous medium due to thermal and
compositional buoyancy.

In this paper we investigate the problem of magnetocon-
vection in a sparsely packed porous medium. The multiplic-
ity of control parameters makes this system an interesting
one for the study of hydrodynamic stability, bifurcation and
turbulence [15]. Rudraiah [16] and Rudraiah and Vortmeyer
[17] have studied both linear and steady nonlinear mag-
netoconvection in a sparsely packed porous medium using
Brinkman model but they have taken effective viscosity μe
same as fluid viscosity μ. However, experiments show that
the ratio of effective viscosity μe to fluid viscosity μ takes the
value ranging from 0.5 to 10.9 [18]. In Section 2, we write
basic dimensionless equations in Boussinesq approximation
for magnetoconvection in a sparsely packed medium by
using a momentum equation with effective viscosity different
from fluid viscosity. In Section 3, we study linear stability
analysis. In Section 4.1, by using multiple-scale analysis of
Newell and Whitehead [19], we derive two-dimensional
nonlinear Ginzburg-Landau equation in complex amplitude
A(X ,Y ,T) with real coefficients near the super critical
pitchfork bifurcation. In Section 4.2, we show the occurrence
of secondary instabilities such as Eckhaus instability and
Zigzag instability. We have also considered the effect of
Nusselt number on heat transport by magnetoconvection in
a sparsely packed porous medium. In Section 5, we derive
two nonlinear one-dimensional coupled Ginzburg-Landau
type equations with complex coefficients near the onset of
oscillatory convection at a supercritical Hopf bifurcation.
Following Matthews and Rucklidge [20], we have dropped
slow space dependence in X and obtained two coupled
ordinary differential equations in A1R and A1L and discussed
the stability regions of travelling and standing waves. By
obtaining a one-dimensional Ginzburg-Landau equation in
complex amplitude A(X ,Y ,T) with complex coefficients
near a supercritical Hopf bifurcation, we have shown the
condition for occurrence of Benjamin-Feir-type instability
[21] for travelling and standing waves. In Section 6, we write
conclusions of the paper.

2. Basic Equations

We consider an electrically and thermally conducting fluid
saturating an infinite horizontal layer of a sparsely packed
isotropic porous medium of depth d with a uniform
magnetic field H0 in the vertical z-direction. This layer is
heated from below, the upper and lower bounding surfaces
of the layer are assumed to be stress-free. Physical properties
of the fluid are assumed to be constant, except for the
density in the buoyancy term, so that the Boussinesq
approximation is valid. The temperature difference across
the stress-free boundaries is ΔT′ and the flow in the sparsely

packed porous medium is governed by the Darcy-Lapwood-
Brinkman model. The relevant basic equations are

∇′ ·V ′ = 0, ∇′ ·H′ = 0, (2)

ρ′0

[
1
φ

∂V
′

∂t′
+

1
φ2

(
V
′ ·∇′

)
V
′
]

−μm
4π

[
H′

0
∂H

′

∂z′
+
(
H
′ ·∇′

)
H
′
]

= −∇
(
p′ +

μm
8π
|H′|2 +

μmH0

4π2
H′
z

)

+ρ′g − μ

K
V
′

+ μe∇′2V ′
,

(3)

M
∂T′

∂t′
+
(
V
′ · ∇′

)
T′ = κ∇′2T′, (4)

φ
∂H

′

∂t′
= ∇′ ×

(
V
′ ×H′

0êz
)

+∇′ ×
(
V
′ ×H′)

+ η∇′2H′
.

(5)

The fluid density ρ′ is described by

ρ′ = ρ′0
[

1− α
(
T′ − T′b

)]
, (6)

where α = −ρ′−1
0 (∂ρ′/∂T′) is thermal expansion coefficient

and ρ′0 is mean fluid density. Here p′ is pressure, V
′

is mean
fluid velocity, T′ is temperature, H

′
is magnetic field, φ is

porosity, g is acceleration due to gravity, K is permeability of
porous medium, μe is coefficient of effective fluid viscosity,
κ is thermal diffusivity, μm is magnetic permeability, and
η is magnetic diffusivity. Equation (3) is known as Darcy-
Lapwood-Brinkman equation and is valid for 0.8 < φ < 1.
Givler and Altobelli [18] shown that the range of Λ = μe/μ
varies from 0.5 to 10.9. M is dimensionless heat capacity and
is defined as the ratio of the effective heat capacity of the
porous medium to the heat capacity (ρ′Cp) f of the fluid. In
a nonporous medium, φ = M = Λ = 1 and K → ∞ and (3)
reduces to Navier-Stokes equation. In this paper, for sparsely
packed porous medium, we consider M = 0.9, φ = 0.9. The
conduction state is characterized by

V
′
s = 0, T′s = T′0 −

(
ΔT′

d

)
z′, (7)

and we take the temperature perturbation as θ′ = T′ − T′s .
We use the scaling

x = x′

d
, y = y′

d
, z = z′

d
, t = t′

Md2/κ
,

u = u′

κ/Md
, v = v′

κ/Md
, w = w′

κ/Md
,

θ = θ′

ΔT′
, P = P′

ρ′0M−2κ2d−2
, H = H

′

κH0/η
.

(8)

Here Md2/κ is thermal diffusion time in a porous medium.
Using (6) and (8), we can write basic dimensionless equa-
tions for magnetoconvection in a porous medium as

∇ ·V = 0, ∇ ·H = 0, (9)
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1
M2φPr1

[
∂V

∂t
+

1
φ

(
V · ∇

)
V

]
−QPr2

Pr1

(
H · ∇

)
H −Q∂H

∂z

= −∇
(

P

MPr1
+
Q

2
Pr2

Pr1

∣∣∣H∣∣∣2
+QHz

)
− 1
MDa

V

+
Λ

M
∇2V + Rθêz,

(10)

∂θ

∂t
+

1
M

(
V · ∇

)
θ = w

M
+∇2θ, (11)

φ
Pr2

Pr1

∂H

∂t
−M∇2H = ∇×

(
V × êz

)
+

Pr2

Pr1
∇×

(
V ×H

)
.

(12)

The dimensionless parameters required for the description
of the motion are Rayleigh number R = gαΔTd3/κν, thermal
Prandtl number Pr1 = ν/κ, magnetic Prandtl number Pr2 =
ν/η, Chandrasekhar number Q = μmH

2
0d

2/4πρ0νη, and
Darcy number Da = κ/d2. The Curl of (10) gives

(
1

M2φPr1

∂

∂t
+

1
MDa

− Λ

M
∇2

)
ω−Q∂J

∂z
− R(∇× (θêz))

= Q
Pr2

Pr1

[
∇×

(
H · ∇

)
H
]

− 1
M2φ2Pr1

[
∇×

(
V · ∇

)
V
]

,

(13)

where vorticity ω = ∇×V , current J = ∇×H and

∇×
[(
V · ∇

)
V
]
=
[(
V · ∇

)
ω− (ω · ∇)V

]
,

∇×
[(
H · ∇

)
H
]
=
[(
H · ∇

)
J −

(
J · ∇

)
H
]
.

(14)

The Curl of (13) in turn gives, after use of (9),

(
1

M2φPr1

∂

∂t
+

1
MDa

− Λ

M
∇2

)
∇2V

− R
[(∇2θ

)
êz −∇

(
∂θ

∂z

)]
−Q ∂

∂z

(
∇2H

)

= 1
M2φ2Pr1

∇×
[(
V · ∇

)
ω − (ω · ∇)V

]

−QPr2

Pr1
∇×

[(
H · ∇

)
J −

(
J · ∇

)
H
]
.

(15)

Now taking the scalar product of (12), (13), and (15) with êz,
we get,

(
φ

Pr2

Pr1

∂

∂t
−M∇2

)
Hz −∂w

∂z
= Pr2

Pr1
êz ·

[
∇×

(
V ×H

)]
.

(16)

(
1

M2φPr1

∂

∂t
+

1
MDa

− Λ

M
∇2

)
∇2ωz +Q

∂Jz
∂z
− R∂θ

∂x

= Q
Pr2

Pr1
êz · ∇ ×

(
H · ∇

)
H − 1

M2φ2Pr1
êz

·
[
∇×

(
V · ∇

)
V
]

,

(17)

(
1

M2φPr1

∂

∂t
+

1
MDa

− Λ

M
∇2

)
∇2w−R∇2

hθ−Q
∂

∂z

(∇2Hz
)

= 1
M2φ2Pr1

êz ·
[
∇×

[(
V · ∇

)
ω− (ω · ∇)V

]]

−QPr2

Pr1
êz ·

[
∇×

[(
H · ∇

)
J −

(
J · ∇

)
H
]]
.

(18)

Geophysically acceptable velocities of propagating instabili-
ties corresponding to geometric scalar variations occur only
Pr2/Pr1 > 1 (where instabilities develop in ohmic diffusion
timescale d2/η), Pr2/Pr1 = 2 and 5, when the turbulent is
present in the Earth’s outer core. In the case of Pr2/Pr1 � 1
the instabilities are extremely slow depending on the thermal
diffusion timescale d2/κ. Using (11), (18), and (16) can be
reduced to a form

Lw = N , (19)

where

L =
(
DφDPr1 −Q

∂2

∂z2

)
D∇2 − R

M
∇2
hDφ, (20)

N = QD∇2 Pr2

Pr1

∂

∂z

[(
H · ∇

)
w −

(
V · ∇

)
Hz

]

+ DDφêz·
[[

1
M2φ2Pr1

∇×
[(
V ·∇

)
ω−(ω·∇)V

]]

−
[
Q

Pr2

Pr1
∇×

[(
H ·∇

)
J −

(
J ·∇

)
H
]]]

− R

M
∇2
hDφ

(
V · ∇

)
θ,

(21)

here

D =
(
∂

∂t
−∇2

)
, Dφ =

(
φ

Pr2

Pr1

∂

∂t
−M∇2

)
,

DPr1 =
(

1
M2φPr1

∂

∂t
+

1
MDa

− Λ

M
∇2

)
,

∇2
h =

∂2

∂x2
, ∇2 =

(
∂2

∂x2
+
∂2

∂z2

)
.

(22)
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Boundary Conditions. We assume that fluid is contained
between z = 0 and z = 1, where z = 0 corresponds to
boundary of solid iron core with Earth’s mushy layer and
z = 1 corresponds to boundary of Earth’s mushy layer with
Earth’s outer liquid core. For perfectly conducting boundary
with temperature, we have

θ = 0, Hz = 0 on z = 0, z = 1 ∀x, y. (23)

Also the normal component of the velocity would vanish on
z = 0, z = 1, that is,

w = 0 on z = 0, z = 1 ∀x, y. (24)

However, there are two more conditions to be imposed on
velocity depending on the nature of the surface. In this
paper we consider free-free boundary conditions, that is, on
surfaces the tangential stresses vanish, which is equivalent to

Pxz = μ
(
∂u

∂z
+
∂w

∂x

)
= 0,

Pyz = μ

(
∂v

∂z
+
∂w

∂y

)
= 0,

(25)

where μ = γρ0 is dynamic viscosity. Since w vanishes for x, y
on z = 0, z = 1, it follows that ∂u/∂z = ∂v/∂z = 0 on a free
surface z = 0, z = 1. Hence from equation of continuity we
have ∂2w/∂z2 = 0 on z = 0, z = 1 for all x, y. In this paper we
have considered only the idealized stress-free conditions on
the surface and vanishing of temperature fluctuations. Thus
w = D2w = D4w = 0 at z = 0, 1. w and its even derivatives
vanish at z = 0 and z = 1.

3. Linear Stability Analysis

We perform a linear stability analysis of the problem by sub-
stituting

w =W(z)eiqx+pt, (26)

into linearized version of (19) is Lw = 0, and obtaining an
equation[(

D2 − q2 − p
)(
MD2 −Mq2 − pφ

Pr2

Pr1

)(
D2 − q2)

×
{
Λ

M

(
D2 − q2)− 1

MDa
− p

M2φPr1

}]
W

=
[
−Rq

2

M

(
MD2 −Mq2 − pφ

Pr2

Pr1

)

+Q
(
D2 − q2)(D2 − q2 − p

)
D2

]
W.

(27)

We consider stress-free boundary conditions, then W =
D2W = 0 on z = 0, z = 1 for all x, y. Thus we can assume
W = sinπz.

Substituting W = sinπz and p = iω into (27), we get

R = M

q2

[
A1 + iω

(
A2ω2 + A3

)]
, (28)

A1 =K

[{
Mδ6

(
1
Da

+ Λδ2
)

+Mδ4

×
(
Qπ2 − ω2 Pr2

M2Pr2
1
− ω2

MφPr1
− ω2φ

Λ

M

Pr2

Pr1

)}

+ ω2 Pr2

Pr1

{
Pr2

Pr1

(
δ4φ2 Λ

M
− ω2

MφPr2
1

)

× δ4
(
Λφ +

1
MPr1

)
+Qπ2φ

+
δφ2Pr2

MDaPr1

}]
,

(29)

A2 =K

[
δ2
(

Pr2

Pr1

)2(
φ2 Λ

M
+

φ

M2Pr1

)
+

φ2Pr2
2

MDaPr2
1

]
, (30)

A3 =K

[
δ4

(
MΛ +

1
φPr1

)
+
Mδ2

Da
+Qπ2

(
M − φPr2

Pr1

)]
,

(31)

where K = δ2(M4δ4 + ω2φ2Pr2
2/Pr2

1)
−1

and δ2 = (π2 + q2),
from relation equation (30), A2 > 0.

3.1. Stationary Convection (ω = 0). Substituting ω = 0 in
(28), we get

Rs = δ2
s

q2
s

[
δ2
s

(
1
Da

+ δ2
sΛ
)

+Qπ2
]

, (32)

here Rs is the value of the Rayleigh number for stationary
convection. The minimum value of Rs is obtained for qs =
qsc. where

2Λ
(
q

π

)6

+
(

3Λ +
1

π2DDa

)(
q

π

)4

= Λ +
Q

π2
+

1
π2DDa

.

(33)

The wave number is identical to that for the single compo-
nent fluid, while the threshold for the onset of stationary
convection at pitchfork bifurcation is given by (34) with
qs = qsc,

Rsc = δ2
sc

q2
sc

[
δ2

sc

(
1
Da

+ δ2
scΛ
)

+Qπ2
]

, (34)

where δ2
sc = π2 + q2

sc. Thus the magnetic field inhibits the
onset of stationary convection.

3.2. Oscillatory Convection (ω2 > 0). For the oscillatory
convection (ω /= 0) and from (28), R will be complex. But the
physical meaning of R requires it to be real. The condition
that R is real implies that imaginary part of (28) is zero, that
is,

A2ω
2 + A3 = 0, (35)
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where A2 and A3 are given by (30) and (31). For oscillatory
convection ω2 = −A3/A2 > 0 since A2 > 0, for oscillatory
convection A3 < 0. For A3 = 0, (35) implies that ω = 0 is a

double zero corresponding to Takens-Bogdanov bifurcation
point. For oscillatory convection, we have

ω2 = −[δ4
o

(
MΛ + 1/φPr1

)
+Mδ2

o /Da +Qπ2
(
M − φPr2/Pr1

)]
[
δ2
o(Pr2/Pr1)2(φ2Λ/M + φ/M2Pr1

)
+ φ2Pr2

2/MDaPr2
1

] , (36)

where δ2
o = π2 + q2

o. A necessary condition for ω2 > 0 is

Pr2

Pr1
>

1
φ
. (37)

However, this is not sufficient condition and one must have
in addition

Q >
δ4
o

(
MΛ + 1/φPr1

)
+Mδ2

o /Da

π2
(
φPr2/Pr1 −M

) . (38)

At Takens-Bogdanov bifurcation point Ro(qo) = Rs(qs) =
Rc(qc), qo = qs = qc, and ω2 = 0 is a double zero at
Q = Qc(qc) where

Q = δ4
c

(
MΛ + 1/φPr1

)
+Mδ2

c /Da

π2
(
φPr2/Pr1 −M

) , q = qc. (39)

The Takens-Bogdanov bifurcation point occurs when the
neutral curves for Hopf and pitchfork bifurcation meet and
only a single wave number is present, namely, qo = qs = qc.
If qc > qsc then for all q < qc the first instability to set in is
an oscillatory convection. The asymptotic values of qc and qsc

for large Chandrasekhar number (Q → ∞) are

qc −→
[

(φPr2−MPr1)Qπ2

(MΛPr1 +1/φ)

]1/4

, qsc−→
(
Qπ4M

2Λ

)1/6

.

(40)

From the monotonic dependence of qc and qsc on Q, we
may conclude that for Pr2 > Pr1, there exists a Q(Pr1, Pr2,
M,Λ,φ,Da) such that for Q < Q(Pr1, Pr2,M,Λ, φ,Da) the
onset of first instability will be stationary convection at
pitchfork bifurcation while forQ > Q(Pr1, Pr2,M,Λ,φ,Da) it
will be oscillatory convection at Hopf bifurcation.Q(Pr1, Pr2,
M,Λ,φ,Da) and for Q = Q(Pr1, Pr2,M,Λ,φ,Da), we have

Rct = Roc
(
qoc
) = Rsc

(
qsc
)

but qoc /= qsc, (41)

above condition (41) gives codimension-two bifurcation
point. However, there is no simple formula to giveQ(Pr1, Pr2,
M,Λ,φ,Da) at the codimension-two bifurcation point by
assuming R as an independent variable, such kind of inter-
esting result is not available in Chandrasekhar [2]. In Figures
1 and 2, each solid line stands for stationary convection
(pitchfork bifurcation) and dotted line stands for oscillatory
convection (Hopf bifurcation). In Figures 1 and 2, we have
showed the effect of several physical parameters, like Q,
Pr1, Pr2, Λ, M, φ, and Da on the onset of both stationary

convection and oscillatory convection when a physical
parameter increases for the remaining fixed parameters, the
onset of instabilities increases, that is, the onset of stationary
convection and oscillatory convection inhibit when a param-
eter increases with the remaining fixed parameters.

4. Onset of Stationary Convection at
Supercritical Pitchfork Bifurcation

4.1. Derivation of Two-Dimensional Nonlinear Ginzburg-
Landau Equation Using Newell-Whitehead [19] Method. In
this section the evolution of a general pattern is developed by
means of a multiple scale analysis used by Newell and White-
head [19]. A small amplitude convection cell is imposed on
the basic flow. If this amplitude is of the size O(ε) then the
interaction of the cell with itself forces a second harmonic
and mean state correction of size O(ε2) and then in turn
drives an O(ε3) correction to the fundamental component
of the imposed roll. A solvability criteria for this correc-
tion yields the one-dimensional nonlinear Ginzburg-Landau
equation of the complex valued amplitude A(X ,Y ,T) of the
imposed disturbance with real coefficients. To simplify the
problem we assume the formulation of cylindrical rolls with
axis parallel to y-axis, so that y-dependence disappears from
(19). The z-dependence is contained entirely in the sine and
cosine functions, which ensures that stress-free boundary
conditions are satisfied. We use the expansion parameter ε
as

ε2 = R− Rsc

Rsc
. (42)

For the values of R close to threshold value Rsc that is, ε� 1,
the structure of the slow length scales will be insensitive to
ε, but a slow modulation in space and time is possible by
making use of the band of the unstable solutions and linear
growth rate is likely to saturate due to nonlinear effects. This
behavior can be analyzed by writing solutions of (9)–(12) in
power series ε as

f = ε f0 + ε2 f1 + ε3 f2 + · · · , (43)

where f = f (u, v,w, θ,Hx,Hy ,Hz) with the first approxima-
tion is given by the eigenvector of the linearized problem:

u0 = iπ

qsc

[
A(X ,Y ,T)eiqscx cosπz − c.c.

]
,

v0 = 0,
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Figure 1: Numerically calculated marginal stability curves are plotted in (R, q)-plane for Pr1 = 1, Pr2 = 1.5, Da = 1500, Λ = 0.85, φ = 0.9,
and M = 0.9, (a) Q = 104, (b) Q = 106, (c) Q = 108, and (d) Q = 1010, then the onset of stationary convection and the onset of oscillatory
convection increase (stationary convection represented by solid lines and oscillatory convection represented by dotted lines).

w0 = A(X ,Y ,T)eiqscx sinπz + c.c.,

θ0 = 1
Mδ2

sc

[
A(X ,Y ,T)eiqscx sinπz + c.c.

]
,

Hx0 =
−iπ2

Mqscδ2
sc

[
A(X ,Y ,T)eiqscx sinπz − c.c.

]
,

Hy0 = 0,

Hz0 =
π

Mδ2
sc

[
A(X ,Y ,T)eiqscx cosπz + c.c.

]
,

(44)

where δ2
sc = π2 +q2

sc, here C.C. stands for complex conjugate,
eiqscx sinπz is the critical mode for the linear problem at
R = Rsc and q = qsc. The complex amplitude A(X ,Y ,T)
depends on the slow variables X , Y , Z, and T to be scaled by
introducing multiple scales

X = εx, Y = ε1/2y,

Z = z, T = ε2t,
(45)

and these formally separate the fast and slow dependent vari-
ables in f . It should be noted that the difference in scaling in
the two directions reflects the inherent symmetry breaking
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Figure 2: Neutral curves for the stationary bifurcation (solid lines) and for the Hopf bifurcation (dashed lines) near the codimension two
point for Q = 2000, Da = 1500, Λ = 0.85, φ = 0.9, Pr1 = 1, and M = 0.9, (a) Pr2 = 1.27, (b) Pr2 = 1.3, (c) Pr2 = 1.35 x-axis wave number,
y-Rayleigh numbers Rs,Ro.

of instability which was chosen here with wave vector in x-
direction. The differential operators can be expressed as

∂

∂x
−→ ∂

∂x
+ ε

∂

∂X
,

∂

∂y
−→ ε1/2 ∂

∂Y
,

∂

∂z
−→ ∂

∂Z
,

∂

∂t
−→ ε2 ∂

∂T

(46)

with the assumption (46), the operators (20) and (21) are
transformed into a set of linear in homogeneous equations.
The solvability conditions for the latter yields the amplitude

equation using (44) in the linear operator (20) can be written
as

L = L0 + εL1 + ε2L2 + · · · , (47)

where

L0 = −Λ∇8 +
1
Da
∇6 +Q∇4 ∂

2

∂z2
+ Rsc∇2 ∂

2

∂x2
, (48)

L1 =
(

2
∂2

∂x∂X
+

∂2

∂Y 2

)

×
[

3
Da
∇4 − 4Λ∇6 + 2Q∇2 ∂

2

∂z2
+ Rsc∇2 + Rsc

∂2

∂x2

]
,

(49)
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L2 = ∂

∂T

[(
Λ +

1
MφPr1

+ φ
Λ

M

Pr2

Pr1

)
∇6

−
(

1
Da

+ φ
Pr2

Pr1

1
MDa

)
∇4 −Q∇2 ∂

2

∂z2

−Rsc

M
φ

Pr2

Pr1

∂2

∂x2

]
+

∂2

∂X2

×
[

3
Da
∇4 − 4Λ∇6 + 2Q∇2 ∂

2

∂z2
+ Rsc∇2 + Rsc

∂2

∂x2

]

+

(
4

∂4

∂x2∂X2
+

1
2
∂2

∂Y 2

)

×
[
−6Λ∇4 +

3
Da
∇2 +Q

∂2

∂z2
+ Rsc

]
.

(50)

Similarly nonlinear term N is given by

N = ε2N0 + ε3N1 + · · · , (51)

substituting (47), (51), and (43) into (19), we get by equating
the coefficients of ε, ε2, ε3;

L0w0 = 0, (52)

L0w1 + L1w0 = N0, (53)

L0w2 + L1w1 + L2w0 = N1. (54)

Equation (48) gives the critical Rayleigh number for the
onset of stationary convection

Rsc = δ2
sc

q2
sc

[
δ4

scΛ +
1
Da

δ2
sc +Qπ2

]
. (55)

In (53), N0 = 0, L1w0 = 0 and hence w1 = 0. From equation
of continuity we find that u1 = 0. The relevant equations for
θ1 and Hz1 are

(
∂

∂t
−∇2

)
θ1 = w1

M
− 1
M

[
u0
∂θ0

∂x
+w0

∂θ0

∂z

]
, (56)

form (56) and (44), we get

θ1 = − 1
2πM2δ2

sc
|A|2 sin 2πz. (57)

Equation (12) gives relevant equation for Hz1 as

(
φ

Pr2

Pr1
−M∇2

)
Hz1 =

∂w1

∂z
+

Pr2

Pr1

∂

∂x

[
w0Hx0 − u0Hz0

]
.

(58)

From (58) and (44), we get

Hz1 =
Pr2

Pr1
· π2

4δ2
scq2

sc

[
A2e2iqscx + c.c.

]
. (59)

Similarly we have Hx1 = 0, Hy1 = 0. The solvability criterion
of (54) gives the amplitude equation which can be written as

λ0
∂A

∂T
− λ1

(
∂

∂X
− i

2qsc

∂2

∂Y 2

)2

− λ2A + λ3|A|2A = 0,

(60)

where

λ0 =
(
Λ +

1
MφPr1

+ φ
Pr2

Pr1

Λ

M

)
δ6

sc +
(

1
Da

+ φ
Pr2

Pr1

1
MDa

)
δ4

sc

+Qπ2δ2
sc −

Rsc

M

Pr2

Pr1
q2

scφ,

λ1 = 4q2
sc

[
6Λδ4

sc +
3
Da

δ2
sc +Qπ2 − Rsc

]
,

λ2 = Rscq
2
scδ

2
sc,

λ3 = Q
Pr2

2

Pr2
1

π4

M2q2
sc

(
q2

sc − π2) +
Rsc

2M2
q2

sc.

(61)

Equation (60) is two-dimensional, nonlinear time-depend-
ent Ginzburg-Landau equation describing the effect of mag-
neticfield in a sparsely packed porous medium near the
onset of stationary convection at supercritical pitchfork
bifurcation. Here λ0 is always positive for Pr2/Pr1 < 1/φ and
for any Q but if Pr2/Pr1 > 1/φ then λ0 is positive only if
Q < Qc. Thus for supercritical pitchfork bifurcation λ0 is
always positive. For Pr2/Pr1 > 1/φ, λ0 decreases asQ increases
and becomes zero at Q = Qc. λ1 and λ2 are always positive.
λ3 is positive only if

Q <
Rscq4

sc

2π4
(
π2 − q2

sc

) · Pr2
1

Pr2
2
. (62)

The pitchfork bifurcation is supercritical if λ3 > 0 and
subcritical if λ3 < 0. At λ3 = 0, we get tricritical bifurcation
point [22] (see Figure 3). Dropping the time dependence
from (60), we get

d2A

dX2
+
λ2

λ1

(
1− λ3

λ2
|A|2

)
A = 0, (63)

since λ1 > 0, the solution of (63) is given by

A(X) = A0 tanh
(
X

Λ1

)
, (64)

where

A0 =
(
λ2

λ3

)1/2

, Λ1 =
(

2λ1

λ2

)1/2

. (65)

4.2. Long Wavelength Instabilities (Secondary Instabilities).
The secondary Instabilities arising in nonequilibrium sys-
tems do not exhibit strict symmetries but may show spa-
tially slow deformations of the cellular structures. Further,
there are secondary instabilities like Eckhaus and Zigzag
instabilities, such phenomena are studied using evolution
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Figure 3: Above figure is plotted for Da = 1500, Λ = 0.85, φ =
0.9, M = 0.9, and Pr2 = 1. λ3 is the nonlinear coefficient of
Ginzburg-Landau equation at the onset of stationary convection.
The pitchfork bifurcation is supercritical if λ3 > 0, subcritical if
λ3 < 0 and λ3 = 0 on the curve.

equations for amplitudes which are slowly varying in time
as well as in space. These envelope equations can be derived
by the method of Newell and Whitehead [19]. The two-
dimensional Ginzburg-Landau equation (60), can be written
in fast variables x, y, t, and A(X ,Y ,T) = A(x, y, t)/ε, as

λ0
∂A

∂t
− λ1

(
∂

∂x
− i

2qsc

∂2

∂y2

)2

A− ε2λ2A + λ3|A|2A = 0.

(66)

In order to study the properties of a structure with a given
phase winding number δk, we substitute

A
(
x, y, t

) = A1
(
x, y, t

)
eiδkx, (67)

into (66) and we obtain

λ0
∂A1

∂t
=
(
ε2λ2 − λ1(δk)2

)
A1

+ 2iλ1δk

(
∂

∂x
− i

2qsc

∂2

∂y2

)
A1

+ λ1

(
∂

∂x
− i

2qsc

∂2

∂y2

)2

A1 − λ3|A1|2A1 = 0.

(68)

The steady-state uniform solution of (68) is

A1 = A1o =
[(
ε2λ2 − λ1(δk)2

)
λ−1

3

]1/2
. (69)

Let ũ(x, y, t) + iṽ(x, y, t) be an infinitesimal perturbation
from a uniform steady-state solution A1o given by (69). Now
substituting

A1 = A1o =
[(
ε2λ2 − λ1(δk)2

)
λ−1

3

]1/2
+ ũ + iṽ, (70)

into (68) and equating real and imaginary parts, we obtain

λ0
∂ũ

∂t
=
[
− 2

(
ε2λ2 − λ1(δk)

)2

+λ1

(
∂2

∂x2
+
δk

qsc

∂2

∂y2
− 1

4q2
sc

∂4

∂y4

)]
ũ

−
(

2λ1δk − λ1

qsc

∂2

∂y2

)
∂ṽ

∂x
,

λ0
∂ṽ

∂t
=
(

2λ1δk − λ1

qsc

∂2

∂y2

)
∂ũ

∂x

+ λ1

(
∂2

∂x2
+
δk

qsc

∂2

∂y2
− 1

4q2
sc

∂4

∂y4

)
ṽ.

(71)

We analyze (71) by using normal modes of the form

ũ = UeSt cos
(
qxx
)

cos
(
qy y

)
,

ṽ = VeSt sin
(
qxx
)

cos
(
qy y

)
.

(72)

Putting (72) in (71) we get,[
λ0S + 2

(
ε2λ2 − λ1(δk)2

)
+ χ1

]
U + λ1qxχ2V = 0,

λ1qxχ2U +
(
λ0S + χ1

)
V = 0.

(73)

Here χ1 = λ1[q2
x + (q2

yδk)/qsc + q4
y/4q

2
sc], χ2 = (2δk + q2

y/qsc).
On solving (73) we get,

λ2
0S

2 + 2S
[

2λ0

(
ε2λ2 − λ1(δk)2

)
+ λ0χ1

]

+
[

2
(
ε2λ2 − λ1(δk)2

)
+ χ1

]
ψ1 − q2

xλ1χ2 = 0,
(74)

whose roots (S±) are real. Here (S±) is defined as

(S±) = − 1
λ2

0

{(
2λ0

(
ε2λ2 − λ1(δk)2

)
+ λ0χ1

)

±
(

2λ0

(
ε2λ2 − λ1(δk)2

)2
+ λ2

1q
2
xχ

2
2

)1/2
}
.

(75)

Solution S(−) is clearly negative, thus the corresponding
mode is stable and if S(+) is positive then rolls can be
unstable. Symmetry considerations help us to restrict the
study of S(+) to a domain qx ≥ 0, qy ≥ 0.

4.2.1. Longitudinal Perturbations and Eckhaus Instability. In-
serting qy = 0 into (75), we get

λ2
0S

2 + 2S
[

2λ0

(
ε2λ2 − λ1(δk)2

)
+ λ0λ1q

2
x

]

+ λ1q
2
x

[
2
(
ε2λ2 − 3λ1(δk)2

)
+ q2

x

]
= 0,

(76)
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since the roots are real and their sum always negative, the
pattern is stable as long as both roots are negative, that is,
their product is positive. The cell pattern becomes unstable
when the product is negative, that is, when

q2
x ≤ 2

(
3λ1δk

2 − ε2λ2
)
, (77)

for this requires |δk| ≥ √
(ε2λ2/3λ1), this condition defines

the domain of Eckhaus instability. The above condition
implies that the most unstable wave vector tends to zero,
when |δk| → √

(ε2λ2/3λ1).

4.2.2. Transverse Perturbations and Zigzag Instability. Let us
consider qx = 0 into (75), we get

λ2
0S

2 + 2S
[

2λ0

(
ε2λ2 − λ1(δk)2

)
+ λ0χ

y
1

]

+
[

2
(
ε2λ2 − λ1(δk)2

)
+ χ

y
1

]
χ
y
1 = 0,

(78)

where χ
y
1 = λ1(q2

yδk/qsc + q4
y/4q

2
sc). The two eigenmodes are

uncoupled and we have S(−),

S(−) = −2
(
ε2λ2 − λ1(δk)2

)
− λ1

qsc
δkq2

y −
λ1

4q2
sc
q2
y < 0,

(79)

for one of them. The other is amplified when

S(+) = −λ1q
2
y

(
δk +

q2
y

4qsc

)
> 0. (80)

This implies that δk < 0, the above condition defines the
domain of the Zigzag Instability. When δk → 0 from below
the wave vector qy of the instability also tends to zero
while the growth rate varies as q2

y . We have studied the
effect of magnetic field on long wavelength instabilities. We
have observed that Eckhaus instability and Zigzag instability
regions increases when Q increases (see Figure 4).

4.3. Heat Transport by Convection. The maximum of steady
amplitude A is denoted by |Amax| which is given as

|Amax| =
(
ε2λ2

λ3

)1/2

. (81)

Equation (81) is obtained from (64) with tanh(X/Λ1) = 1.
We use |Amax| to calculate Nusselt number Nu. To discuss the
heat transfer near the neutral region, we express it through
the Nusselt number is defined as Nu = Hd/κΔT , which is
the ratio of the heat transported across any layer to the heat
which would be transported by conduction alone. Here H is
the rate of heat transfer per unit area and is defined as

H = −
〈
∂Ttotal

∂z′

�
z′=0

. (82)

In (82), angular brackets correspond to a horizontal average.
The Nusselt number Nu can be calculated in terms of
amplitude A and is given as

Nu = 1 +
ε2

δ2
sc
|Amax|2. (83)

12

24

36

−6 −3 0 3 6

δqs

λ2/λ1

SZ

EE

Figure 4: Numerically computed secondary instability regions of
Eckhaus instability (E), Zigzag instability (Z), and stable regions (S)
are plotted in (λ2/λ1, δqs)-plane forQ = 2000,Da = 1500, Λ = 0.85,
φ = 0.9, M = 0.9, Pr1 = 1, and Pr2 = 2. As |δqs| increases then the
secondary instability regions increases.

From (83), we get conduction for R ≤ Rsc and convection
for R > Rsc. Since the amplitude equation is valid for λ3 >
0, which is possible for R > Rsc (supercritical pitchfork
bifurcation), thus we get Nu > 1 for R > Rsc. We get
convection for Nu > 1 and conduction for Nu ≤ 1. In
stationary convection Nu increases implies that heat con-
ducted by steady mode increases. In the problem of double
diffusive convection in porous medium with magnetic field,
Nu depends on Pr1, Pr2, Λ, M, φ, Da, and Q. We have
computed Nu for different values of Q, for some fixed values
of other parameters and observed that Nu increases as Q
decreases (see Figures 5(a) and 5(b)). This implies that
magnetic field inhibits the heat transport. The parameters
Pr1, Pr2, Λ, M, φ, and Da show the same result as Q shows
on Nu.

5. Oscillatory Convection at
the Supercritical Hopf Bifurcation

The existence of a threshold (critical value of Rayleigh
number for the onset of oscillatory convection R = Roc) and
a cellular structure (critical wave number q = qoc) are main
characteristics of the oscillatory convection. In this section
we treat the region near the onset of oscillatory convection.
Here the axis of cylindrical rolls is taken as y-axis, so that
y-dependence disappears from equation Lw = N . The z-
dependence contained entirely in sine and cosine functions
which ensure that the free-free boundary conditions are
satisfied. The purpose of this section is to derive coupled one-
dimensional nonlinear time-dependent Ginzburg-Landau
type equations near the onset of oscillatory convection at
supercritical Hopf bifurcation. We introduce ε as

ε2 = Ro − Roc

Roc
� 1. (84)
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Figure 5: Graph (a) is plotted for Q = 1000 and graph (b) is plotted for Q = 3000 for the fixed values of Da = 1500, Λ = 0.85, φ = 0.9,
Pr2 = 1, Pr1 = 2, and M = 0.9. in (Nu,R/Rsc)-plane. In graphs (a) and (b), as R/Rsc increases then Nu increases.

We assume that

w0 =
[
A1Le

i(qocx+ωoct) + A1Re
i(qocx−ωoct) + c.c.

]
sinπz (85)

is a solution to linearized equation Lw = 0, which satisfies
free-free boundary conditions. Here A1L denotes the ampli-
tude of left travelling wave of the roll and A1R denotes the
amplitude of right travelling wave of the roll, which depends
on slow space and time variables [23]

X = εx, τ = εt, T = ε2t, (86)

and assume that A1L = A1L(X , τ,T), A1R = A1R(X , τ,T). The
differential operators can be expressed as

∂

∂x
−→ ∂

∂x
+ ε

∂

∂X
,

∂

∂t
−→ ∂

∂t
+ ε

∂

∂τ
+ ε2 ∂

∂T
. (87)

The solution of basic equations can be sought as power series
in ε,

f = ε f0 + ε2 f1 + ε3 f2 + · · · , (88)

where f = f (u, v,w, θ,Hx,Hy ,Hz) with the first approxima-
tion given by eigenvector of the linearized problem:

u0 = iπ

qoc

[
A1Le

i(qocx+ωoct) + A1Re
i(qocx−ωoct) − c.c.

]
cosπz,

v0 = 0,

Hy0 = 0,

θ0 = 1
M

[
1
e1
A1Le

i(qocx+ωoct) +
1
e∗1
A1Re

i(qocx−ωoct) + c.c.

]

× sinπz,

Hx0 =
−iπ2

qoc

[
1
e2
A1Le

i(qocx+ωoct) +
1
e∗2
A1Re

i(qocx−ωoct) − c.c.

]

× sinπz,

Hz0 = π

[
1
e2
A1Le

i(qocx+ωoct) +
1
e∗2
A1Re

i(qocx−ωoct) + c.c.

]

× cosπz.

(89)

where δ2
oc = (π2 + q2

oc), e1 = (δ2
oc + iωoc), and e2 = (Mδ2

oc +
iωocφPr2/Pr1), here e∗1 and e∗2 are complex conjugate of e1

and e2.
We expand the linear operator L and nonlinear term N

as the following power series

L = L0 + εL1 + ε2L2 + · · · ,

N = ε2N0 + ε3N1 + · · · ,
(90)

substituting (87) and (88) into Lw = N , for each order of ε,
we get

L0w0 = 0, (91)

L0w1 + L1w0 = N0, (92)

L0w2 + L1w1 + L2w0 = N1. (93)
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Here

L0 =
(
DφDPr1 −Q

∂2

∂z2

)
D∇2 − R

M

∂2

∂x2
Dφ,

L1 = ∂

∂τ
F1 + 2

∂2

∂xX
F2,

L2 = ∂F1

∂T
+

∂4

∂x2X2

[(
M∇2 −

(
Dφ +MD

))
DPr1

+ ΛD∇2 − Λ

M
DDφ +

Λ

M
Dφ∇2

+Q
∂2

∂z2
+ R

]
+
∂2F2

∂X2
+ 2

∂2

∂xX

∂

∂τ

×
[
DφDPr1 −

(
M + φ

Pr2

Pr1

)
DPr1∇2

−
(
φ

Pr2

Pr1

Λ

M
+

1
MφPr1

)
D∇2 +

1
M2φPr1

DDφ

+ φ
Pr2

Pr1
DDPr1 −

(
Λ

M
+

1
M2φPr1

)
Dφ∇2

−Q ∂2

∂z2
− φRPr2

MPr1

]

+
∂2

∂τ2

[
φ

Pr2

Pr1
DPr1∇2 +

Pr2

M2Pr2
1
D∇2

+
1

M2φPr1
Dφ∇2 − R

M
∇2
hDφ

]
,

(94)

where

F1 =
(
DφDPr1 + φ

Pr2

Pr1
DDPr1 +

1
M2φPr1

DDφ

)
∇2

−Q∇2 ∂
2

∂z2
− φRPr2

MPr1
∇2
h,

F2 =
(
DDφ −Dφ∇2 −MD∇2

)
DPr1 −

Λ

M
DDφ∇2

+Q∇2 ∂
2

∂z2
−QD

∂2

∂z2
− R

M
Dφ + R∇2

h.

(95)

Equation (91) is linear problem. We get critical Rayleigh
number for the onset of oscillatory convection by using the
zeroth-order solution w0 in (91). At O(ε2), N0 = 0 and
L1w0 = 0 gives

∂A1L

∂τ
− vg ∂A1L

∂X
= 0,

∂A1R

∂τ
− vg ∂A1R

∂X
= 0, (96)

where vg = (∂ω/∂q)q=qoc
is the group velocity and is real.

Hence from (92), we getw1 = 0. From equation of continuity

we find that u1 = 0. Substituting the zeroth-order and first-
order approximation into (56) and (58) we get,

θ1 = −π
M2

[(
|A1L|2 + |A1R|2

)
t1 +

2
e1e4

J1 +
2

e∗1 e
∗
4
J∗1

]
sin 2πz,

v1 = 0,

Hy1 = 0,

Hx1 =
iπ

2Mqoc

Pr2

Pr1

[(
1
e2
− 1
e∗2

)(
|A1L|2 − |A1R|2

)]
sin 2πz,

Hz1 = 2π2 Pr2

Pr1

[
1
e2e5

A2
1Le

2i(qocx+ωoct) +
1

e∗2 e
∗
5
A2

1Re
2i(qocx−ωoct)

+
1

4Mq2
oc

(
1
e2

+
1
e∗2

)
A1LA1Re

2iqocx + c.c.

]
,

(97)

where t1 = (1/4π2)(1/e1 + 1/e∗1 ), J1 = A1LA
∗
1Re

2iωoct, e4 =
(4π2 + 2iωoc), and e5 = (4Mq2

oc + 2iφωocPr2/Pr1) and e∗4 , e∗5
and J∗1 are complex conjugate of e4, e5 and J1, respectively.

Equation (93) is solvable when L0w0 = 0, one requires
that its right-hand side be orthogonal tow0, which is ensured
that if the coefficients of sinπz in N1−L2w0 are equal to zero.
This implies that

Λ0
∂A1L

∂T
+ Λ1

(
∂

∂τ
− vg ∂

∂X

)
A2L −Λ2

∂2A1L

∂X2
−Λ3A1L

+ Λ4|A1L|2A1L + Λ5|A1R|2A1L = 0,

Λ0
∂A1R

∂T
+ Λ1

(
∂

∂τ
− vg ∂

∂X

)
A2R −Λ2

∂2A1R

∂X2
−Λ3A1R

+ Λ4|A1R|2A1R + Λ5|A1L|2A1R = 0,
(98)

where

Λ0 =
(

1
M2φPr1

e1e2 + e2e3 + φ
Pr2

Pr1
e1e3 +Qπ2

)
δ2

oc

− Rocq2
ocφPr2

MPr1
,

Λ1 = δ2
oc

[
e3φ

Pr2

Pr1
+

e1Pr2

M2Pr2
1

+
e2

M2φPr1

]
,

Λ2 = 4q2
oc

[
e2e3 +Me3δ

2
oc + Λe1δ

2
oc +

Λ

M
e1e2

+Me1e3 +
Λ

M
e2δ

2
oc +Qπ2 − R

]
,
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Λ3 = R

M
q2

oce2,

Λ4 = −Qπ
4

M

Pr2
2

Pr2
1
e1

(
1
e2
− 1
e∗2

)

− 2Qπ4 Pr2
2

Pr2
1

e1

e5

(
1
δ2

oc
+
π2 − 3q2

oc

e∗2

)
+

R

M3
π2q2

oct1e2,

Λ5 = Q
π4

M

Pr2
2

Pr2
1
e1

(
1
e2
− 1
e∗2

)

− Qπ4

Mq2
oc

Pr2
2

Pr2
1
e1
(
π2 − q2

oc

)( 1
e2

+
1
e∗2

)

+
R

M3
π2q2

oce2

(
t1 +

2
e1e4

)
.

(99)

Here e3 = (iω/M2φPr+(Λ/M)δ2+1/MDa). It should be noted
that A1L and A1R are of order ε and A2L and A2R are of order
ε2. If ωoc = 0 in Λ0, Λ2, Λ3, and Λ4 then these expressions
match with the coefficients λ0, λ1, λ2, and λ3 of Ginzburg-
Landau equation at the onset of stationary convection. From
(96), we get A1L(ξ′,T) and A1R(η′,T), where ξ′ = vgτ +
X , η′ = vgτ − X . Equations (98) can be written as

2vgΛ1
∂A2L

∂η′
= −Λ0

∂A1L

∂T
+ Λ2

∂A1L

∂X2
+ λ3A1L

−
(
Λ4|A1L|2 + Λ5|A1R|2

)
A1L,

(100)

2vgΛ1
∂A2R

∂η′
= −Λ0

∂A1R

∂T
+ Λ2

∂A1R

∂X2
+ λ3A1R

−
(
Λ4|A1R|2 + Λ5|A1L|2

)
A1R.

(101)

Let ξ′ε[0, l1], η′ε[0, l2] where l1, l2 are periods of A1L,
A1R, respectively. Expansion (88) remains asymptotic for
times t = O(ε−2) only if an appropriate solvability condition
holds. This condition obtained integrating (100) over η′ and
(101) over ξ′, we get

Λ0
∂A1L

∂T
= Λ2

∂A1L

∂X2
+ λ3A1L

−
(
Λ4|A1L|2 + Λ5|A1R|2

)
A1L,

(102)

Λ0
∂A1R

∂T
= Λ2

∂A1R

∂X2
+ λ3A1R

−
(
Λ4|A1R|2 + Λ5|A1L|2

)
A1R.

(103)

5.1. Travelling Wave and Standing Wave Convection. To study
the stability regions of travelling waves and standing waves,
Coullet et al. [24]. we proceed as follows.

On dropping slow variable X from (102) and (103), we
get a pair of first ODE’s

dA1L

dT
= Λ3

Λ0
A1L − Λ4

Λ0
A1L|A1L|2 − Λ5

Λ0
A1L|A1R|2, (104)

dA1R

dT
= Λ3

Λ0
A1R − Λ4

Λ0
A1R|A1R|2 − Λ5

Λ0
A1R|A1L|2. (105)

Put

β′ = Λ3

Λ0
, γ′ = −Λ4

Λ0
, δ′ = −Λ5

Λ0
. (106)

Then (104) and (105) take the following form

dA1L

dT
= β′A1L + γ′A1L|A1L|2 + δ′A1L|A1R|2, (107)

dA1R

dT
= β′A1R + γ′A1R|A1R|2 + δ′A1R|A1L|2. (108)

Consider A1L = aLeiφL and A1R = aLeiφR (we can write a
complex number in the amplitude and phase form), where
aL = |A1L|, φL = arg(A1L) = tan−1(Im(A1L)/Re(A1L)) and
aR = |A1R|, φR = arg(A1R) = tan−1(Im(A1R)/Re(A1R)), here
aL, aR, φL, and φR are functions of time T since A1L and A1R

are functions of T . Thus aL and aR are positive functions.
Substituting the definitions of A1L and A1R and β′ = β1 + iβ2,
γ′ = γ1 + iγ2, δ′ = δ1 + iδ2 into (107) and (108) we get,

daL
dT

= β1aL + γ1aL|aL|2 + δ1aL|aR|2, (109)

dφL
dT

= β2 + γ2|aL|2 + δ2|aR|2, (110)

daR
dT

= β1aR + γ1aR|aR|2 + δ1aR|aL|2, (111)

dφR
dT

= β2 + γ2|aR|2 + δ2|aL|2. (112)

Equations (109) and (111) not contain phase term, so we take
these two equations for the future discussions. We have (109)
and (111) as

daL
dT

= β1aL + γ1a
3
L + δ1a

2
R,

daR
dT

= β1aR + γ1a
3
R + δ1a

2
L,

(113)

since aL and aR are positive functions. Put

daL
dT

= F1(aL, aR),
daR
dT

= F2(aL, aR). (114)

Now we discuss the stability of equilibrium points of (114).
We get four equilibrium points like (aL, aR) = (0, 0) (conduc-
tion state), (aL, aR) = (aL, 0) (aL = amplitude of left travel-
ling waves, here we get F2 = 0, and we get one condition
from F1 = 0 i.e., a2

L = −β1/γ1 (= |A1L|2)), (aL, aR) = (0,
aR) (aR = amplitude of right travelling waves, here we
get F1 = 0, and we get one condition from F2 = 0 i.e.,
a2
R = −β1/γ1 (= |A1R|2)), and for aL /= 0 and aR /= 0 we get

(aL, aR) = (−β1/(γ1 +δ1),−β1/(γ1 +δ1)) (this gives condition
for standing waves. At standing waves we have AL = AR, so
aL = aR). For the pair of (104) and (105), we do not get
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aL /= aR /= 0 (modulated waves). Now the Jacobian of F1 and
F2 is given by ⎛

⎜⎜⎜⎜⎝
∂F1

∂aL

∂F1

∂aR

∂F2

∂aL

∂F2

∂aR

⎞
⎟⎟⎟⎟⎠. (115)

If real parts of all eigenvalues of the Jacobian are
negative at an equilibrium point, then that point is a stable
equilibrium (Lyapunov’s theorem or principle of linearized
stability). Some valuable conditions for travelling waves and
standing waves are travelling waves are stable if β1 > 0, γ1 < 0
and δ1 < γ1 < 0. Standing waves are stable if β1 > 0, γ1 < 0
and (i) if δ1 > 0, then −γ1 > δ1 > 0 and (ii) if δ1 < 0, then
−γ1 > −δ1 > 0.

The stability regions of travelling waves and standing
waves are summarized in Figure 6. Here E is total amplitude
and defined as E = a2

L + a2
R. We do not distinguish between

left travelling waves and right travelling waves. For rest state
(steady state) E = 0, for travelling waves E = −β1/γ1, for
standing waves E = −2β1/(γ1 + σ1). Travelling waves are
supercritical if γ1 < 0 and standing waves are supercritical
if γ1 + σ1 < 0. Figure 6(a) is drawn for stable travelling wave
conditions and Figure 6(b) is drawn for stable standing wave
conditions in (β1,E)-plane. The symbols (−,−) and (+, +)
in Figures 6(a) and 6(b) indicate that both roots of Jacobian
are negative and at least one root is positive between two
roots. In Figures 6(a) and 6(b), travelling wave solution and
standing wave solution bifurcate simultaneously from the
steady-state solution (β1 ≥ 0 at this bifurcation point).

In these Figures 6(a) and 6(b), steady-state solution is
stable for β1 < 0 and unstable β1 > 0. These figures
show that for β1 > 0 both travelling waves and standing
waves are supercritical. When travelling waves and standing
waves bifurcate supercritically then at most one solution
among travelling waves and standing waves will be stable.
Thus, for β1 > 0 (Figure 6(a)) travelling waves are stable
and (Figure 6(b)) standing waves are stable. In more detail
we reproduce results of the stability analysis of equilibrium
solutions in Figure 6(c), which is plotted in (γ1, σ1)-plane.
From this figure we can observe that travelling waves are
subcritical for γ1 > 0 and standing waves are subcritical for
γ1 + σ1 > 0. In Figure 7, We study the stability regions of
travelling waves and standing waves at the onset of Hopf
bifurcation. The stability regions of standing waves and
travelling waves increases when Pr2/Pr1 increases for fixed
parameters. For a fixed Pr1 if we get initially travelling waves
at the onset of oscillatory convection then they are replaced
by standing waves as Q increases.

5.2. Long Wavelength Instabilities for the Onset of Travelling
Wave Convection (Benjamin-Feir Instability). For right trav-
elling wave AR(X ,T) = A(X ,T) and AL(X ,T) = 0, for left
travelling wave AR(X ,T) = 0 and AL(X ,T) = A(X ,T). Thus
for travelling waves we get a single amplitude equation from
(102) and (103), given as

Λ0
∂A

∂T
−Λ2

∂2A

∂X2
−Λ3A + Λ4|A|2A = 0. (116)

For standing waves A1L(X ,T) = A1R(X ,T) = A(X ,T) and
we get a single amplitude equation from (102) and (103),
given as

Λ0
∂A

∂T
−Λ2

∂2

∂X2
A−Λ3A + (Λ4 + Λ5)|A|2A = 0. (117)

Equation (117) possesses a family of planar wave solutions
and solutions containing phase singular points, which
describes weakly nonlinear wave phenomena [25]. We study
the Benjamin-Feir instability of travelling waves from com-
plex Ginzburg- Landau equation (116) can be written as

∂A

∂T
= ξ

∂2A

∂X2
+ βA + γ|A|2A, (118)

where ξ = ξ1 + iξ2, β = β1 + iβ2, γ = γ1 + iγ2. The
phase winding solutions are obtained by substituting A =
Ãoei(δqoX−δωT) into (118), and equating real and imaginary
parts we get

∣∣∣Ão∣∣∣2 = ξ1δq
2
o − β1γ

−1
1 ,

δω = ξ2δq
2
o − β2 + γ2

(
β1 − ξ1δq

2
o

)
γ−1

1 .
(119)

Here Ão is constant and δqo = qX − qoc. We consider a mod-
ulated solution in the form: A(X ,T) = Ã(X ,T)ei(δqoX−δωT).
Substituting the modulated into (118) which gives

∂Ã

∂T
= (γ1 + iγ2

)[(β1 − δq2
oξ1
)

γ1
+
∣∣∣Ã∣∣∣2

]
Ã

+
(
γ1 + iγ2

)( ∂2

∂X2
+ 2iδqo

∂

∂X

)
Ã.

(120)

It is possible to conduct a general investigation of the
linear stability of A(X ,T), but this is very difficult task, and
therefore our primary concern here is to treat the stability of
the uniformly oscillating solution Ão. Inserting Ã = Ão + ũ +
iṽ into (120) and equating real and imaginary parts we get

∂ũ

∂T
= −2

(
β1 − δq2

oξ1
)
ũ + ξ1

(
∂2ũ

∂X2
− 2δqo

∂ṽ

∂X

)

− ξ2

(
2δqo

∂ũ

∂X
+

∂ṽ

∂X2

)
,

(121)

∂ṽ

∂T
= −2γ2

(
β1 − δq2

oξ1
)

γ1
ũ + ξ1

(
2δqo

∂ũ

∂X
+
∂2ṽ

∂X2

)

+ ξ2

(
∂2ũ

∂X2
− 2δqo

∂ṽ

∂X

)
.

(122)

Consider (ũ, ṽ) = (U ,V)eST cos qXX and S in the growth rate
of disturbances. Using solutions of ũ, ṽ, and δqo = 0 into
(121) and (122) we get,

(
S + 2β1 + ξ1q

2
X

)
U − q2

Xξ2V = 0, (123)

(
S + q2

Xξ1
)
V +

(
2β1γ2γ

−1
1 + q2

Xξ2
)
U = 0, (124)
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Figure 6: (a, b, c) are typical diagrams showing the stability of equilibrium solutions SS (steady state), SW (standing waves), and TW
(travelling waves). On solid lines equilibrium solutions are stable and on dotted lines they are unstable.

solving (123) and (124), we get

S2 + 2S
(
β1 + ξ1q

2
X

)
+ q2

Xξ1
(
2β1 + ξ1q

2
X

)
+ q2

Xξ2
(
2β1γ2γ

−1
1 + q2

Xξ2
)
.

(125)

There will be an instability only when a root of (125) is
possible, that is,

2β1
(
ξ1 + γ2ξ2γ

−1
1

)
+ q2

X

(
ξ2

1 + ξ2
2

)
< 0, (126)

β1 > 0 when travelling waves or standing waves are stable.
The instability of waves against long wavelength longitudinal
modes is often called the Benjamin-Feir instability. Thus
we get Benjamin-Feir instability for travelling waves when
ξ1 + γ2ξ2/γ1 < 0. Similarly by considering (118) instead of
(117) and proceeding in the same way we get Benjamin-Feir
instability for standing waves when ξ1 +(γ2 +δ2)ξ2/(γ1 +δ1) <
0.

6. Conclusions

In this paper we have considered both linear and weakly
nonlinear analysis of magnetoconvection in a sparsely packed

porous medium in Earth’s outer core by using free-free
(stress-free) boundary conditions. Even though free-free
boundary conditions cannot be achieved in laboratory, one
can use it in geophysical fluid dynamic applications to Earth’s
outer core since they allow simple trigonometric eigenfunc-
tions. Our goal is to identify the region of parameter values,
for which rolls emerge at the onset of convection.

Following Chandrasekhar [2], we have described the
stationary convection and oscillatory convection as curves
Rs(q) and Ro(q, Pr2) versus wave numbers. The critical
wave numbers for stationary convection and oscillatory
convection are qsc = qoc = π/

√
2. For the problem of mag-

netoconvection in a sparsely packed porous medium, we
get Takens-Bogdanov bifurcation point and codimension-
two bifurcation point. In the case of linear theory both
marginal and overstable motions are discussed. In Figures 1
and 2, is shown that the effect of Chandrasekhar number
and porous parameter is to make the system more stable.
By drawing stability boundaries in the Rayleigh number
plane it is shown that the effect of magnetic field and
porous parameter is to decrease the region of stabilities.
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Figure 7: Figures (a–d), are plotted for Pr2/Pr1 = 6, 12, 18, and 24, respectively, and for fixed parameters Da = 1500, Λ = 0.85, φ = 0.9, and
M = 0.9. Stability regions of steady state (SS), travelling waves (TW), and standing waves (SW) are plotted (Q, Pr1)-plane.

In the nonlinear equation (60), λ0 = 0 gives the Takens-
Bogdanov bifurcation point at qs = qsc and when λ0 = 0,
(60) is not valid. The pitchfork bifurcation is supercritical
if λ3 > 0 subcritical if λ3 < 0. and we get tricritical point
if λ3 = 0. We have obtained from (60), long wave length
instabilities, namely, Eckhaus and Zigzag instabilities. From
(60) which is valid only for λ3 > 0, we have calculated Nusselt
number Nu and studied heat transport by convection. We
have also derived two one-dimensional nonlinear coupled
Ginzburg-Landau type equations, namely, (98) at the onset
of oscillatory convection at supercritical Hopf bifurcation.
We have computed stability regions of SW and TW at both
Hopf bifurcation. The conditions for SW and TW are AL =
AR and AL = 0 or AR = 0, respectively. TW exist if |AL|2 =
−β1/γ1 > 0 and they are supercritical if γ1 < 0. SW exist if

|AL|2 = |AR|2 = −β1/(γ1 + δ1) > 0 and SW are supercritical
if γ1 + δ1 < 0. When both SW and TW are supercritical
then at most one equilibrium solution is stable. At Takens-
Bogdanov bifurcation point we get both TW and SW. By
deriving one-dimensional Ginzburg-Landau equations with
complex coefficients, namely, (116) and (117), we have
shown the existence of Benjamin-Feir-type of instability for
both TW and SW. Near the Takens-Bogdanov bifurcation
point the conducting state becomes unstable against both
stationary and oscillatory mode, that is, the real parts of two
eigenvalues pass through zero simultaneously. This violates
the assumption made for deriving amplitude equations (60)
and (98). Instead a new equation, which is second order in
time, has to be used near the Takens-Bogdanov bifurcation
point.

 1470, 2011, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2011/207123 by N

ational Institute O
f, W

iley O
nline L

ibrary on [28/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



International Journal of Geophysics 17

References

[1] P. H. Roberts, D. E. Loper, and M. F. Roberts, “Convective in-
stability of a mushy layer - I: uniform permeability,” Geophys-
ical and Astrophysical Fluid Dynamics, vol. 97, no. 2, pp. 97–
134, 2003.

[2] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability,
Dover, 1961.

[3] M. R. E. Proctor and N. O. Weiss, “Magnetoconvection,”
Reports on Progress in Physics, vol. 45, no. 11, pp. 1317–1379,
1982.

[4] S. G. Tagare, “Nonlinear stationary magnetoconvection in a
rotating fluid,” Journal of Plasma Physics, vol. 58, no. 3, pp.
395–408, 1997.

[5] S. G. Tagare and Y. Rameshwar, “Magnetoconvection in rotat-
ing stars,” Astrophysics and Space Science, vol. 284, no. 3, pp.
983–999, 2003.

[6] P. H. Roberts and C. A. Jones, “The onset of magneto-
convection at large pradtl number in a rotating layer I.
Finite magnetic diffusion,” Geophysical and Astrophysical Fluid
Dynamics, vol. 92, no. 3-4, pp. 289–325, 2000.

[7] R. C. Kloosterziel and G. F. Carnevale, “Closed-form linear
stability conditions for magneto-convection,” Journal of Fluid
Mechanics, no. 490, pp. 333–344, 2003.

[8] H. R. Brand, P. C. Hohenberg, and V. Steinberg, “Codimen-
sion-2 bifurcations for convection in binary fluid mixtures,”
Physical Review A, vol. 30, no. 5, pp. 2548–2561, 1984.

[9] E. Palm, J. E. Weber, and O. Kvernvold, “On steady convection
in a porous medium,” The Journal of Fluid Mechanics, vol. 64,
pp. 153–161, 1972.

[10] H. Brand and V. Steinberg, “Convective instabilities in binary
mixtures in a porous medium,” Physica A, vol. 119, no. 1-2,
pp. 327–338, 1983.

[11] H. Brand and V. Steinberg, “Nonlinear effects in the convective
instability of a binary mixture in a porous medium near
threshold,” Physics Letters A, vol. 93, no. 7, pp. 333–336, 1983.

[12] H. R. Brand, P. C. Hohenberg, and V. Steinberg, “Amplitude
equation near a polycritical point for the convective instability
of a binary fluid mixture in a porous medium,” Physical Review
A, vol. 27, no. 1, pp. 591–593, 1983.

[13] E. R. Lapwood, “Convection of a fluid in a porous medium,”
Proceedings of the Cambridge Philosophical Society, vol. 44, pp.
508–521, 1948.

[14] S. G. Tagare and A. B. Babu, “Nonlinear convection in a
sparsely packed porous medium due to compositional and
thermal buoyancy,” Journal of Porous Media, vol. 10, no. 8, pp.
823–839, 2007.

[15] S. G. Tagare, A. B. Babu, and Y. Rameshwar, “Rayleigh-Benard
convection in rotating fluids,” International Journal of Heat
and Mass Transfer, vol. 51, no. 5-6, pp. 1168–1178, 2008.

[16] N. Rudraiah, “Linear and non-linear magnetoconvection in a
porous medium,” Proceedings of the Indian Academy of Sciences
(Mathematical Sciences), vol. 93, no. 2-3, pp. 117–135, 1984.

[17] N. Rudraiah and D. Vortmeyer, “Stability of finite-amplitude
and overstable convection of a conducting fluid through fixed
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