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Linear and weakly nonlinear properties of magnetoconvection in a sparsely packed porous medium are investigated. We have
obtained the values of Takens-Bogdanov bifurcation points and codimension two bifurcation points by plotting graphs of
neutral curves corresponding to stationary and oscillatory convection for different values of physical parameters relevant to
magnetoconvection in a sparsely packed porous medium near a supercritical pitchfork bifurcation. We have derived a nonlinear
two-dimensional Ginzburg-Landau equation with real coefficients by using Newell-Whitehead (1969) method. The effect of the
parameter values on the stability mode is investigated and shown the occurrence of secondary instabilities namely, Eckhaus and
Zigzag instabilities. We have studied Nessult number contribution at the onset of stationary convection. We have also derived
two nonlinear one-dimensional coupled Ginzburg-Landau-type equations with complex coefficients near the onset of oscillatory
convection at a supercritical Hopf bifurcation and discussed the stability regions of standing and travelling waves.

1. Introduction received any attention inspite of its application in geophysical
fluid dynamics problems. Palm et al, [9] investigated
Rayleigh-Benard convection problem in a porous medium.
Brand and Steinberg [10, 11] investigated convecting insta-
bilities in binary liquid in a porous medium; However, Plam
et al. [9] and Brand et al. have made use of Darcy’s law
(—vV?2V is replaced by KV where K is the permeability of a
porous medium. for nonporous medium K is infinity). They
have also not considered usual convective nonlinearity. It is
well known that Darcy’s law breaks down in situations where
in other effects like viscous shear and inertia come into play.
In fact Darcy’s law is applicable to densely packed porous
medium. An alternative to Darcy’s equation is Brinkman
equation and is of the form

Magnetoconvection in a porous medium uniformly heated
from below is of considerable interest in geophysical fluid
dynamics, as this phenomena may occur within the mushy
layer of Earth’s outer core. Earth’s outer core consists of
molten iron and lighter alloying element, sulphur in its
molten form. This lighter alloying element present in the
liquid phase is released as the new iron freezes due to
supercooling onto the solid inner core. Hence we get mushy
layer near the inner core boundary where the problem
becomes convective instability in a porous medium [1].
The effect of geomagnetic field on the magnetoconvection
instability is of interest in geophysics, particular in the study
of Earth’s interior where the molten liquid Iron is electrically
conducting, which can become convectively unstable as a

Vp —p'g= —%V,+/,¢6V'2V', (1)
result of differential diffusion.

Magnetoconvection in an electrically conducting fluid in
a nonporous medium has been studied extensively [2-8].
However, magnetoconvection in a porous medium has not

where y is the fluid viscosity and p. is the effective fluid
viscosity. Brinkman model is valid for a sparsely packed
porous medium wherein there is more window fluid to flow
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so that the distortion of velocity give rise to the usual shear
force. Lapwood [13] was the first to suggest the inclusion
of convective term (V' - V')V in the momentum equation
and study the Rayleigh-Benard convection in a sparsely
packed porous medium. Recently, Tagare and Benerji [14]
have investigated the problem of nonlinear convection in
a sparsely packed porous medium due to thermal and
compositional buoyancy.

In this paper we investigate the problem of magnetocon-
vection in a sparsely packed porous medium. The multiplic-
ity of control parameters makes this system an interesting
one for the study of hydrodynamic stability, bifurcation and
turbulence [15]. Rudraiah [16] and Rudraiah and Vortmeyer
[17] have studied both linear and steady nonlinear mag-
netoconvection in a sparsely packed porous medium using
Brinkman model but they have taken effective viscosity p,
same as fluid viscosity y. However, experiments show that
the ratio of effective viscosity . to fluid viscosity y takes the
value ranging from 0.5 to 10.9 [18]. In Section 2, we write
basic dimensionless equations in Boussinesq approximation
for magnetoconvection in a sparsely packed medium by
using a momentum equation with effective viscosity different
from fluid viscosity. In Section 3, we study linear stability
analysis. In Section 4.1, by using multiple-scale analysis of
Newell and Whitehead [19], we derive two-dimensional
nonlinear Ginzburg-Landau equation in complex amplitude
A(X,Y,T) with real coefficients near the super critical
pitchfork bifurcation. In Section 4.2, we show the occurrence
of secondary instabilities such as Eckhaus instability and
Zigzag instability. We have also considered the effect of
Nusselt number on heat transport by magnetoconvection in
a sparsely packed porous medium. In Section 5, we derive
two nonlinear one-dimensional coupled Ginzburg-Landau
type equations with complex coefficients near the onset of
oscillatory convection at a supercritical Hopf bifurcation.
Following Matthews and Rucklidge [20], we have dropped
slow space dependence in X and obtained two coupled
ordinary differential equations in A;gr and Az and discussed
the stability regions of travelling and standing waves. By
obtaining a one-dimensional Ginzburg-Landau equation in
complex amplitude A(X,Y,T) with complex coefficients
near a supercritical Hopf bifurcation, we have shown the
condition for occurrence of Benjamin-Feir-type instability
[21] for travelling and standing waves. In Section 6, we write
conclusions of the paper.

2. Basic Equations

We consider an electrically and thermally conducting fluid
saturating an infinite horizontal layer of a sparsely packed
isotropic porous medium of depth d with a uniform
magnetic field Hy in the vertical z-direction. This layer is
heated from below, the upper and lower bounding surfaces
of the layer are assumed to be stress-free. Physical properties
of the fluid are assumed to be constant, except for the
density in the buoyancy term, so that the Boussinesq
approximation is valid. The temperature difference across
the stress-free boundaries is AT” and the flow in the sparsely
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packed porous medium is governed by the Darcy-Lapwood-
Brinkman model. The relevant basic equations are

v -V =0, V' -H =0, (2)
1oV 1 )
ol 5 (77|

_bm [HO %H, (H’-V')H’]

3)

_ ’ Al'lim 712 ‘umHO /)
= V(p +871|H| + 42 H]
+p'g - %V, +y2V'27,,
aT’ 7 ’ r_ 12y
Mat,-i-(V-V)T—KV T, (4)

¢ g =V’ x (V' X H(’,EZ) +V % (V' xﬁ') +yVH .

(5)

The fluid density p” is described by
p :p{)[l—(x(T'—T;;)], (6)
where a = —py ! (dp’/dT") is thermal expansion coefficient

and p; is mean fluid density. Here p is pressure, V' is mean
fluid Veloc1ty, T’ is temperature, H is magnetic field, ¢ is
porosity, g is acceleration due to gravity, K is permeability of
porous medium, g, is coefficient of effective fluid viscosity,
x is thermal diffusivity, y,, is magnetic permeability, and
n is magnetic diffusivity. Equation (3) is known as Darcy-
Lapwood-Brinkman equation and is valid for 0.8 < ¢ < 1.
Givler and Altobelli [18] shown that the range of A = p./u
varies from 0.5 to 10.9. M is dimensionless heat capacity and
is defined as the ratio of the effective heat capacity of the
porous medium to the heat capacity (p'C,) of the fluid. In
anonporous medium, § = M = A = land K — o and (3)
reduces to Navier-Stokes equation. In this paper, for sparsely
packed porous medium, we consider M = 0.9, ¢ = 0.9. The
conduction state is characterized by

T, = T — (Ag )z’, (7)

and we take the temperature perturbation as 8" = T’ — T;.
We use the scaling

V. =0,

X = xfl = Z zZ = é t= 71.,
e YT o T = Md
_ u/ V _ v/ W B W/
T WMd’ T WMd’ T WMd’ (8)
o’ P "
0= AT” b= poM—2x2d=2’ H = kHo/n’

Here Md?/x is thermal diffusion time in a porous medium.
Using (6) and (8), we can write basic dimensionless equa-
tions for magnetoconvection in a porous medium as

V.-V =0, V-H=0, 9)
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1 [a" L. v)v} QP (. v)E - o2

M2¢Pr1 ¢ Pr; 0z
P QPI’Z 2 ) 1 —
= -V = H| +QH,) -
(MPr1 2 Prl‘ ‘ QH: MD,
+%V2V+R9€Z,
(10)
0 1, w
—+—(V-V)0=— + V20, 11
5tV V)e= g an
PI”Q 25T ~ PI'2 T
¢P—r1§—MVH Vx(Vxe)+P—r1V><(V><H).
(12)

The dimensionless parameters required for the description
of the motion are Rayleigh number R = gaATd?/xv, thermal
Prandtl number Pr; = v/, magnetic Prandtl number Pr; =
v/n, Chandrasekhar number Q = u,Hid*/4npovy, and
Darcy number D, = x/d*. The Curl of (10) gives

! d 1 Ao, o]
<M2</>Pr1 ot + MD, MV ) Q* — R(V x (0e;))

- f[v (i-5)A]
1 _ _
- m[v < (V- 9)v], .
where vorticity @ = V X V, current ] = V X H and
<[(V-v)V]=[(V-V)a-@ v)V],
(14)
< (7)1 - (7)1 - o)A,
The Curl of (13) in turn gives, after use of (9),
1 d 1 A —
<M2¢Pr1 ot " MD, ~ Mvz) vV
—R[(Vze)éz— v(g—z)] Qaaz<v H)
(15)
= va [(V-V)a- @ V)V]
- Qpevx[(H- )7 - (1- V)]

Now taking the scalar product of (12), (13), and (15) with e,
we get,

ow o Pl‘z/\

( Pl‘z d
32 Prl

2
PI'] Bt - My )HZ

[V X (V xﬁ)].
(16)

3
L S A
(M2¢Pr1(9l‘+ MD, MVZ)V2 z*‘Q* _Ra

Pr; . - L
= %Z VX(H-V)H—mZ (17)
[vx (V-v)7V],

<M2;5Pf1 §t+M1D —%V >VZW—RVﬁ6—QaaZ(V2HZ)
Mz(/,lzpr1 (v x[(V-v)a-@-v)V]]
_Q@A [Vx[(H-9)]- (7 v)H]].

(18)

Geophysically acceptable velocities of propagating instabili-
ties corresponding to geometric scalar variations occur only
Pry/Pr; > 1 (where instabilities develop in ohmic diffusion
timescale d?/n), Prp/Pr; = 2 and 5, when the turbulent is
present in the Earth’s outer core. In the case of Pry/Pr; < 1
the instabilities are extremely slow depending on the thermal
diffusion timescale d?/«. Using (11), (18), and (16) can be
reduced to a form

Lw=N, (19)

where

aZ
L = (1)¢1)Pr1 - Q=5

> ):ovz - %vﬁofoqs, (20)

(V- 9)H.]
+ D Dye. - HM%/}ZPerX [(V-V)o-@ V)V]}

Jopox[(E-9) - -9)]]

Pry 9 [/
N = QJ)VZP%&[(H SV )w -

~ %vﬁom(v V)6,
(21)
here
_ 2 - 2) ( PI'Z 8 _ 2)
D= <at Vi Be=p e MY)
(L 9, 1 Ao
De, = <M2¢Pr1 ot " Mp, MY ) (22)

02 0? 0?
) 07 2_ (9, o
Vi = ox2’ v (8x2+8z2)'
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Boundary Conditions. We assume that fluid is contained
between z = 0 and z = 1, where z = 0 corresponds to
boundary of solid iron core with Earth’s mushy layer and
z = 1 corresponds to boundary of Earth’s mushy layer with
Earth’s outer liquid core. For perfectly conducting boundary
with temperature, we have

0 =0, H,=0 onz=0,z=1Vx,y. (23)

Also the normal component of the velocity would vanish on
z =0,z =1, that is,

w=0 onz=0,z=1Vxy. (24)

However, there are two more conditions to be imposed on
velocity depending on the nature of the surface. In this
paper we consider free-free boundary conditions, that is, on
surfaces the tangential stresses vanish, which is equivalent to

ou ow
Pe—u(5+ 5) -0

v ow
ps(242) <o

where y = ypg is dynamic viscosity. Since w vanishes for x, y
onz =0,z = 1, it follows that du/0z = 0v/dz = 0 on a free
surface z = 0, z = 1. Hence from equation of continuity we
have 9?w/9z> = 0onz = 0, z = 1 forall x, y. In this paper we
have considered only the idealized stress-free conditions on
the surface and vanishing of temperature fluctuations. Thus
w = D*w = D*w = 0 atz = 0, 1. w and its even derivatives
vanishatz = 0and z = 1.

(25)

3. Linear Stability Analysis

We perform a linear stability analysis of the problem by sub-
stituting

w = W(z)e' PP, (26)

into linearized version of (19) is Lw = 0, and obtaining an
equation

|02 =2 = p) (310 - g o )0 - )

, (27)
_ | _Re 2 2 Pry
B [_ M (MD ~Mq _p¢Pr1>

QD - )0 - ¢ - )|

We consider stress-free boundary conditions, then W =
D?W =0onz =0,z = 1forall x, y. Thus we can assume
W =sinnz.

Substituting W = sinnz and p = iw into (27), we get

M .
R= ?[A1+IW(A2(02+A3)], (28)
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A = [{M66< +A52) + Mo
D,
Pr w? A Pr
2 _ .2 2 _ 2 A i
X(Q" “yepd T Mgprn Y M Prl)}
Pr, | Pr A w?
2012 Y VA2 [ oq 0 X
“ Pry {Prl (5 v M¢Pr%>

1 2
MPr1> Qe

" 6(/)2131’2
MD,Pr | |’

x §* (A(/) +

(29)

Pr;\*( , A ¢ ¢*Pr’
— 2( 22 24 2
A= 'K[a (Pn) <¢ M M2Pr1) *uppa | OO

4 1 ]\452 PI'2
As [8 (MA+ qSP) + Qm ( ¢Pr1>:|
(31)

where X = 82(M*5* + a)ngzPr%/Pr%f1 and 8% = (7% + ¢%),

from relation equation (30), A, > 0.

3.1. Stationary Convection (w =
(28), we get

0). Substituting w = 0 in

2
R, = 9 [62<— +82A ) + an], (32)

3
here R; is the value of the Rayleigh number for stationary

convection. The minimum value of R; is obtained for g, =
Gsc.- where

6 4
q 1 )(ﬂ) s Q 1
ZA(n) <3A+ m2DD, = At m? * m2DD,’

(33)

The wave number is identical to that for the single compo-
nent fluid, while the threshold for the onset of stationary
convection at pitchfork bifurcation is given by (34) with

qs = (sc>

52

Re = 2|82 ( 5+ 824) + o, (34)
where 62 = 72 + g%. Thus the magnetic field inhibits the
onset of stationary convection.

3.2. Oscillatory Convection (w*> > 0). For the oscillatory
convection (w # 0) and from (28), R will be complex. But the
physical meaning of R requires it to be real. The condition
that R is real implies that imaginary part of (28) is zero, that
is,

Ay’ +As; =0, (35)
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where A, and Aj; are given by (30) and (31). For oscillatory
convection w? = —A3/A; > 0 since A; > 0, for oscillatory
convection Az < 0. For A3 = 0, (35) implies that w = O is a

W = —[63(MA + 1/¢Pry) + MS2/D, + Qr* (M — ¢pPrp/Pry) ]

double zero corresponding to Takens-Bogdanov bifurcation
point. For oscillatory convection, we have

where 62 = 72 + g2. A necessary condition for w? > 0 is

Pl'l (/5

However, this is not sufficient condition and one must have
in addition

02 (MA + 1/¢Pry) + M&2/D,

Q> = 3 (¢Pry/Pr, — M)

(38)

At Takens-Bogdanov bifurcation point R,(q,) = Rs(gs) =
R(qc) @0 = gs = g, and w?> = 0 is a double zero at
Q = Qc(qc) where

_ 0 (MA +1/¢Pry) + M&2/D, B
T a2(¢Pry/Pr -M) 0 1T

Q (39)

The Takens-Bogdanov bifurcation point occurs when the
neutral curves for Hopf and pitchfork bifurcation meet and
only a single wave number is present, namely, g, = ¢s = 4.
If g > gsc then for all g < g, the first instability to set in is
an oscillatory convection. The asymptotic values of g. and g,
for large Chandrasekhar number (Q — oo0) are

QT[4M 1/6
q“_’< 2A ) '

(40)

. (¢Pry— MPr;)Qn? b
e (MAPr, +1/¢) ’

From the monotonic dependence of g, and gs on Q, we
may conclude that for Pr, > Pry, there exists a Q(Pry, Pry,
M, A, ¢,D,) such that for Q < Q(Pry,Pry, M, A, ¢,D,) the
onset of first instability will be stationary convection at
pitchfork bifurcation while for Q > Q(Pry, Pry, M, A, ¢, D,) it
will be oscillatory convection at Hopf bifurcation. Q(Pry, Pr,
M, A, ¢,D,) and for Q = Q(Pry, Pry, M, A, ¢, D,), we have

Rct = Roc(‘]oc) = Rsc (qSC) but doc F qsc> (41)

above condition (41) gives codimension-two bifurcation
point. However, there is no simple formula to give Q(Pry, Pr,
M, A, ¢,D,) at the codimension-two bifurcation point by
assuming R as an independent variable, such kind of inter-
esting result is not available in Chandrasekhar [2]. In Figures
1 and 2, each solid line stands for stationary convection
(pitchfork bifurcation) and dotted line stands for oscillatory
convection (Hopf bifurcation). In Figures 1 and 2, we have
showed the effect of several physical parameters, like Q,
Pri, Pry, A, M, ¢, and D, on the onset of both stationary

[62(Pra/Pry)’ (¢2A/M + §/M2Pry) + ¢2Pr/MD,Pr3|

(36)

convection and oscillatory convection when a physical
parameter increases for the remaining fixed parameters, the
onset of instabilities increases, that is, the onset of stationary
convection and oscillatory convection inhibit when a param-
eter increases with the remaining fixed parameters.

4. Onset of Stationary Convection at
Supercritical Pitchfork Bifurcation

4.1. Derivation of Two-Dimensional Nonlinear Ginzburg-
Landau Equation Using Newell-Whitehead [19] Method. In
this section the evolution of a general pattern is developed by
means of a multiple scale analysis used by Newell and White-
head [19]. A small amplitude convection cell is imposed on
the basic flow. If this amplitude is of the size O(e) then the
interaction of the cell with itself forces a second harmonic
and mean state correction of size O(€?) and then in turn
drives an O(€e?) correction to the fundamental component
of the imposed roll. A solvability criteria for this correc-
tion yields the one-dimensional nonlinear Ginzburg-Landau
equation of the complex valued amplitude A(X, Y, T') of the
imposed disturbance with real coefficients. To simplify the
problem we assume the formulation of cylindrical rolls with
axis parallel to y-axis, so that y-dependence disappears from
(19). The z-dependence is contained entirely in the sine and
cosine functions, which ensures that stress-free boundary
conditions are satisfied. We use the expansion parameter €
as
,  R—R

€ = R, (42)

For the values of R close to threshold value Ry thatis, € < 1,
the structure of the slow length scales will be insensitive to
€, but a slow modulation in space and time is possible by
making use of the band of the unstable solutions and linear
growth rate is likely to saturate due to nonlinear effects. This
behavior can be analyzed by writing solutions of (9)—(12) in
power series € as

f=ep+efitef+---, (43)

where f = f(u,v,w,0, Hy, H), H,) with the first approxima-
tion is given by the eigenvector of the linearized problem:

Uy = m [A(X, Y, T)e* cos mz — c.c.],

qsc

V():O,

85UB017 SUOWIIOD 3AFe1D) 8|qedldde auy Ag peusenoh a8 saoiie YO ‘35N 40 S3|nJ o AReiq 18Ul UO AB]IA UO (SUORIPUOD-PUR-SLLBYWI0D A8 | M ARIq 1 BUIIUO//SANY) SUORIPUOD PUe SWLB L 8U3 89S *[5202/T0/82] Uo ARIqIT8UllUO 8|1 'O BIniisu| lUOIRN Aq £2T202/TTOZ/SSTT OT/I0p/wioo"A3|imArelqifeul|uo//sdny Wwolj papeojumod ‘T ‘TTOZ ‘0LyT



x10°

=4
1 L
1 L
1 1 1
4 8 12
q
(a)
x10°
10
10
=4
10} R
/
/
/
1
/
/
/
/
9L /
/
\ o
N\
1 1 1 1
10 20 30 40
q

(c)

International Journal of Geophysics

x10°
1
1 L
[~
1F
7
\ ,’/
\ 7/
\ //
1 1 1 1 1
6 12 18 24
q
(b)
x107
10
10} —==
%
/
& /
/
/
/
9 ,’
!
1
1
1
1
1
\ 1
8+ \'/’
1 1 1 1
0 15 30 45 60
q

(d)

FiGure 1: Numerically calculated marginal stability curves are plotted in (R, g)-plane for Pr; = 1, Pr, = 1.5, D, = 1500, A = 0.85, ¢ = 0.9,
and M = 0.9, (a) Q =10% (b) Q = 10°%, (c) Q = 108, and (d) Q = 10!, then the onset of stationary convection and the onset of oscillatory
convection increase (stationary convection represented by solid lines and oscillatory convection represented by dotted lines).

wo = A(X, Y, T)e"™*sinnz + c.c.,

1 ; .
6 = o2 [A(X, Y, T)e't*sinmz + c.c.]>
SC
—in? . .
H, = W [A(X, Y, T)e'*sinmz — c.c.],
SCV¥sc
H,, =0,
Hz, = MTSZ [A(X, Y, T)e'®* cos mz + c.c.],

SC

(44)

where 82 = 7% + g2, here C.C. stands for complex conjugate,
e*sinzrz is the critical mode for the linear problem at
R = Ry and g = gi. The complex amplitude A(X,Y,T)
depends on the slow variables X, Y, Z, and T to be scaled by
introducing multiple scales

X = ex, Y =€y,
(45)

Z =z, T = €°t,

and these formally separate the fast and slow dependent vari-
ablesin f. It should be noted that the difference in scaling in
the two directions reflects the inherent symmetry breaking
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FIGURE 2: Neutral curves for the stationary bifurcation (solid lines) and for the Hopf bifurcation (dashed lines) near the codimension two
point for Q = 2000, D, = 1500, A = 0.85, ¢ = 0.9, Pr; = 1,and M = 0.9, (a) Pr, = 1.27, (b) Pr, = 1.3, (¢) Pr, = 1.35 x-axis wave number,

y-Rayleigh numbers R;, R,.

of instability which was chosen here with wave vector in x-
direction. The differential operators can be expressed as

RN R R
0x ox dX’ dy oYy’
(46)
FR T B |
0z 0z’ ot oT

with the assumption (46), the operators (20) and (21) are
transformed into a set of linear in homogeneous equations.
The solvability conditions for the latter yields the amplitude

equation using (44) in the linear operator (20) can be written
as

L=Lo+eLi+€* L+, (47)
where
L ——Av8+iv6+Qv4a—2 +R vza—z (48)
0= D, 072 T ox2’

» @
£1= <28x8X * ayz)
3 s 6 2 0% 2 K
x [Duv 4NVS+2QV7 5 + RV + RS |,
(49)
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0 1 APl’z
L2 = 6~T[(A+1\4¢Pr1 " MPrl)v

1 P 1 ) . ,
— (=92 V- Qv
(Da Pr; MD, Q 072

Ry Pry &> } 0

M "Prjox? | ox?

3 o? 0?
X |:Da 4AV6+2QV2 +Rscv +RSCa 2j|
+(4 7 + 108

0x20X?  20Y?

2
X | —6AV* + iv2 + Qa— + Ry |.
072

Dy
(50)
Similarly nonlinear term N is given by
N:€2N0+€3¢N1+"', (51)

substituting (47), (51), and (43) into (19), we get by equating
the coefficients of €, €2, €3;

cC()W() = O, (52)
Jfowl + £1W0 = JVO, (53)
£0W2+£1W1 +£2W() = JV]. (54)

Equation (48) gives the critical Rayleigh number for the
onset of stationary convection

52

Ry = =€ [84/\ + —52 + an]. (55)

qSC
In (53), My = 0, L1wp = 0 and hence w; = 0. From equation
of continuity we find that 4; = 0. The relevant equations for
0, and H,, are

fl W L[, | o
(E)t )GI_M M[ a*w‘)az]’ (56)

form (56) and (44), we get

1

g = ——
T oML

|A|? sin 27z (57)
Equation (12) gives relevant equation for H,, as

PI‘Z ) an PI'Z 8
MV )H, = 20 22 0 — wH,, ).
( Pr; 47 9z Pry ax[WO % ~ toHz,]
(58)

From (58) and (44), we get

PI'Z 7'1'2

o Pry 465cqsc

[A2e¥iar 4 c.c . (59)
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Similarly we have Hy, = 0, H,, = 0. The solvability criterion
of (54) gives the amplitude equation which can be written as

oA o i Y )
/\()aT A](aX quc 8Y2> —)L2A+A3‘A| A =0,
(60)
where
_ 1 Pro A & (L, Pr, 1 )4
ho = <A+ Mgpr,  Pr, M)8SC+ D, " ®br, MD, )%
Ry Pr
+ Qﬂ26szc - Mc?éqgc
A = 4q% [6A6§‘C + iafc +Qn? - RSC],
D,
/12 = SCqscaszc’
_aPgomt 5 Re
/13 = QPI’% quszc( sc ) 2M?2 Isc-
(61)

Equation (60) is two-dimensional, nonlinear time-depend-
ent Ginzburg-Landau equation describing the effect of mag-
neticfield in a sparsely packed porous medium near the
onset of stationary convection at supercritical pitchfork
bifurcation. Here A is always positive for Pr,/Pr; < 1/¢ and
for any Q but if Pr,/Pr; > 1/¢ then Ay is positive only if
Q < Q. Thus for supercritical pitchfork bifurcation ¢ is
always positive. For Pry/Pr; > 1/¢, Ag decreases as Q increases
and becomes zero at Q = Q.. A; and A, are always positive.
As is positive only if

scqsc Pr1

2mt (2 - q2.) Prz' (62

Q<

The pitchfork bifurcation is supercritical if A3 > 0 and
subcritical if A3 < 0. At A3 = 0, we get tricritical bifurcation
point [22] (see Figure 3). Dropping the time dependence
from (60), we get

2
1

since A; > 0, the solution of (63) is given by

AX) = A tanh(é), (64)
Ay
where
/\2 1/2 2/\1)1/2
_ (1 - (££L 65
Ao (As) M (/12 : (65)

4.2. Long Wavelength Instabilities (Secondary Instabilities).
The secondary Instabilities arising in nonequilibrium sys-
tems do not exhibit strict symmetries but may show spa-
tially slow deformations of the cellular structures. Further,
there are secondary instabilities like Eckhaus and Zigzag
instabilities, such phenomena are studied using evolution
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1
40000 60000
Q

FIGURE 3: Above figure is plotted for D, = 1500, A = 0.85, ¢ =
0.9, M = 0.9, and Pr, = 1. A; is the nonlinear coefficient of
Ginzburg-Landau equation at the onset of stationary convection.
The pitchfork bifurcation is supercritical if A3 > 0, subcritical if
A3 < 0and A3 = 0 on the curve.

0 20000

equations for amplitudes which are slowly varying in time
as well as in space. These envelope equations can be derived
by the method of Newell and Whitehead [19]. The two-
dimensional Ginzburg-Landau equation (60), can be written
in fast variables x, y, f,and A(X, Y, T) = A(x, y,t)/€, as

Ao

0A (a i 02

2
e = I _ 2 24—
T M Ep quc ayz) A— €A+ A3|1AIA =0.

(66)

In order to study the properties of a structure with a given
phase winding number 8k, we substitute

Ax, 1) = A1 (x, y, t)eiokx, (67)
into (66) and we obtain

202 (€2, - 11 (k)7 Ay

ot
. 0 i 0?
+21/\16k(ax - 2qSC8y2)A1

s i Y )
+/11<axzqscay2) A1*A3|A1| A =0.
(68)

The steady-state uniform solution of (68) is

A= A = [ (€2 = 1@k?)A51] . (69)

Let #i(x, y,t) + iV(x, y,t) be an infinitesimal perturbation
from a uniform steady-state solution A;, given by (69). Now
substituting

A=A = [(E - n@?)5t ] i, (0)

into (68) and equating real and imaginary parts, we obtain

Ao% = [—2(6% —Mi(8Kk))
\ox2 " g9y 4% 9y
A2\ o
- (2A18k—qscayz>ax, (71)
w _ M 9%\ o
T (zmk - 8y2> o
\ox2 7 qeay? agioyt)

We analyze (71) by using normal modes of the form

U = Ue® cos(qux) cos(qyy),
(72)
¥ = VeSsin(gex) cos(qyy).
Putting (72) in (71) we get,
[A0S+2(e2 = Li(8K)°) + 11 U + MgV = 0,
(73)

AquXZU-i- (AoS-FX])V = 0.

Here y1 = Mi[q2 + (qi@k)/qsc + qf,/4q§c], 1= 20k + qi/qsc).
On solving (73) we get,
238 +28[ 240 (€22 = 11(8K)7) + Aoy |
(74)
+ [2(52/\2 - Al(ék)2> +X1]l//1 - in1X2 =0,

whose roots (S=+) are real. Here (S=) is defined as

(S+) = —;—% { (220 (€242 = A1 (8K)*) + Aoy1 )

1/2
= (2/\0(62A2 - hi(@k)?)” +A%qix%) }
(75)

Solution S(—) is clearly negative, thus the corresponding
mode is stable and if S(+) is positive then rolls can be
unstable. Symmetry considerations help us to restrict the
study of S(+) to a domain g, > 0, g, = 0.

4.2.1. Longitudinal Perturbations and Eckhaus Instability. In-
serting g, = 0 into (75), we get

A3S? +28[ 200 (€202 = 11 (8K)°) + Aodi? |

(76)
+hg2[2(e2h, - 31 (8K)°) +¢2] =0,
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since the roots are real and their sum always negative, the
pattern is stable as long as both roots are negative, that is,
their product is positive. The cell pattern becomes unstable
when the product is negative, that is, when

g% < 2(3M,8Kk* — €21,), (77)

for this requires |6k| > +/(€2)1,/3A;), this condition defines
the domain of Eckhaus instability. The above condition
implies that the most unstable wave vector tends to zero,

when [8k| — /(€212/31,).

4.2.2. Transverse Perturbations and Zigzag Instability. Let us
consider g, = 0 into (75), we get

238 +28[ 240 (€2 = 11(8K)%) + Aox] |
(78)
+[2(€202 = 1i(8k)?) + x4l =0,

where yi = A1(q20k/qsc + q3/4q2). The two eigenmodes are
uncoupled and we have S(—),

S(-) = —2(e2h, - L (8k)*) - ﬂakqg - qug <0,
dsc 4ch
(79)
for one of them. The other is amplified when
e
- 2 y
S(+) = —hig, (8k + 4%) > 0. (80)

This implies that 6k < 0, the above condition defines the
domain of the Zigzag Instability. When §k — 0 from below
the wave vector g, of the instability also tends to zero
while the growth rate varies as g2. We have studied the
effect of magnetic field on long wavelength instabilities. We
have observed that Eckhaus instability and Zigzag instability
regions increases when Q increases (see Figure 4).

4.3. Heat Transport by Convection. The maximum of steady
amplitude A is denoted by | Amayx| which is given as

172
Ez)tz
= === 81

Equation (81) is obtained from (64) with tanh(X/A;) = 1.
We use |Amax | to calculate Nusselt number Nu. To discuss the
heat transfer near the neutral region, we express it through
the Nusselt number is defined as Nu = Hd/kAT, which is
the ratio of the heat transported across any layer to the heat
which would be transported by conduction alone. Here H is
the rate of heat transfer per unit area and is defined as

H = —<8L°,““> . (82)
0z z'=0

In (82), angular brackets correspond to a horizontal average.
The Nusselt number Nu can be calculated in terms of
amplitude A and is given as

€2

57 1 Amax” (83)

Nu=1+
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FIGURE 4: Numerically computed secondary instability regions of
Eckhaus instability (E), Zigzag instability (Z), and stable regions (S)
are plotted in (1,/A1, 8¢;)-plane for Q = 2000, D, = 1500, A = 0.85,
¢ =09, M =0.9,Pr; =1, and Pr, = 2. As |§g,| increases then the
secondary instability regions increases.

From (83), we get conduction for R < R, and convection
for R > Ry. Since the amplitude equation is valid for A5 >
0, which is possible for R > Ry (supercritical pitchfork
bifurcation), thus we get Nu > 1 for R > R,. We get
convection for Nu > 1 and conduction for Nu < 1. In
stationary convection Nu increases implies that heat con-
ducted by steady mode increases. In the problem of double
diffusive convection in porous medium with magnetic field,
Nu depends on Pry, Pry, A, M, ¢, D,, and Q. We have
computed Nu for different values of Q, for some fixed values
of other parameters and observed that Nu increases as Q
decreases (see Figures 5(a) and 5(b)). This implies that
magnetic field inhibits the heat transport. The parameters
Pry, Pry, A, M, ¢, and D, show the same result as Q shows
on Nu.

5. Oscillatory Convection at
the Supercritical Hopf Bifurcation

The existence of a threshold (critical value of Rayleigh
number for the onset of oscillatory convection R = R,c) and
a cellular structure (critical wave number g = g,c) are main
characteristics of the oscillatory convection. In this section
we treat the region near the onset of oscillatory convection.
Here the axis of cylindrical rolls is taken as y-axis, so that
y-dependence disappears from equation Lw = N. The z-
dependence contained entirely in sine and cosine functions
which ensure that the free-free boundary conditions are
satisfied. The purpose of this section is to derive coupled one-
dimensional nonlinear time-dependent Ginzburg-Landau
type equations near the onset of oscillatory convection at
supercritical Hopf bifurcation. We introduce € as

zzRo_Roc

€
Roc

< 1. (84)
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FIGURE 5: Graph (a) is plotted for Q = 1000 and graph (b) is plotted for Q = 3000 for the fixed values of D, = 1500, A = 0.85, ¢ = 0.9,
Pr, = 1,Pr; = 2,and M = 0.9. in (Nu, R/Ry)-plane. In graphs (a) and (b), as R/R,. increases then Nu increases.

111 ; 1 .

We assume that B0 = i I:AlLez(qocxﬂuoct) 4 7A1Rez(q0cx—wmt) + c.c.]
(4] €]
wo = [AlLei(q°‘x+“’°“” + A geloc¥—oct) 4 c.c.] sinmz  (85) < sin 7z

il
is a solution to linearized equation £w = 0, which satisfies H,, = i [1 Ajpel(@ocxtwoct) 4 i* A peildocx—woct) _ c.c}
free-free boundary conditions. Here A;; denotes the ampli- Goc | €2 €
tude of left travelling wave of the roll and Az denotes the X sinnz
amplitude of right travelling wave of the roll, which depends ’
on slow space and time variables [23] 1 ‘ 1 .

H, =n [Aue’(q“x“"“” + — Ajgelldox=oct) 4 c.c}
(%) €)

X = ex, T = €t, T = €t (86)
X COSTIZ.

and assume that A;; = AL (X, 7,T), A1r = A1r(X,7,T). The (89)

differential operators can be expressed as
where 82, = (12 + g2.), e1 = (6%, + iwoc), and e = (M2, +
9 9 9 9 9 9 9 iwocPra/Pry), here ef and e; are complex conjugate of e;
a—'a‘f'&'ﬁ, &—’&-FGE'FGZﬁ. (87) and e;.
We expand the linear operator £ and nonlinear term N

. . . ) as the following power series
The solution of basic equations can be sought as power series &P

in €,
L=LoteLlLs+€Ly+ -+,
(90)

—efo+elfi+eElfrt -,
f fO fl f2 (88) N:€2N0+€3e/v1+""

where f = f(u,v,w,0,H,, H,, H;) with the first approxima-

tion given by eigenvector of the linearized problem: substituting (87) and (88) into Lw = N, for each order of e,

we get
Uy = i [A1Lei(‘7““"+“’°°t) + Ajgeloc¥=@oct) _ c.c.] Cos 7Tz, Lowo =0, (91)
vo =0, Lowr + L1wy = No, (92)
Hy, =0, Lowy + Liwy + Lawy = M. (93)
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Here

2 2
Lo = (@:DPH - Qa)c‘DVZ EN

072 M ox?
d 0?
L1 87?'1 +Za X?'
oF o ,
£ = 0+ 50| (49 (2y312))
A A
2 s 2
FADVE = 2 DDy + Dy
0? 0*F, 2> 0
+Q+R} = 23 or
PI‘Q 2
X i)(po(Dprl - M+(/) :Dper
PI‘Z A 1 2
< Pr; M M¢Pr ) Vot Mgpr, D0
& Y L 2
+ ¢ c(Du(Dprl (M + M2¢Pr1 )OD¢V
_Qiz _ $RPr)
0z2  MPr
82 PI‘2 2 PI‘2 2
" 312[ pr, 200V yppa PV
1 » R,
+M2¢PI'1 £¢V Mvh£¢:|,
(94)
where
F = [ Dy Dor, + 622 DDy, + ——— DD, | V2
1 = | Dy Der, ¢Pr1 b0 b, N
Q 2 82 ¢RPI‘2
822 MPI‘l
= (DDy -~ DyV? - MDV?) Dy, — %:o:ow2
82 0? R
2 K 2
+QVSS - QD5 — 1Dy + RV},
(95)

Equation (91) is linear problem. We get critical Rayleigh
number for the onset of oscillatory convection by using the
zeroth-order solution wy in (91). At O(€?), Ny = 0 and
Liwy = 0 gives

0A 1L 0A 1L 0A IR 0A R
_ = — = 96
o Veax % o ax % 09

where vy = (dw/dq),—y,. is the group velocity and is real.
Hence from (92), we get w; = 0. From equation of continuity
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we find that u; = 0. Substituting the zeroth-order and first-
order approximation into (56) and (58) we get,

2 2
2 L
91 le:(|A1L| +|A1R| )tl‘f‘a]}‘i‘ﬁ]l }stnz,

164
vV = 0,

H, =0,

i Prz 1 1 2 2 .

H, = —— —|(|A A sin 27z,

% = Tiges Pr, [( €2>(| il = 1Arl?)
PI'2 1 ; 1 :

H :27.[27 7A2 21(q0cx+w(,ct)+ AZ 2i(GocX—Woct)

a Pr, [ezes 1€ eyer 1R€

1 .
+ e»{)AlLAlReZl%cx + C.C.:| N
2
(97)

(L
4ngc (%)

where t; = (1/4n%)(1/e; + 1/ef), J1 = A1 Ajpe¥@t, ey =
(47% + 2iwoe), and es = (4Mq?2. + 2i¢wocPry/Pry) and ef, eX
and J;* are complex conjugate of e, es and J;, respectively.

Equation (93) is solvable when £Lowy = 0, one requires
that its right-hand side be orthogonal to wy, which is ensured
that if the coefficients of sin 7z in N; — L, w, are equal to zero.
This implies that

0A1L ( 0 d ) AL
A +A — |A A — A5A
0 oT 1 or — Vg ox 2L — 27555 X2 3A41L
+ Mgl AL PArL + As|ARIPArL = 0,
0A R d d *Ar
Ao 5T + Ay (aT Vg BX)AZR -N—- ax2 — AsAR
+ A4l ARIPAsr + As| Ay PArg = 0,
(98)
where
1 Prz 2 2
A() = (1\/12(/5131‘16162 + eye3 + ¢Fneleg + Q7T )6oc
_ Rocqgc(pprz
MPI'1

PI'2 (4] PI'Z e
Ay =82 —+ + ,
b o [63¢Pr1 M2Pr;  M2$Pr }

A, = 4q(2)c [6263 + Me36§c + Aelééc + e|e;

M

A
+Mejes + —ey82, + Qn? — R],

M
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As = e,

ngc
mtPr: (1 1
QMP%e (ez ei‘)

PR (1, 7o
Pr{ es \ 82 ex

g
||

R
— 2Q7T4 ) + Wﬂzqgctlez,

m* Pr3 1 1
Ae = O— 2, | = - =
> QMP%e (ez egk)
Qn* Pr3 1 1
— 7+7
ngc Pr e’ - ) e e

R 2e<t+i>
M3 Goce2\ 11 eles .

(99)

Here e; = (iw/M?¢Pr+(A/M)6*+1/MD,). It should be noted
that A and A are of order € and A,; and A,y are of order
€2 If woc = 01in Ay, Ay, Az, and Ay then these expressions
match with the coefficients Ao, A1, A2, and A3 of Ginzburg-
Landau equation at the onset of stationary convection. From
(96), we get A1L(&',T) and Ar(ny’, T), where & = v,7 +
X, " = vt — X. Equations (98) can be written as

0A 0A 0A
2V Ay 5 2L A 871"L + Ay aXIZL +A3An
g (100)
- (1\4|AlL|2 +A5|A1R|2)A1L>
0Asr 0A IR 0A IR
i —— = Mo + M=o HAAR
on oT 0X (101)

- (A4|A1R|2 +As |A1L|2>A1R-

Let £'€[0,1;], '€[0, ;] where I;, I, are periods of Ajp,
Ajr, respectively. Expansion (88) remains asymptotic for
times t = O(e~2) only if an appropriate solvability condition
holds. This condition obtained integrating (100) over " and
(101) over &', we get

AO aAlL =N\ aAlL +A3A1L
oT 0X? (102)
- (A4|A1L|2 +A5\A1R|2)A1L,
Ao A1 =N\ A1k + A3A 1R
oT 0X? (103)

— (Adl ARl + Asl A Aug.

5.1. Travelling Wave and Standing Wave Convection. To study
the stability regions of travelling waves and standing waves,
Coullet et al. [24]. we proceed as follows.

On dropping slow variable X from (102) and (103), we
get a pair of first ODE’s

dAiL _ As Ay

As Ay 2 As 2
aT A, Ay — A0A1L|A1L| A0A1L|A1R| ,  (104)

13
dAig  As Ay A 2
=—A —ARIA — —Ar|A .
a7 AIRT A 1R|A1R] Ao rIAL] (105)
Put
s M i Ds
B = A Y= a 0 = A (106)

Then (104) and (105) take the following form

dAlL

a7~ BAu+ Y ALlAL + 8 ALl Al (107)
dTlR =B AR +Y ArlAR? + 8 AlALl2 (108)

Consider A;; = are® and A = are® (we can write a
complex number in the amplitude and phase form), where
ar, = |AiLl, ¢ = arg(A;;) = tan~'(Im(A,.)/Re(A;1)) and
ag = |Arl, ¢r = arg(Ag) = tan~!(Im(A;r)/Re(A r)), here
ar, ag, ¢r, and ¢r are functions of time T since A;; and A;r
are functions of T. Thus a; and ag are positive functions.
Substituting the definitions of A;; and A g and ' = 31 +ifs,,
Y = 9y1 +1iy,, & = &1 +i6; into (107) and (108) we get,

dar,
ar L — Bap +yiarlar|® + diarlagl?, (109)
d
DL o+ prlasl? + Salanl? (110)
dag
¥Td R — Brag + yraglagl? + 8,agla; |, (111)
d
S8 o+ prlanl” + Salas (112)

Equations (109) and (111) not contain phase term, so we take
these two equations for the future discussions. We have (109)
and (111) as

da
d—jf = Biar + ylai + 8161%2,
d (113)
a
d—; = Brar + ylai +61a2,
since ay, and ag are positive functions. Put
da da
diif = Fi(ar,ar), dillj = Fy(ar, ag). (114)

Now we discuss the stability of equilibrium points of (114).
We get four equilibrium points like (ar, ar) = (0,0) (conduc-
tion state), (ar,ar) = (ar,0) (ap = amplitude of left travel-
ling waves, here we get F, = 0, and we get one condition
from F; = 0ie,a; = —Pi/y1 (= |AiL|?)), (ar,ar) = (0,
ar) (ar = amplitude of right travelling waves, here we
get F; = 0, and we get one condition from F, = 0 ie,
alzz = —Bi/y1 (= |A1r|?)), and for a; # 0 and ag # 0 we get
(ar,ar) = (=f1/(y1+81), —f1/(y1+61)) (this gives condition
for standing waves. At standing waves we have A; = Ag, so
ar = ag). For the pair of (104) and (105), we do not get
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ar # ag # 0 (modulated waves). Now the Jacobian of F; and
F, is given by

oF, O

aaL aaR

9F 9F,

aaL 8aR

(115)

If real parts of all eigenvalues of the Jacobian are
negative at an equilibrium point, then that point is a stable
equilibrium (Lyapunov’s theorem or principle of linearized
stability). Some valuable conditions for travelling waves and
standing waves are travelling waves are stable if 5; >0, y; <0
and §; < y; < 0. Standing waves are stable if §; > 0, y; <0
and (i) if §; > 0, then —y; > &; > 0 and (ii) if §; < 0, then
-1 > —81 > 0.

The stability regions of travelling waves and standing
waves are summarized in Figure 6. Here E is total amplitude
and defined as E = a? + a%. We do not distinguish between
left travelling waves and right travelling waves. For rest state
(steady state) E = 0, for travelling waves E = —p;/y,, for
standing waves E = —2f1/(y1 + ¢1). Travelling waves are
supercritical if y; < 0 and standing waves are supercritical
if y1 + ¢1 < 0. Figure 6(a) is drawn for stable travelling wave
conditions and Figure 6(b) is drawn for stable standing wave
conditions in (i, E)-plane. The symbols (-, —) and (+,+)
in Figures 6(a) and 6(b) indicate that both roots of Jacobian
are negative and at least one root is positive between two
roots. In Figures 6(a) and 6(b), travelling wave solution and
standing wave solution bifurcate simultaneously from the
steady-state solution (8, = 0 at this bifurcation point).

In these Figures 6(a) and 6(b), steady-state solution is
stable for f; < 0 and unstable 3; > 0. These figures
show that for 81 > 0 both travelling waves and standing
waves are supercritical. When travelling waves and standing
waves bifurcate supercritically then at most one solution
among travelling waves and standing waves will be stable.
Thus, for f; > 0 (Figure 6(a)) travelling waves are stable
and (Figure 6(b)) standing waves are stable. In more detail
we reproduce results of the stability analysis of equilibrium
solutions in Figure 6(c), which is plotted in (yi,¢1)-plane.
From this figure we can observe that travelling waves are
subcritical for y; > 0 and standing waves are subcritical for
y1 + ¢1 > 0. In Figure 7, We study the stability regions of
travelling waves and standing waves at the onset of Hopf
bifurcation. The stability regions of standing waves and
travelling waves increases when Pr,/Pr; increases for fixed
parameters. For a fixed Pr; if we get initially travelling waves
at the onset of oscillatory convection then they are replaced
by standing waves as Q increases.

5.2. Long Wavelength Instabilities for the Onset of Travelling
Wave Convection (Benjamin-Feir Instability). For right trav-
elling wave Ap(X,T) = A(X,T) and AL(X,T) = 0, for left
travelling wave Ag(X,T) = 0 and AL (X, T) = A(X, T). Thus
for travelling waves we get a single amplitude equation from
(102) and (103), given as

0A A

Ay — AsA+ AyAPA =0, 116
o7 Magxa — M 4|Al 0 (116)

Ao

International Journal of Geophysics

For standing waves A;(X,T) = Air(X,T) = A(X,T) and
we get a single amplitude equation from (102) and (103),
given as

2
0A Aza—A MAsA+ (Mg + As)|APA =0, (117)

Aogr oX?2

Equation (117) possesses a family of planar wave solutions
and solutions containing phase singular points, which
describes weakly nonlinear wave phenomena [25]. We study
the Benjamin-Feir instability of travelling waves from com-
plex Ginzburg- Landau equation (116) can be written as

= o= 2 118
M e A paryiara, (118)

where & = & + i, B = p1+ifa, y = y1 + iys. The
phase winding solutions are obtained by substituting A =

A,el®1X=00T) into (118), and equating real and imaginary
parts we get

2
ol =&8q; - Py’

dw =88g92 — B+ 12 (B — E18q2) 1!

(119)

Here A, is constant and & Go = 9X — qoc. We consider a mod-
ulated solution in the form: A(X,T) = A(X, T)e/(04.X-0wT)
Substituting the modulated into (118) which gives

8qo f]

956, |37z

g% = ()’l+i)’2)|:(ﬁl
(120)

. 0 2\~
+ (y1 +iy2) <8X2 +2idq, BX)A'

It is possible to conduct a general investigation of the
linear stability of A(X, T), but this is very difficult task, and
therefore our primary concern here is to treat the stability of
the uniformly oscillating solution A,. Inserting A = A, + 7 +
iv into (120) and equating real and imaginary parts we get

8ﬁ ZN aT;
o = 206 - ot 1 3 - 200, )
(121)
ou ov
- Ez (28qga)( + a)(z)
W _ =22(P1 — 0q581) o PV
oT " 46 {2005y + 5%
(122)
d*u ov
+£2(8X2 28qga)()

Consider (2, V) = (U, V)eST cos gxX and S in the growth rate
of disturbances. Using solutions of #, ¥, and g, = 0 into
(121) and (122) we get,

(S+2B1+&4g%)U — qx&V =0, (123)

(S+qx&)V + (2B1yayr ' +qx&) U =0, (124)
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FIGURE 6: (a, b, ¢) are typical diagrams showing the stability of equilibrium solutions SS (steady state), SW (standing waves), and TW
(travelling waves). On solid lines equilibrium solutions are stable and on dotted lines they are unstable.

solving (123) and (124), we get
§*+28(B1 +&1qx) +qx61 (281 + &i1g%)

+ax& 2By + axba)-
There will be an instability only when a root of (125) is
possible, that is,

2B1 (&1 + y260y7") +qx (88 +&3) <0, (126)

B1 > 0 when travelling waves or standing waves are stable.
The instability of waves against long wavelength longitudinal
modes is often called the Benjamin-Feir instability. Thus
we get Benjamin-Feir instability for travelling waves when
&+ y2&/y1 < 0. Similarly by considering (118) instead of
(117) and proceeding in the same way we get Benjamin-Feir
instability for standing waves when & + (y2+82)&/(y1+61) <
0.

(125)

6. Conclusions

In this paper we have considered both linear and weakly
nonlinear analysis of magnetoconvection in a sparsely packed

porous medium in Earth’s outer core by using free-free
(stress-free) boundary conditions. Even though free-free
boundary conditions cannot be achieved in laboratory, one
can use it in geophysical fluid dynamic applications to Earth’s
outer core since they allow simple trigonometric eigenfunc-
tions. Our goal is to identify the region of parameter values,
for which rolls emerge at the onset of convection.

Following Chandrasekhar [2], we have described the
stationary convection and oscillatory convection as curves
Ri(q) and R,(q,Pry) versus wave numbers. The critical
wave numbers for stationary convection and oscillatory
convection are gsc = goc = 71/+/2. For the problem of mag-
netoconvection in a sparsely packed porous medium, we
get Takens-Bogdanov bifurcation point and codimension-
two bifurcation point. In the case of linear theory both
marginal and overstable motions are discussed. In Figures 1
and 2, is shown that the effect of Chandrasekhar number
and porous parameter is to make the system more stable.
By drawing stability boundaries in the Rayleigh number
plane it is shown that the effect of magnetic field and
porous parameter is to decrease the region of stabilities.
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F1GURE 7: Figures (a—d), are plotted for Pr,/Pr, = 6,12, 18, and 24, respectively, and for fixed parameters D, = 1500, A = 0.85, ¢ = 0.9, and
M = 0.9. Stability regions of steady state (SS), travelling waves (TW), and standing waves (SW) are plotted (Q, Pr;)-plane.

In the nonlinear equation (60), Ao = 0 gives the Takens-
Bogdanov bifurcation point at g; = ¢s and when Ay = 0,
(60) is not valid. The pitchfork bifurcation is supercritical
if A3 > 0 subcritical if A3 < 0. and we get tricritical point
if \s = 0. We have obtained from (60), long wave length
instabilities, namely, Eckhaus and Zigzag instabilities. From
(60) which is valid only for A3 > 0, we have calculated Nusselt
number Nu and studied heat transport by convection. We
have also derived two one-dimensional nonlinear coupled
Ginzburg-Landau type equations, namely, (98) at the onset
of oscillatory convection at supercritical Hopf bifurcation.
We have computed stability regions of SW and TW at both
Hopf bifurcation. The conditions for SW and TW are A} =
Arand A = 0 or Ag = 0, respectively. TW exist if [A;]? =
—p1/y1 > 0 and they are supercritical if y; < 0. SW exist if

|ALI? = |AR|* = =B1/(y1 + 81) > 0 and SW are supercritical
if y1 + &1 < 0. When both SW and TW are supercritical
then at most one equilibrium solution is stable. At Takens-
Bogdanov bifurcation point we get both TW and SW. By
deriving one-dimensional Ginzburg-Landau equations with
complex coefficients, namely, (116) and (117), we have
shown the existence of Benjamin-Feir-type of instability for
both TW and SW. Near the Takens-Bogdanov bifurcation
point the conducting state becomes unstable against both
stationary and oscillatory mode, that is, the real parts of two
eigenvalues pass through zero simultaneously. This violates
the assumption made for deriving amplitude equations (60)
and (98). Instead a new equation, which is second order in
time, has to be used near the Takens-Bogdanov bifurcation
point.
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