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porous medium with lateral mass flux. Free convection heat and 
mass transfer of non-Newtonian power law fluids with yield stress 
from a vertical flat plate in a saturated porous media was studied by 
Rami and Anna (2000). The flow of natural convection heat and 
mass transfer of non-Newtonian power law fluids with yield stress 
in porous media from a vertical plate with variable wall heat and 
mass fluxes was considered by Cheng (2006). Buoyant convection 
of power-law fluid in an enclosure filled with heat-generating 
porous media was considered by Kim and Hyun (2004). The study 
of free convection in boundary layer flows of power law fluids past 
a vertical flat plate with suction/injection was done by Sahu and 
Mathur (1996). Free convection from a horizontal line heat source in 
a power-law fluid-saturated porous medium was studied by 
Nakayama (1993). 

1Introduction

Free and forced convection flows in a fluid saturated porous 
media are of great interest because of their various engineering, 
scientific and industrial applications in heat and mass transfer which 
occurs in the fields of design of chemical processing equipment, 
formation and dispersion of fog, distributions of temperature and 
moisture over agricultural fields and groves of fruit trees and 
damage of crops due to freezing and pollution of the environment, 
grain storage systems, heat pipes, packed microsphere insulation, 
distillation towers, ion exchange columns, subterranean chemical 
waste migration, solar power absorbers etc. A number of studies 
have been reported in the literature focusing on the problem of 
combined heat and mass transfer in porous media. The analysis of 
convective transport in a porous medium with the inclusion of non-
Darcian effects has also been a matter of study in recent years. Due 
to its important applications in many fields, a full understanding for 
combined heat and mass transfer by non-Darcy natural convection 
from a heated flat surface embedded in fluid saturated porous 
medium is meaningful. The inertia effect is expected to be important 
at a higher flow rate and it can be accounted for through the addition 
of a velocity squared term in the momentum equation, which is 
known as the Forchheimer’s extension of the Darcy law. A detailed 
review of convective heat transfer in Darcian and non-Darcian 
porous media including an exhaustive list of references can be found 
in the book by Nield and Bejan (2006). 

There has been a renewed interest in MHD flow and heat 
transfer in porous and clear domains due to the important effect of 
magnetic field on the boundary layer flow control and on the 
performance of many systems using electrically conducting fluid 
such as MHD power generators, the cooling of nuclear reactors, 
plasma studies, purification of molten metals from non-metallic 
inclusion, geothermal energy extractions etc. Many problems of 
MHD Darcian and non-Darcian flow of Newtonian as well as non-
Newtonian fluid in porous media have been analyzed and reported 
in the literature. Non-Darcy mixed convection in power-law fluids 
along a non-isothermal horizontal surface in a porous medium has 
been analyzed by Kumari and Nath (2004). The Effect of magnetic 
field on non-Darcy axisymmetric free convection in a power-law 
fluid saturated porous medium with variable permeability has been 
considered by Mansour and El-Shaer (2002).  

The study of flow, heat and mass transfer in non-Newtonian 
fluids has gained much attention from the researchers because of its 
engineering and industrial applications such as the thermal design of 
industrial equipment dealing with molten plastics, polymeric liquids, 
foodstuffs, or slurries. Also, the non-linear behavior of non-
Newtonian fluids in porous matrix is quite different from that of 
Newtonian fluids in porous media. The prediction of heat or mass 
transfer characteristics about natural convection of non-Newtonian 
fluids in porous media is very important due to its practical 
engineering applications, such as oil recovery and food processing. 
Several investigators have extended the convection of heat and mass 
transfer problems to fluids exhibiting non-Newtonian rheology. 
Different models have been proposed to explain the behavior of 
non-Newtonian fluids. Among these, the power-law model, which is 
merely an empirical relationship between the stress and velocity 
gradients, has been successfully applied to non-Newtonian fluids 
experimentally. Chen and Chen (1988) have studied the natural 
convection of a non-Newtonian fluid about a horizontal cylinder and 
sphere in a porous medium. Pascal and Pascal (1997) have 
considered the free convection in a non-Newtonian fluid saturated 

Stratification of fluid arises due to temperature variations, 
concentration differences or the presence of different fluids. In 
practical situations where the heat and mass transfer mechanisms 
run parallel, it is interesting to analyze the effect of double 
stratification (stratification of the medium with respect to the 
thermal and concentration fields) on the convective transport in a 
fluid. The analysis of free convection in a doubly stratified medium 
is a fundamentally interesting and important problem because of its 
broad range of engineering applications. The applications include 
heat rejection into the environment such as lakes, rivers and the 
seas; thermal energy storage systems such as solar ponds and heat 
transfer from thermal sources such as the condensers of power 
plants. Cheng (2009) considered the combined heat and mass 
transfer in natural convection flow from a vertical wavy surface in a 
power-law fluid saturated porous medium with thermal and mass 
stratification. Laxmi Narayana and Murthy (2007) have considered 
free convective heat and mass transfer in a doubly stratified porous 
medium saturated with a power law fluid.  

From the literature survey, it seems that the problem of natural 
convection heat and mass transfer from vertical plate in non-Darcy                                                            
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porous media saturated with power-law fluids with double 
stratification and magnetic effects has not been investigated so far. 
Thus this work aims to study the effects of double stratification on 
natural convection in a power-law fluid saturated non-Darcy porous 
medium with uniform heat and mass flux. 

Nomenclature 

A  = slope of ambient temperature   
B  = slope of ambient concentration 

0B   = magnetic field strength 
C  = concentration  

0,∞C  = ambient concentration 

c    = emperical constant 
D   = solutal diffusivity  
f   = reduced stream function 
G   = modified Darcy parameter 
g   = gravitational acceleration 
K  = permeability constant 
k   = thermal conductivity 
Le  = lewis number 
M = magnetic parameter 
N  = buoyancy ratio 
n  = power-law index 

mw qq ,  = heat, Mass transfers from the plate 

xRa  = the Darcy-Rayleigh number 
T  = temperature 

0,∞T  = ambient temperature 

u, v  = Darcian Velocity components in x and y directions 
x,y   = coordinates along and normal to the plate 
Greek Symbols 
α  = thermal diffusivity 

CT ββ ,
  = coefficients of thermal and solutal expansion 

η   = similarity variable 
θ   = dimensionless temperature 
φ   = dimensionless concentration 
ν   = kinematic viscosity 

eμ  = magnetic permeability 
ρ  = density of the fluid 
ψ  = stream function 
σ   = electrical conductivity of the fluid 

21 , εε   = thermal and solutal stratification parameters 

Subscripts 
∞   ambient condition 
Superscript 
.′   differentiation with respect to η  

Mathematical Formulation 

Consider the two dimensional free convection flow of an 
electrically conducting fluid from the vertical flat plate in a doubly 
stratified non-Newtonian power-law fluid saturated non-Darcy 
porous medium. The x-axis is taken along the plate and y- axis 
normal to it. The physical model and coordinate systems are shown 
in Fig. 1. The porous medium is considered to be homogeneous and 
isotropic (i.e. uniform with a constant porosity and permeability) 
and is saturated with a fluid which is in local thermodynamic 
equilibrium with the solid matrix. The fluid has constant properties 
except the density in the buoyancy term of the balance of 

momentum equation. The fluid flow is moderate and the 
permeability of the medium is low so that the Forchheimer flow 
model is applicable and the boundary effect is neglected. The plate 
is maintained at constant heat flux and constant mass flux . 
The ambient medium is assumed to be vertically non-linearly 
stratified with respect to both temperature and concentration in the 
form 

wq mq

( ) mxATxT += ∞∞ 0, ( ) lxBCxC += ∞∞ 0,
 and  respectively, 

where A and B are constants and varied to alter the intensity of 
stratification in the medium. A uniform magnetic field is applied 
normal to the plate. The magnetic Reynolds number is assumed to 
be small so that the induced magnetic field can be neglected.  

 

                 
Figure 1. Physical model and coordinate system. 

 
 Using the Boussinesq and boundary layer approximations, the 

governing equations for the power-law fluid are given by 
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where u and v are Darcian velocity components along x and y 
directions respectively, T is the temperature, C is the concentration, 
n is the power-law index, K is the permeability, c is an empirical 
constant, g is the acceleration due to gravity, ν is the kinematic 
viscosity, ρ is the density, α is  the thermal diffusivity and D is the 
solutal diffusivity of the medium, σ is the electrical conductivity of 

the fluid, eμ is the magnetic permeability,  is the strength of the 

magnetic field,  is the coefficient of thermal expansion, and  
is the coefficient of solutal expansion. 
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( ) ( ) ( ) 10,10,00 −=′−=′= φθf                                              (11a) 
where k is the thermal conductivity of the fluid.                                                                                                                              In view of the continuity of Eq. (1), we introduce the stream 
function ψ by ( ) ( ) ( ) 0,0,0 =∞=∞=∞′ φθf                                              (11b) 
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The flow Eq. (8) coupled with the energy and concentration 
Eqs. (9) and (10) constitute a set of nonlinear non-homogeneous 
differential equation for which closed-form solution cannot be 
obtained. Hence, the problem has been solved numerically using 
shooting technique along with fourth order Runge-Kutta 
integration. The basic idea of shooting method for solving 
boundary value problem is to try to find appropriate initial 
condition for the computed solution “hit the target”, so that the 
boundary conditions at other points are satisfied. Furthermore, the 
higher order non-linear differential equations are converted into 
simultaneous linear differential equations of first order and they 
are further transformed into initial valued problem applying the 
shooting method incorporating fourth order Runge-Kutta method. 
The iterative solution procedure was carried out until the error in 
the solution became less than a predefined tolerance level.  

 
Substituting Eq. (6) in Eqs. (2)-(4) and then using the following 
similarity  transformations 
 

( )

( )
( )

( )
( )

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

+

+

++

∞
−

=

∞
−

=

==

)12(

)12(

)12()12(

)(

,
)(

,,

nn

nn

nnnn

x
Ra

xmq

xCCD

x
Ra

xwq

xTTk

f
x

Ra
x

Ra
y

x

ηφ

ηθ

ηαψη

       (7) 

 The non-linear differential equations (8)-(10) are converted into 
the following system of linear differential equations of first order by 
the substitution  

we get the following system of equations 
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is the magnetic parameter, 

 
The boundary conditions in terms of  are  654321 ,,,,, zzzzzz
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The boundary conditions (5) in terms of  φθ and,f  become 
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process is continued until the agreement between the calculated and 
the given condition at 

The effect of non-Darcy parameter on the non-dimensional 
velocitymaxηη = is within the specified degree of 

accuracy. 
, temperature  and concentration )(ηφ)(ηθ)(' ηf  for N = 0.5, 

M = 1, Le = 0.5, n = 0.5, ε1 = 0.2, ε2 = 0.8 is plotted in Figs. 11-13. It 
is observed from Fig. 11 that velocity of the fluid is decreased with 
increase in the value of the non-Darcy parameter. The increase in 
non-Darcy parameter implies that the porous medium is offering 
more resistance to the fluid flow. This results in reduction in the 
velocity profiles. It can be noted from Fig. 12 that by increasing the 
value of the non-Darcy parameter, there is an increase in the 
temperature in the fluid medium. It can be seen from Fig. 13 that the 
concentration of the fluid is increased if there is an increase in the 
value of the non-Darcy parameter. The increase in non-Darcy 
parameter reduces the intensity of the flow and increases the thermal 
and concentration boundary layer thicknesses. 

In the present study, has been suitably chosen at each time 
such that the velocity, temperature and concentration profiles 
approach zero at the outer edge of the boundary layer. Extensive 
calculations have been performed to obtain the wall velocity, 
temperature and concentration fields for a wide range of parameters. 
The effect of thermal stratification parameter, solutal stratification 
parameter, magnetic parameter, non-Darcy parameter, and power 
law index parameter is studied on the velocity, temperature and 
concentration fields for uniform wall heat and mass flux condition is 
plotted for some selected combinations of parameter values. 

maxη

, temperature The non-dimensional velocity )(ηθ)(' ηf  and 
concentration Results and Discussion )(ηφ  for N = 0.5, M = 1, Le = 0.5, G = 0.2, , 

 with a variation in power law index parameter is plotted in 
Figs. 14-16. It is observed from Fig. 14 that the fluid velocity is 
increased with increase in the value of the power law index parameter. 
The effect of the increasing values of the power law index n is to 
increase the horizontal boundary layer thickness. That is, the thickness 
is much smaller for shear thinning (pseudo plastic; n < 1) fluids than 
that of shear thickening (dilatants; n > 1) fluids. In the case of a shear 
thinning fluid (n < 1), the shear rates near the walls are higher than 
those for a Newtonian fluid. It can be seen from Fig. 15 that the 
temperature in the fluid is decreased with increase in the value of the 
power law index parameter. Increasing the values of the power law 
index leads to thinning of the thermal boundary layer thickness. It can 
be found from Fig. 16 that the concentration of the fluid increases 
with increase in the value of the power law index parameter. 
Increasing the power-law index (n) tends to retard the flow and 
increase the solutal boundary-layer thickness. 

2.01 =ε
The non-dimensional velocity , temperature )(ηθ)(' ηf  and 

concentration 
8.02 =ε

)(ηφ  are  plotted  for N = 0.5, M = 1, Le = 0.5, n = 
0.5, G = 0.2, 4.02 =ε  in Figs. 2-4 with varying thermal 
stratification parameter. It can be observed from Fig. 2 that the 
velocity of the fluid decreases with the increase of thermal 
stratification parameter. The thermal stratification reduces the 
effective convective potential between the heated plate and the 
ambient fluid in the porous medium. Hence, the thermal 
stratification effect reduces the velocity in the boundary layer. It can 
be noted from Fig. 3 that the temperature of the fluid is decreased 
with the increase in the value of the thermal stratification parameter. 
When the thermal stratification effect is considered, the effective 
temperature difference between the plate and the ambient fluid will 
decrease. Therefore, the thermal boundary layer is thickened and the 
temperature is reduced. It can be found from Fig. 4 that the 
concentration of the fluid is increased with increase in the value of 
the thermal stratification parameter.  

Conclusions The effect of solutal stratification parameter on the non-
dimensional velocity , temperature  and concentration  )(ηθ)(' ηf In this paper, a boundary layer analysis for free convection heat 

and mass transfer along a vertical plate in a non-Darcy porous media 
saturated with power-law fluid with uniform heat and mass flux 
conditions in the presence of magnetic field and double stratification 
is presented. Using the similarity variables, the governing equations 
are transformed into a set of ordinary differential equations, where 
numerical solution has been presented for a wide range of 
parameters. The higher values of the thermal stratification parameter 
result in lower velocity and temperature distributions, but higher 
concentration distribution. The higher values of the solutal 
stratification parameter result in lower velocity and concentration 
distributions, but higher temperature distribution. An increase in the 
values of the magnetic parameter results in lower velocity 
distribution, but higher temperature and concentration distributions. 
The same nature can be found in the case of non-Darcy parameter. 
Also, the higher values of the power-law index number result in 
lower velocity and temperature distributions, but higher 
concentration distribution within the boundary layer. 

 for N = 0.5, M = 1, Le = 0.5, n = 0.5, G = 0.2, ε)(ηφ 1 = 0.8 is 
depicted in Figs. 5-7. It is observed from Fig. 5 that the fluid 
velocity is decreased with increase in the value of solutal 
stratification parameter. It can be seen from Fig. 6 that the 
temperature of the fluid in the medium is increased with increase in 
the value of the solutal stratification parameter. It can be found from 
Fig. 7 that the concentration of the fluid is decreased by increasing 
the value of the solutal stratification parameter. 

, temperature The variation of the non-dimensional velocity )(' ηf
 and concentration  )(ηφ)(ηθ  for N = 0.5, Le = 0.5, n = 0.5, G = 1.0, 

ε1 = 0.2, ε2 = 0.8 with magnetic parameter is shown in Figs. 8-10. It 
can be observed from Fig. 8 that the velocity of the fluid is 
decreased with increase in the value of the magnetic parameter. This 
is due to the fact that the introduction of a transverse magnetic field, 
normal to the flow direction, has a tendency to create the drag 
known as the Lorentz force which tends to resist the flow. Hence, 
the horizontal velocity profiles decrease as the magnetic parameter 
M increases. It can be found from Fig. 9 that increase in the value of 
the magnetic parameter increases the temperature of the fluid in the 
medium. It can be seen from Fig. 10 that the concentration of the 
fluid is increased by increasing the value of the magnetic parameter. 
As explained above, the transverse magnetic field gives rise to a 
resistive force known as the Lorentz force of an electrically 
conducting fluid. This force makes the fluid experience a resistance 
by increasing the friction between its layers and thus increases its 
temperature and concentration. 
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Figure 5. Velocity profiles for various values of ε2 with N = 0.5, M = 1, Le = 
0.5, n = 0.5, G = 0.2, ε1 = 0.8. 
 

 
Figure 2. Velocity profiles for various values of ε1 with N = 0.5, M = 1, Le = 
0.5, n = 0.5, G = 0.2, ε  = 0.4. 2

  
Figure 6. Temperature profiles for various values of ε2 with N = 0.5, M = 1, 
Le = 0.5, n = 0.5, G = 0.2, ε1 = 0.8. 
 

 
Figure 3. Temperature profiles for various values of ε1 with N = 0.5, M = 1, 
Le = 0.5, n = 0.5, G = 0.2, ε2 = 0.4. 

 
Figure 7. Concentration profiles for various values of ε2 with N = 0.5, M = 1, 
Le = 0.5, n = 0.5, G = 0.2, ε1 = 0.8.  
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  Figure 11. Velocity profiles for various values of G with N = 0.5, Le = 0.5, 
n = 0.5, M = 1, ε

Figure 8. Velocity profiles for various values of M with N = 0.5, Le = 0.5, 
n = 0.5, G = 1, ε1 = 0.2, ε2 = 0.8. 
 
 

 
Figure 9. Temperature profiles for various values of M with N = 0.5, Le = 0.5, 
n = 0.5, G = 1, ε1 = 0.2, ε2 = 0.8. 
 
 

 
Figure 10. Concentration profiles for various values of M with N = 0.5, 
Le = 0.5, n = 0.5, G = 1, ε1 = 0.2, ε2 = 0.8. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

1 = 0.2, ε2 = 0.8. 
 
 

 
Figure 12. Temperature profiles for various values of G with N = 0.5, Le = 0.5, 
n = 0.5, M = 1, ε1 = 0.2, ε2 = 0.8. 
 
 

 
Figure 13. Concentration profiles for various values of G with N = 0.5, Le = 
0.5, n = 0.5, M = 1, ε1 = 0.2, ε2 = 0.8. 
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Figure 16. Concentration profiles for various values of n with N = 0.5, 
Le = 0.5, G = 0.2, M = 1, ε

Figure 14. Velocity profiles for various values of n with N = 0.5, Le = 0.5, 
G = 0.2, M = 1, ε1 = 0.2, ε2 = 0.8.  
 
 

        
Figure 15. Temperature profiles for various values of n with N = 0.5, Le = 0.5, 
G = 0.2, M = 1, ε1 = 0.2, ε2 = 0.8. 
 

1 = 0.2, ε2 = 0.8. 
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