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Abstract The unsteady natural convective couple stress fluid flow over a semi-infinite
vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect.
The couple stress fluid flow model introduces the length dependent effect based on the
material constant and dynamic viscosity. Also, it introduces the biharmonic operator in
the Navier-Stokes equations, which is absent in the case of Newtonian fluids. The solution
to the time-dependent non-linear and coupled governing equations is carried out with an
unconditionally stable Crank-Nicolson type of numerical schemes. Numerical results for
the transient flow variables, the average wall shear stress, the Nusselt number, and the
Sherwood number are shown graphically for both generative and destructive reactions.
The time to reach the temporal maximum increases as the reaction constant K increases.
The average values of the wall shear stress and the heat transfer rate decrease as K
increases, while increase with the increase in the Sherwood number.
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Nomenclature

Bu, combined buoyancy ratio parameter;
C′, species concentration;
C, dimensionless species concentration;
Cf , dimensionless average skin-friction coef-

ficient;
Cf , dimensionless local skin-friction coeffi-

cient;
D binary diffusion coefficient;
GrC, mass Grashof number;
GrT, thermal Grashof number;
g, acceleration due to gravity;
K, dimensionless chemical reaction parame-

ter;

k, thermal conductivity;
k1, chemical reaction parameter;
Nu, dimensionless average Nusselt number;
NuX , dimensionless local Nusselt number;
Pr, Prandtl number;
R, dimensionless radial coordinate;
r, radial coordinate;
r0, radius of cylinder;
Sc, Schmidt number;
Sh, dimensionless average Sherwood number;
ShX , dimensionless local Sherwood number;
T ′, temperature;
T , dimensionless temperature;
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t′, time;
t, dimensionless time;
U, V , dimensionless velocity components along

the X- and R-directions;

u, v, velocity components along the x- and r-
directions;

X, dimensionless axial coordinate;
x, axial coordinate.

Greek symbols

α, thermal diffusivity;
βC, volumetric coefficient of expansion with

concentration;
βT, volumetric coefficient of thermal expan-

sion;

η, material constant;
μ, viscosity of the fluid;
ν, kinematic viscosity;
ρ, density.

Subscripts

w, condition on the wall;
i, designate grid point along the X-

direction;

∞, free stream condition;
j, designate grid point along the R-

direction.

Superscript

n, time step level.

1 Introduction

Natural convection flows along with chemical reaction effects play an important role in the
safety of nuclear reactors, combustion systems, and solar collectors and the metallurgical and
chemical engineering such as solidification of binary alloys, dispersion of dissolved materials
in crystal growth, drying and dehydration operations in chemical and food processing plants,
and combustion of atomized liquid fuels. They also fascinate many researchers for their ap-
plications in astrophysics. In view of the above applications, attempts are made to study the
free convective flow over a vertical cylinder with the first-order homogeneous chemical reaction
effects (a reaction is said to be of first-order if the rate of reaction is directly proportional to
the concentration itself, e.g., formation of smog[1]).

Apelblat[2], Andersson et al.[3], Chamkha[4], and Ganesan and Rani[5] studied the effects of
chemical reactions on the heat and mass transfer coefficients in a boundary layer flow under
different conditions. Stokes[6] generalized the classical Newtonian model to include the effects
of couple stresses in a way different from that of Eringen[7]. This is one of the several non-
Newtonian fluid theories developed in the twentieth century. In the theory, Stokes considered a
body enclosing a volume without considering the microstructure of the infinitesimal fluid volume
element. The set of all forces acting on an infinitesimal volume element was, in general, assumed
to be equivalent to a single resultant force together with a resultant couple. The moment of
the couple was assumed to be non-zero. With this assumption, Stokes proposed the theory
of couple stress fluids, allowing for the sustenance of couple stresses and the usual stresses.
Also, in the theory, the curvature twist rate tensor was proposed based on the pure kinematic
aspects of the rotation vector, and the couple stress was defined in terms of this curvature
twist rate tensor. Accordingly, in the balance of the linear momentum of the couple stress flow
model, the fourth-order derivatives of velocities were involved. Therefore, the separate angular
momentum equation need not be considered. These fluids can also sustain the existence of
body forces and body couples as usual. The stress tensor was no longer symmetric in this
theory. In comparison with other models developed for polar fluids, this couple stress model
has been more broadly applied because of its mathematical simplicity. In recent years, the
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couple stress fluid flow study has attracted many researchers due to its extensive industrial
and scientific applications similar to the micropolar fluids, e.g., squeezing and lubrication[8–11],
bio-fluid mechanics[12–13], magnetohydrodynamic (MHD) flows, and synthesis and plasticity of
chemical compounds. Umavathi and Malashetty[14] studied the couple stress fluid flow and heat
transfer characteristics of Oberbeck convection in a vertical porous stratum. Rani et al.[15] gave
the numerical results for the transient natural convective couple stress fluid flow past a vertical
cylinder. In the presence of both homogeneous and heterogeneous chemical reactions with the
slip condition, Alemayehu and Radhakrishnamacharya[16] studied the dispersion of a solute in
the peristaltic motion of a couple stress fluid through a porous medium. They observed that the
effective dispersion coefficient increased with the increase in the permeability parameter while
decreased with the increases in the homogeneous chemical reaction, the couple stress, and the
slip and heterogeneous reaction parameters. In the presence of chemical reactions, recently,
Hayat et al.[17] analyzed the transient three-dimensional flow of the couple stress fluid over a
stretched surface.

It can be noted, from the past studies, that the transient of a couple stress fluid flow past
a heated vertical cylinder with chemical reaction effects has been paid very little attention.
Therefore, the present study aims to study the boundary layer region developed by an isother-
mal vertical cylinder, which is kept in a couple stress fluid with the first-order homogeneous
chemical reaction effect. A chemically reactive species is assumed to be emitted from the cylin-
der surface in a flow field. This species undergoes an isothermal homogeneous chemical reaction
and spreads into the couple stress fluid. The concentration distribution of these species in the
flow field is to be simulated in this study. The surface temperature and surface concentration
are assumed to be higher than those of the ambient fluid. The non-dimensional unsteady non-
linear partial differential equations which govern the momentum, heat, and mass transfer are
solved numerically with the help of Thomas and pentadiagonal algorithms. The transient ef-
fects of the couple stress fluid based on the flow profiles with time for different non-dimensional
numbers are analyzed.

A mathematical description about the problem is given in Section 2. Where mass, momen-
tum, energy, and concentration governing equations are derived and made to be dimensionless.
Section 3 deals with the numerical schemes for solving the above unsteady coupled non-linear
governing equations. Section 4 details the unsteady nature of the flow variable, the average
momentum, and the heat and mass transfer coefficients, and a comparison between the couple
stress fluid flow and the Newtonian fluid flow. Finally, the summary of the present work is
given in Section 5.

2 Formulation of problem

The combined heat and mass transfer boundary layer flow of a couple stress viscous in-
compressible fluid past an uniformly heated semi-infinite vertical cylinder with the radius r0 is
considered. The x-axis is measured from the leading edge of the cylinder, where the boundary
layer thickness is zero, and is taken along the axis of the cylinder. The radial coordinate r is
considered to be perpendicular to the axis of the cylinder. The fluid temperature and concen-
tration that are surrounding the cylinder are assumed to be the ambient temperature T ′∞ and
the concentration C′

∞, respectively. Initially (t′ = 0), the cylinder and the fluid are kept at T ′
∞

and C′∞, respectively. As t′ > 0, the temperature and concentration of the cylinder are raised
to T ′

w (> T ′
∞) and C′

w (> C′
∞), respectively. A homogeneous first-order chemical reaction is

assumed to exist, and changes the concentration of a species in the flow domain. But the level
of the species concentration is assumed to be very low, and in this reaction, the reactive compo-
nent given off by the surface occurs in a very dilute form. Thus, the heat generated during the
chemical reaction is negligible. It is assumed that the effect of the viscous dissipation is negli-
gible in the heat transport equation since the flow velocity magnitude is expected to be small.
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In comparison with other chemical species, which are presented in fluids, it is assumed that the
diffusing species concentration C′ in the binary mixture is very small. Therefore, the interfacial
velocity at the cylinder surface due to the mass diffusion process is negligible. With the above
assumptions, the governing boundary layer equations with Boussinesq’s approximation are as
follows:

(i) Conservation of mass

∂(ru)
∂x

+
∂(rv)
∂r

= 0. (1)

(ii) Conservation of momentum

ρ
(∂u
∂t′

+ u
∂u

∂x
+ v

∂u

∂r

)

= ρgβT(T ′ − T ′
∞) + ρgβC(C′ − C′

∞) +
1
r

∂

∂r

(
μr
∂u

∂r

)
− η∇4u. (2)

(iii) Energy equation

∂T ′

∂t′
+ u

∂T ′

∂x
+ v

∂T ′

∂r
=
α

r

∂

∂r

(
r
∂T ′

∂r

)
. (3)

(iv) Species concentration equation

∂C′

∂t′
+ u

∂C′

∂x
+ v

∂C′

∂r
=
D

r

∂

∂r

(
r
∂C′

∂r

)
− k1C

′. (4)

The material constant η, which has the dimension of momentum, and the biharmonic op-
erator (∇4 = ∇2∇2) are included at the right-hand side of Eq. (2) due to the property of the
couple stress fluid flow. Usually, the ratio of the material constants η and μ has the dimension
of the length square, i.e., r20

[18].
Stokes[18] mainly proposed two types of boundary conditions, i.e., the couple stresses vanish

on the boundary and the fluid vorticity on the boundary is equal to the rotational velocity of
the boundary. The present problem is solved based on the later boundary condition. In view
of this, the relevant initial and boundary conditions are given by

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

t′ � 0: u = 0, v = 0, T ′ = T ′
∞, C′ = C′

∞ for all x and r,
t′ > 0: u = 0, v = 0, T ′ = T ′

w, C′ = C′
w at r = r0,

u = 0, v = 0, T ′ = T ′
∞, C′ = C′

∞ at x = 0,
u→ 0, v → 0, T ′ → T ′

∞, C′ → C′
∞ as r → ∞

(5)

and

∂u

∂r
=
∂v

∂x
at r = r0 and as r → ∞. (6)

By introducing the dimensionless quantities
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X = Gr−1
T

x

r0
, R =

r

r0
, U = Gr−1

T

ur0
ν
, V =

vr0
ν
,

t =
νt′

r20
, T =

T ′ − T ′
∞

T ′
w − T ′∞

, C =
C′ − C′

∞
C′

w − C′∞
, GrT =

gβTr
3
0(T

′
w − T ′

∞)
ν2

,

GrC =
gβCr

3
0(C

′
w − C′

∞)
ν2

, P r =
ν

α
, Sc =

ν

D
,

Bu =
GrC
GrT

, K =
k1r

2
0

ν
, r0 =

( η
μ

) 1
2
,

(7)
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which are explained in the nomenclature in Eqs. (1)–(4), the following equations can be obtained:

∂U

∂X
+
∂V

∂R
+
V

R
= 0, (8)

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂R

=T +BuC +
(∂2U

∂R2
+

1
R

∂U

∂R

)
−

( 1
R3

∂U

∂R
− 1
R2

∂2U

∂R2
+

2
R

∂3U

∂R3
+
∂4U

∂R4

)
, (9)

∂T

∂t
+ U

∂T

∂X
+ V

∂T

∂R
=

1
Pr

(∂2T

∂R2
+

1
R

∂T

∂R

)
, (10)

∂C

∂t
+ U

∂C

∂X
+ V

∂C

∂R
=

1
Sc

(∂2C

∂R2
+

1
R

∂C

∂R

)
−KC. (11)

The corresponding initial and boundary conditions in dimensionless quantities are given by

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t � 0: U = 0, V = 0, T = 0, C = 0 for all X and R,

t > 0: U = 0, V = 0, T = 1, C = 1 at R = 1,

U = 0, V = 0, T = 0, C = 0 at X = 0,

U → 0, V → 0, T → 0, C → 0 as R → ∞.

(12)

Similarly, Eq. (6) in dimensionless quantities is given by

∂U

∂R
=

1
Gr2T

∂V

∂X
at R = 1 and as R → ∞. (13)

3 Solution method

An implicit finite difference scheme of the Crank-Nicolson type is used to solve the unsteady
coupled nonlinear equations (8)–(11). The finite difference equations corresponding to Eqs. (8)–
(11) are as follows:

Un+1
i,j − Un+1

i−1,j + Un
i,j − Un

i−1,j

2ΔX
+
V n+1

i,j − V n+1
i,j−1 + V n

i,j − V n
i,j−1

2ΔR

+
V n+1

i,j

1 + (j − 1)ΔR
= 0, (14)

Un+1
i,j − Un

i,j

Δt
+

Un
i,j

2ΔX
(Un+1

i,j − Un+1
i−1,j + Un

i,j − Un
i−1,j)

+
V n

i,j

4ΔR
(Un+1

i,j+1 − Un+1
i,j−1 + Un

i,j+1 − Un
i,j−1)
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=
T n+1

i,j + T n
i,j

2
+Bu

(Cn+1
i,j + Cn

i,j

2

)
+
Un+1

i,j+1 − Un+1
i,j−1 + Un

i,j+1 − Un
i,j−1

4(1 + (j − 1)ΔR)ΔR

+
Un+1

i,j−1 − 2Un+1
i,j + Un+1

i,j+1 + Un
i,j−1 − 2Un

i,j + Un
i,j+1

2(ΔR)2

− (Un+1
i,j+2 − 4Un+1

i,j+1 + 6Un+1
i,j − 4Un+1

i,j−1 + Un+1
i,j−2 + Un

i,j+2

− 4Un
i,j+1 + 6Un

i,j − 4Un
i,j−1 + Un

i,j−2)/(2(ΔR)4)

− Un+1
i,j+2 − 2Un+1

i,j+1 + 2Un+1
i,j−1 − Un+1

i,j−2 + Un
i,j+2 − 2Un

i,j+1 + 2Un
i,j−1 − Un

i,j−2

2(1 + (j − 1)ΔR)(ΔR)3

+
Un+1

i,j−1 − 2Un+1
i,j + Un+1

i,j+1 + Un
i,j−1 − 2Un

i,j + Un
i,j+1

2(1 + (j − 1)ΔR)2(ΔR)2

− Un+1
i,j+1 − Un+1

i,j−1 + Un
i,j+1 − Un

i,j−1

4(1 + (j − 1)ΔR)3ΔR
, (15)

T n+1
i,j − T n

i,j

Δt
+

Un
i,j

2ΔX
(T n+1

i,j − T n+1
i−1,j + T n

i,j − T n
i−1,j)

+
V n

i,j

4ΔR
(T n+1

i,j+1 − T n+1
i,j−1 + T n

i,j+1 − T n
i,j−1)

=
T n+1

i,j−1 − 2T n+1
i,j + T n+1

i,j+1 + T n
i,j−1 − 2T n

i,j + T n
i,j+1

2Pr(ΔR)2

+
T n+1

i,j+1 − T n+1
i,j−1 + T n

i,j+1 − T n
i,j−1

4Pr(1 + (j − 1)ΔR)ΔR
, (16)

Cn+1
i,j − Cn

i,j

Δt
+

Un
i,j

2ΔX
(Cn+1

i,j − Cn+1
i−1,j + Cn

i,j − Cn
i−1,j)

+
V n

i,j

4ΔR
(Cn+1

i,j+1 − Cn+1
i,j−1 + Cn

i,j+1 − Cn
i,j−1)

=
Cn+1

i,j−1 − 2Cn+1
i,j + Cn+1

i,j+1 + Cn
i,j−1 − 2Cn

i,j + Cn
i,j+1

2Sc(ΔR)2

+
Cn+1

i,j+1 − Cn+1
i,j−1 + Cn

i,j+1 − Cn
i,j−1

4Sc(1 + (j − 1)ΔR)ΔR
− K

2
(Cn+1

i,j + Cn
i,j). (17)

To solve these equations, the region of integration is considered as a rectangle composed of
the lines, indicating

Xmin = 0, Xmax = 1, Rmin = 1, Rmax = 31,

where Rmax corresponds to R = ∞ which lies very far from the momentum, energy, and
concentration boundary layers. In Eqs. (14)–(17), the subscripts i and j designate the grid
points along the X- and R-coordinates, respectively, where

X = iΔX, R = 1 + (j − 1)ΔR,
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and the superscript n implies the time step along the time t, where t = nΔt. Here, ΔX , ΔR,
and Δt denote the mesh sizes in the X- and R-coordinates and along the time t, respectively. To
obtain an economical and reliable grid system for the computations, a grid independency test
is performed and shown in Fig. 1. The steady-state velocity, temperature, and concentration
values obtained with the grid system of 100× 500 differ in the second decimal place from those
with the grid system of 50 × 250, and differ in the fifth decimal place from those with the grid
system of 200 × 1 000. Therefore, the grid system of 100 × 500 is selected for all subsequent
analyses with the mesh sizes in the X- and R-directions being 0.01 and 0.06, respectively. Also,
the time step size dependency has been tested, from which Δt = 0.01 has been obtained to be
able to get a reliable result.

Fig. 1 Grid independency test for velocity, temperature, and concentration profiles with Pr = 0.7,
Sc = 0.6, Bu = 1.0, and K = 0.2

The numerical procedure starts by solving the heat transport and concentration equations
(16)–(17), which provides the temperature and concentration fields, respectively. Then, the
solution to the momentum and continuity equations (15) and (14) provides the solution of the
velocity. Equations (15)–(17) at the (n+1)th iteration are given in the following tridiagonal
and pentadiagonal forms:

ai,jφ
n+1
i,j−1 + bi,jφ

n+1
i,j + ci,jφ

n+1
i,j+1 = di,j , (18)

Ai,jψ
n+1
i,j−2 +Bi,jψ

n+1
i,j−1 + Ci,jψ

n+1
i,j

+Di,jψ
n+1
i,j+1 + Ei,jψ

n+1
i,j+2 = Fi,j , (19)

where φ represents the dependent variables T and C, and ψ represents the velocity U . Therefore,
Eqs. (18) and (19) on a particular i-level at every internal nodal point constitute a tridiagonal
and pentadiagonal system of equations. The solution of such a system of equations was ob-
tained by Thomas[19] and pentadiagonal algorithms[20]. Explicitly, the velocity U is calculated
from Eq. (14). Until the convergence of 10−5 has been reached, the processes are repeated for
consecutive i-levels with many times of sweeping.

4 Results and discussion

For the validation, the temperature and concentration profiles of Newtonian fluids obtained
by the current numerical procedure are compared with the existing results of Chen and Yuh[21]

for

Sc = 0.2, P r = 0.7, Bu = 1.0, K = 0.0.
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The current results are found to be in good agreement with the previous results as shown in
Fig. 2.

In the present study, attention is paid to the homogeneous first-order chemical reaction
parameter K, which has the dimension of the reciprocal of time. The diffusing species can
be either destroyed or generated in the homogenous reaction. The couple stress fluid flows
with the chemical reaction are of great physical interest, and are to be treated as described
below. The finite difference equation (17) can be adjusted to meet these situations if one takes
(i) K > 0 for the destructive reaction and (ii) K < 0 for the generative reaction. Numerical
analysis is carried out for different K with Sc = 0.6 (water vapour) and 5.0 for Pr = 0.7 (air)
and Bu = 1.0. The obtained transient behavior of the dimensionless velocity, temperature,
concentration, average skin-friction coefficient, and heat and mass transfer rates are discussed
in detail in the succeeding subsections.

Fig. 2 Comparison of temperature and concentration profiles for Newtonian fluids with Sc = 0.2,
Pr = 0.7, Bu = 1.0, and K = 0.0

4.1 Velocity
The obtained transient velocity U at (1, 3.28) against t is shown in Fig. 3(a). Here, it is

observed that at the beginning, the velocity increases with time, reaches a temporal maximum,
then decreases, and at last reaches the asymptotic steady-state for both generative (K < 0) and
destructive (K > 0) reactions. At very early time (i.e., t� 1), the heat transfer is dominated by
conduction. Shortly later, there exists a period when the convective heat transfer rate becomes
meaningful with the increase in the upward velocity. When this transient period is almost
ending and just before the steady-state is about to be reached, there exist overshoots for the
velocities. For a generative reaction, it is observed that the time required to reach the steady-
state increases as K decreases since the decrease in K yields an increase in the concentration,
which gives an increase in the value of BuC in Eq. (9), resulting in an increased acceleration
of the upward flow and a longer time to get the steady-state. However, the opposite trend is
observed for the destructive reaction.

Figure 3(b) shows the simulated steady-state velocity profiles against R at X=1.0, where the
velocity profiles start with the zero value at the wall, reach their maxima, and then monoton-
ically decrease to zero along the radial coordinate for all t. From Fig. 3(b), it can be observed
that the velocity profiles reach their maximum values approximately at (1, 3.28). It is seen
that for both generative and destructive reactions, the velocity magnitude decreases with an
increase in K since the increase in K yields lower concentration near the wall (see Eq. (11)),
and it tends to decelerate the upward flow in association with the term BuC in the right-hand
side of Eq. (9).

It can be noted that the velocity decreases with an increase in Sc because the larger Sc
is, the smaller the concentration diffusion is, which yields a steeper concentration distribution
near the wall and that the concentration boundary layer is thinner than the velocity boundary
layer. Therefore, except in a region very near the wall, the value of BuC in Eq. (9) becomes
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very small, and it yields small acceleration for the upward velocity, resulting in a small velocity.
It is also noticed that the thickness of the velocity boundary layer increases with a decrease in
K for a generative reaction, while decreases with a decrease in K for a destructive reaction.
The reason is that in the generative reaction, the upward velocity gets a higher acceleration
term BuC in Eq. (9), but in the destructive system, the value of BuC is small.

Fig. 3 Simulated transient velocity at (1, 3.28) and steady-state velocity at X = 1.0

4.2 Temperature
The obtained transient temperature T with respect to t is shown at the point (1, 1.24) in

Fig. 4(a). Here, it is observed that at the beginning, the temperature profiles increase with
time, reach the temporal maxima, then decrease, and, again after a slight increase, attain the
steady-state asymptotically. The temperatures at other locations also exhibit somewhat similar
transient behaviors. Here, it is seen that the steady temperature value decreases with the
decrease in K for a fixed Sc. It comes from the fact that the decrease in K gives an increase in
the concentration, and, in turn, yields an increase in the upward velocity (see Eq. (9)), yielding
the decrease in the temperature near the wall.

The simulated steady-state temperature profiles at X = 1.0 against the radial coordinate are
shown in Fig. 4(b). The temperature profiles start with the hot wall temperature (T = 1), and
then monotonically decrease to zero along the radial coordinate. As seen before, a decrease in
K yields a decrease in the temperature. Also, the time taken for the temperature to reach the
steady-state increases as K decreases for a generative reaction, while decreases as K decreases
for a destructive reaction. It is also observed that the temperature increases as Sc increases
since a larger Sc means that the concentration diffusion is limited so that a higher concentration
is observed only near the wall and a lower concentration is seen in almost all the flow domains,

Fig. 4 Simulated transient temperature at (1, 1.24) and steady-state temperature at X = 1.0
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which gives slower upward flow and yields higher temperature.
4.3 Concentration

The obtained transient concentration C at the point (1, 1.36) against t is shown in Fig. 5(a),
where the concentration profiles increase with time at the beginning, reach the temporal max-
ima, then decrease and increase again, and after a slight increase, attain the steady-state asymp-
totically. It is observed that the temporal maximum is attained at an early state for smaller K.
Also, the time required for the concentration to reach the steady-state increases as Sc increases
for fixed K. The concentrations at other locations also exhibit somewhat similar transient be-
haviors. Here, it is seen that the steady concentration decreases with the increase in K for a
fixed Sc since larger K means lower concentration in the flow domain in Eq. (11).

The steady-state concentration profiles at X = 1.0 along the radial direction are shown in
Fig. 5(b). The concentration profiles start with the wall concentration (C = 1), and then mono-
tonically decrease to zero along R. As Sc increases, the concentration diffusion decreases and,
as explained before, the concentration profiles decrease. This is in association with the fact that
a larger Sc corresponds to a thinner concentration boundary layer relative to the momentum
boundary layer. This results in a larger concentration gradient very near the cylinder. For both
generative and destructive reactions, as the reaction parameter increases, the concentration
profiles decrease. Also, it is observed that for a generative reaction, as K decreases, the thick-
ness of the concentration boundary layer increases away from the hot wall. As K decreases, the
concentration increases (see Eq. (11)). Therefore, the term of BuC in Eq. (9) increases in the
flow field, yielding an increased velocity. This type of phenomena will be more notable with
smaller Sc when the concentration diffusion is more meaningful.

Fig. 5 Simulated transient concentration at (1, 1.36) and steady-state concentration at X = 1.0

4.4 Average skin-friction coefficient and heat and mass transfer rates
For engineering practices, the values of the skin-friction coefficient and the heat and mass

transfer rate are meaningful. The friction coefficient is an important parameter in the evaluation
of heat and mass transfer since it is closely related to the heat and mass transfer coefficients.
The increased skin friction is generally a handicap in many technical applications. However,
the increased heat and mass transfer can be exploited in some applications such as heat and
mass exchangers, but should be avoided in other situations such as gas turbine applications.
For the present problem, the skin-friction coefficient and the heat and mass transfer rates are
to be derived.

The wall shear stress at the wall can be denoted as

τw =
(
μ
∂u

∂r

)
r=r0

. (20)
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By introducing the dimensionless quantities given in Eq. (7), Eq. (20) can be rewritten as

τw =
μ2GrT
ρr20

(∂U
∂R

)
R=1

. (21)

Regarding μ2GrT
ρr2

0
as the characteristic shear stress, the local skin-friction coefficient can be

expressed as

Cf =
(∂U
∂R

)
R=1

. (22)

The average skin-friction coefficient can be obtained with the integration of the above equa-
tion from

X = 0 to X = 1,

which can be written as

Cf =
∫ 1

0

(∂U
∂R

)
R=1

dX. (23)

The local Nusselt number is given by

Nux =
q̇wr0

k(T ′
w − T ′∞)

, (24)

where the heat transfer q̇w is expressed by

q̇w = −k
(∂′T
∂r

)
r=r0

.

Thus, with the dimensionless quantities introduced in Eq. (7), Eq. (24) can be written as

NuX = −
(∂T
∂R

)
R=1

. (25)

The following average Nusselt number can be obtained by the integration of Eq. (25) with
respect to X from X = 0 to X = 1:

Nu = −
∫ 1

0

(∂T
∂R

)
R=1

dX. (26)

The Sherwood number can be written as follows:

Shx =
ṁwr0

D(C′
w − C′∞)

, (27)
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where the mass transfer rate ṁw is given by

ṁw = −D
(∂C′

∂r

)
r=r0

.

In the same way, Eq. (27) can be transformed to

ShX = −
(∂C
∂R

)
R=1

. (28)

The following average Sherwood number can be obtained with the integration of Eq. (28) with
respect to X :

Sh = −
∫ 1

0

(∂C
∂R

)
R=1

dX. (29)

The integrations expressed in Eqs. (23), (26), and (29) are evaluated, and the average non-
dimensional skin-friction coefficient and the heat and mass transfer rates for couple stress fluids
are plotted against the time in Figs. (6)–(8) for different parameters, respectively.

The effects of K on the average skin-friction coefficient are shown in Fig. 6, where for all
K, the average skin-friction coefficients increase with time at the beginning, attain the peak
values, and then after a slight decrease, reach the asymptotically steady-state. It is also seen
that for increasing values of K, the average skin-friction coefficient decreases. This result lies
in the same line with the velocity profiles plotted in Fig. 3. Also, it is noticed that the average
skin-friction decreases with the increase in Sc, which can be explained in the same line.

Figure 7 shows the effects of K on the average heat transfer rate, revealing that it has
the same trend as the average skin-friction with respect to Sc. It is observed that during an
earlier period of time, the average Nusselt numbers are almost the same for various parameters,
which shows that the initially heat conduction is dominant. In the steady-state, the average
heat transfer rate increases as K decreases in both the generative and destructive reactions.
Decreasing K speeds up the spatial decay of the temperature near the heated surface because
of the increased flow velocity near the wall, yielding an increase in the rate of heat transfer.

Fig. 6 Simulated average skin-friction Fig. 7 Simulated average Nusselt number

Figure 8 shows that during an earlier period of time, the mass diffusion is prevailing so that,
for a fixed Sc, the average Sherwood numbers are almost the same for different values of K.
Generally, in a steady-state, the Sherwood number increases with an increase in K since the
increase in K means the decrease in the concentration in the flow field, yielding an increase
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in the slope of the concentration distribution along the radial direction. Also, it is observed
that the average mass transfer rate increases with the increase in Sc, which is in line with the
increase in the concentration slope in Fig. 5(b).

Fig. 8 Simulated average Sherwood number

4.5 Comparison between couple stress and Newtonian fluids
Figure 9 illustrates the steady-state velocity U , temperature T , and concentration C contours

for couple stress and Newtonian fluid flows with fixed Sc = 0.6 and K = 0.2, where the velocity
of the couple stress fluid is smaller compared with that of the Newtonian fluid. This is due to
the fact that in couple stress fluid flows, there are additive diffusion terms (biharmonic terms)

Fig. 9 Steady-state velocity, temperature, and concentration contours with Sc = 0.6 and K = 0.2
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compared with Newtonian fluids (see Eq. (9)). Also, from Figs. 9(a) and 9(b), it is observed
that the steady-state velocity, temperature, and concentration of the couple stress fluid are
much different from those of the Newtonian fluid, which can be of importance in the study of
the behaviors of the couple stress fluids.

Table 1 compares the couple stress fluid flow with the Newtonian fluid flow in terms of the
time for the flow variables U , T , and C to reach the temporal maximum and the steady-state
time with different reaction constants K and Sc = 0.6 and 5.0, where (a) tabulates the values
for the couple stress fluid and (b) is for the Newtonian fluid. From (a), it is observed that
for all the flow variables, the time required to reach the temporal maximum increases with the
increases in K and Sc. From Table 1, it is noticed that the time for all the flow variables to
reach the temporal maximum for the couple stress fluid is larger than those for the Newtonian
fluid. It is also noticed that the time required for all the flow variables to reach the steady-state
and maximum velocity occurring at X = 1.0 for the couple stress fluid is smaller than that for
the Newtonian fluid.

Table 1 Time to reach temporal maxima of flow variables, steady-state, and maximum velocity at
X = 1.0 with different K and Sc for (a) couple stress fluid and (b) Newtonian fluid

K
Temporal maximum

Steady-state
Maximum velocity

U T C at X = 1.0

Sc = 0.6

−0.2 4.07 4.09 3.82 15.21 0.536 2

−0.1 4.19 4.22 3.89 11.38 0.511 6

(a) 0.2 4.50 4.53 4.09 8.11 0.465 6

0.5 4.81 4.82 4.25 10.80 0.437 1

Sc = 5.0 0.2 6.06 5.95 5.78 8.23 0.368 3

Sc = 0.6

−0.2 2.71 2.47 2.32 24.23 0.777 1

−0.1 2.73 2.50 2.33 18.12 0.750 2

(b) 0.2 2.79 2.55 2.34 8.24 0.741 5

0.5 2.82 2.58 2.36 13.72 0.725 7

Sc = 5.0 0.2 2.84 2.63 2.48 8.47 0.558 0

Table 2 demonstrates the comparison of the couple stress fluid and the Newtonian fluid in
terms of the average skin-friction coefficient and the average heat and mass transfer rates with
different values of K and Sc = 0.6 and 5.0, where (a) shows the values for the couple stress

Table 2 Average skin-friction coefficient, Nusselt number, and Sherwood number with different K
and Sc for (a) couple stress fluid and (b) Newtonian fluid

K Cf Nu Sh

Sc = 0.6

−0.2 0.489 0 0.791 6 0.614 4

−0.1 0.476 2 0.785 8 0.685 7

(a) 0.2 0.445 7 0.773 4 0.870 5

0.5 0.423 7 0.764 2 1.022 1

Sc = 5.0 0.2 0.348 0 0.729 2 1.583 7

Sc = 0.6

−0.2 1.703 3 0.958 6 0.866 1

−0.1 1.621 4 0.940 2 0.921 4

(b) 0.2 1.403 9 0.919 1 1.056 2

0.5 1.230 0 0.885 7 1.176 0

Sc = 5.0 0.2 1.132 4 0.782 4 1.914 4
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fluid and (b) is for the Newtonian fluid. From Table 2, it is observed that the average skin-
friction coefficient, the Nusselt number, and the Sherwood number of the couple stress fluid
are smaller than those of the Newtonian fluid for all values of K and Sc. This shows that the
heat and mass transfer characteristics of the couple stress fluid differ much from those of the
Newtonian fluids.

5 Conclusions

A numerical study is carried out for the transient natural convection boundary layer flow of
a couple stress, viscous, incompressible fluid over a semi-infinite heated vertical cylinder with
the first-order homogeneous chemical reaction effects. The governing equations are derived
and normalized based on the length dependent effect introduced by the couple stress fluid flow
where the biharmonic operator is involved. A Crank-Nicolson type of implicit methods is used
to solve the system of coupled governing equations. Thomas and pentadiagonal algorithms are
employed to treat the discretized equations. The computations are carried out for the generative
and destructive reactions for two different values of Sc with fixed Pr and Bu.

From the present study, it is obtained that the time required for the velocity, temperature,
and concentration profiles to reach the temporal maximum increases with the increase in K.
For a generative reaction, it is seen that as K increases, the velocity and the concentration
decrease while the temperature increases. Also, it is observed that with the increase in K,
the boundary layer thicknesses of the velocity and concentration decrease while the boundary
layer thickness of temperature increases. For the destructive reaction, it is noticed that as K
decreases, the velocity and the concentration increase, the temperature decreases, and the time
taken to reach the steady-state increases. The opposite trend is observed for the generative
reaction. As Sc increases, the velocity and the concentration decrease while the temperature
increases. As K increases for both the generative and the destructive reactions, the average
values of the skin-friction coefficient and the Nusselt number decrease, while the average value
of the Sherwood number increases. It is also observed that as Sc increases, the average skin-
friction coefficient and the average heat transfer rate decrease, while the average mass transfer
rate increases. Particularly, this study reveals that the results pertaining to the couple stress
fluid differ significantly from those of the Newtonian fluid. The deviations of the velocity, tem-
perature, and concentration profiles of the couple stress fluid flow from those of the Newtonian
fluid flow turn out to be considerable.

As the present study deals only with laminar flows, this work can be extended to the studies
on turbulent flows. The body forces like electromagnetic force arising from the MHD flows and
the body couples arising in the momentum equation due to the couple stress fluid can be taken
into the consideration. Also, the present model can be expanded into the studies of flow past
plates, wedges, cones, spheres, etc. based on required applications.
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