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The free convective flow of an incompressible micropolar fluid along permeable vertical plate under the convective boundary
condition is investigated. The Lie scaling group of transformations is applied to get the similarity representation for the system
of partial differential equations and then the resulting systems of equations are solved using spectral quasi-linearisation method.
A quantitative comparison of the numerical results is made with previously published results for special cases and the results are
found to be in good agreement. The results of the physical parameters on the developments of flow, temperature, concentration,
skinfriction, wall couple stress, heat transfer, and mass transfer characteristics along vertical plate are given and the salient features
are discussed.

1. Introduction

In the past few decades, most of the researchers considered
convective heat transfer problems with either constant wall
temperature (CWT), constant heat flux (CHF), or Newtonian
heating (NH) in a Newtonian and/or non-Newtonian fluid.
Recently, a novel mechanism for the heating process has
drawn the involvement of many researchers, namely, convec-
tive boundary condition (CBC), where the heat is supplied to
the convecting fluid through a bounding surface with a finite
heat capacity. Further, this results in the heat transfer rate
through the surface being proportional to the local difference
in temperature with the ambient conditions (Merkin [1]).
Besides, it ismore general and realistic, particularly in various
technologies and industrial operations such as transpiration
cooling process, textile drying, and laser pulse heating. Aziz
[2] reported similarity solution for thermal boundary layer
flow over a flat plate in a uniform stream of fluid with
the convective boundary condition and he concluded that a
similarity solution is possible if the convective heat transfer
related to hot fluid on the lower surface of the plate is

proportional to the inverse square root of the axial length.
In the presence of an internal heat generation local similarity
solution for free convection heat transfer from a moving
vertical plate with the convective boundary condition is
discussed by Makinde [3]. The laminar natural convection
flow over a semi-infinite moving vertical plate under the
convective boundary condition is examined by Ibrahim and
Bhashar Reddy [4]. RamReddy et al. [5] investigated the
influence of the prominent Soret effect on mixed convection
in a nanofluid under the convective boundary conditions.The
nonsimilar result has been presented for the free convection
boundary layer flow along a solid sphere under the convective
boundary conditions by Alkasasbeh et al. [6]. More recently,
a note on the natural convection along convectively heated
vertical plate is given by Pantokratoras [7].

One of the best established theories of fluids with
microstructure is the theory of micropolar fluids and this
theory can be found in the books by Lukaszewicz [8] and
Eremeyev et al. [9]. It has gathered a good deal of attention
due to the obvious reasons that theNavier Stokes equation for
Newtonian fluids cannot successfully explain the attributes of
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fluids with a substructure. Physically, the micropolar fluids
may be treated as non-Newtonian fluids consisting of dumb-
bell molecules or rigid cylindrical element, polymer fluids,
fluid suspension, animal blood, and so forth. Further, the
theory of micropolar fluids includes microrotation as well
as microinertia effects. This theory studies viscous fluids in
which microconstituents are rigid and spherical or randomly
oriented as well. The subject of free convection boundary
layer flow in a micropolar fluid has been keyed out by
several investigators due to its immense applications in the
engineering problems such as solar energy collecting devices,
air conditioning of a room, material processing, and passive
cooling of nuclear reactors. The boundary layer flow over
a semi-infinite flat plate is considered for analyzing theory
of micropolar fluid and its application to low concentration
suspension flow by Ahmadi [10]. Rees and Pop [11] discussed
the free convection boundary layer flow of a micropolar fluid
from a vertical flat plate. The nonsimilarity transformations
are used to analyze the effects of double stratification on
free/mixed convective transport in a micropolar fluid by
Srinivasacharya and RamReddy [12–14] (also see the ref-
erences cited therein). The problems of a steady laminar
stagnation point flow towards a stretching/shrinking sheet
in an incompressible micropolar fluid under the convective
surface boundary condition are discussed by Yacob and Ishak
[15] and Zaimi and Ishak [16]. Merely from the literature, it
is noted that the majority of the researchers have found the
local similarity or nonsimilarity solutions for the problems
involving convective boundary conditions, since most of the
researchers have taken a convective heat transfer coefficient
as a function 𝑥 for getting the similarity solutions in their
problems. Nevertheless, the assumption of a heat transfer
coefficient varying along the plate as a function of 𝑥 is not
realistic and very difficult to be obtained in practice. For that
cause, it could be supposed that the above works have only
theoretical value.

In the recent past, several researchers are focused on
obtaining the similarity solutions of the convective transport
phenomena problems arising in fluid dynamics, aerodynam-
ics, plasma physics, meteorology, and some branches of engi-
neering by using different procedures. One such procedure
is Lie group analysis. The concept of Lie group analysis also
called symmetry analysis is developed by Sophius Lie to
determine transformations which map a given differential
equation to itself and it unifies almost all known exact
integration techniques (see [17–19]). It provides a potent,
sophisticated, and systematic tool for generating the invariant
solutions of the system of nonlinear partial differential equa-
tions (PDEs) with relevant initial or boundary conditions.
A special form of Lie group transformations, known as the
scaling group, has been suggested by various researchers to
study convection flows of different flow phenomena (see
Tapanidis et al. [20], Hassanien and Hamad [21], Kandasamy
et al. [22], Aziz et al. [23], Mutlag et al. [24], etc.; they are
worth observing).

From the literature survey, it seems that the problem of
the free convective heat and mass transport along permeable
vertical plate in a micropolar fluid under the convective

boundary condition has not been investigated so far. Moti-
vated by all these works, this paper attempts to present the
new similarity transformations and corresponding similarity
solution to investigate the free convection flow of a micropo-
lar fluid under the convective boundary condition using the
Lie group transformations. The mathematical model involv-
ing the convective boundary conditions becomes slightly
more complicated leading to the complex interactions of the
flow, heat, and mass transfer mechanism. Further, the analyt-
ical solution is out of scope in the present set-up and hence a
numerical solution is obtained for the current problem. Also,
the influence of important parameters, namely, micropolar,
suction/injection, and convective heat transfer parameters,
on the physical quantities of the flow, heat, and mass transfer
rates is analyzed in different flow situations.

2. Mathematical Formulation

Consider the steady, laminar, and free convective flow of
an incompressible micropolar fluid with the free stream
temperature and concentration, 𝑇

∞
and 𝐶

∞
, respectively.

Choose the coordinate system such that the 𝑥-axis is along
the vertical plate and 𝑦-axis normal to the plate, as shown
in Figure 1. The suction/injection velocity distribution is
assumed to be V

𝑤
. The plate is either heated or cooled from

left by convection from a fluid of temperature 𝑇
𝑓
with 𝑇

𝑓
>

𝑇
∞

corresponding to a heated surface (assisting flow) and
𝑇
𝑓
< 𝑇
∞

corresponding to a cooled surface (opposing flow),
respectively. On thewall concentration is taken to be constant
and is given by 𝐶

𝑤
.

By employing Boussinesq approximation and making
use of the standard boundary layer approximations, the
governing equations for the micropolar fluid [10] are given
by

𝜕𝑢

𝜕𝑥

+

𝜕V
𝜕𝑦

= 0, (1)

𝜌(𝑢

𝜕𝑢

𝜕𝑥

+ V
𝜕𝑢

𝜕𝑦

)

= (𝜇 + 𝜅)

𝜕
2
𝑢

𝜕𝑦
2 + 𝜅

𝜕𝜔

𝜕𝑦

+𝜌𝑔
∗

(𝛽
𝑇
(𝑥) (𝑇 −𝑇

∞
) + 𝛽
𝐶
(𝑥) (𝐶−𝐶

∞
)) ,

(2)

𝜌𝑗 (𝑢

𝜕𝜔

𝜕𝑥

+ V
𝜕𝜔

𝜕𝑦

) = 𝛾

𝜕
2
𝜔

𝜕𝑦
2 − 𝜅(2𝜔+

𝜕𝑢

𝜕𝑦

) , (3)

𝑢

𝜕𝑇

𝜕𝑥

+ V
𝜕𝑇

𝜕𝑦

= 𝛼

𝜕
2
𝑇

𝜕𝑦
2 , (4)

𝑢

𝜕𝐶

𝜕𝑥

+ V
𝜕𝐶

𝜕𝑦

= 𝐷

𝜕
2
𝐶

𝜕𝑦
2 , (5)

where 𝑢 and V are the velocity components in 𝑥 and 𝑦

directions, respectively, 𝜔 is the component of microrotation
whose direction of rotation lies in the 𝑥 𝑦-plane, 𝑇 is the
temperature, 𝐶 is the concentration, 𝑔∗ is the acceleration
due to gravity, 𝜌 is the density, 𝜇 is the dynamic coefficient
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Figure 1: Physical model and coordinate system.

of viscosity, 𝛽
𝑇
(𝑥) is the volumetric coefficient of thermal

expansion, 𝛽
𝐶
(𝑥) is the volumetric coefficient of solutal

expansions, 𝜅 is the vortex viscosity, 𝑗 is the microinertia
density, 𝛾 is the spin-gradient viscosity, 𝛼 is the thermal
diffusivity, and𝐷 is the solutal diffusivity of the medium.

The boundary conditions are

𝑢 = 0,

V = V
𝑤
,

𝜔 = − 𝑛

𝜕𝑢

𝜕𝑦

,

− 𝑘

𝜕𝑇

𝜕𝑦

= ℎ
𝑓
(𝑇
𝑓
−𝑇) ,

𝐶 = 𝐶
𝑤
,

at 𝑦 = 0,

(6a)

𝑢 = 0,

𝜔 = 0,

𝑇 = 𝑇
∞
,

𝐶 = 𝐶
∞
,

as 𝑦 󳨀→ ∞,

(6b)

where subscripts𝑤 and∞ indicate the conditions at the wall
and at the outer edge of the boundary layer, respectively, ℎ

𝑓

is the convective heat transfer coefficient, 𝑘 is the thermal
conductivity of the fluid, and 𝑛 is amaterial constant. Further,
we follow the work of many recent authors by assuming that
𝛾 = (𝜇 + 𝜅/2)𝑗. This assumption is invoked to allow the field
of equations to predict the correct behavior in the limiting
case when the microstructure effects become negligible and
the total spin 𝜔 reduces to the angular velocity [10].

3. Nondimensionalization of
the Governing Equations

Introduce the following dimensionless variables:

𝑥 =

𝑥

𝐿

,

𝑦 =

𝑦

𝐿

Gr1/4,

𝑢 =

𝐿

]Gr1/2
𝑢,

V =
𝐿

]Gr1/4
V,

𝜔 =

𝐿
2

]Gr3/4
𝜔,

𝜃 =

𝑇 − 𝑇
∞

𝑇
𝑓
− 𝑇
∞

,

𝜙 =

𝐶 − 𝐶
∞

𝐶
𝑤
− 𝐶
∞

,

(7)

where Gr = 𝑔
∗

𝛽
𝑇0
(𝑇
𝑓
− 𝑇
∞
)𝐿

3
/]2 is the Grashof number.

In view of the continuity equation (1), we introduce the
stream function 𝜓 by

𝑢 =

𝜕𝜓

𝜕𝑦

,

V = −

𝜕𝜓

𝜕𝑥

.

(8)

Using (7) and (8) into (2)–(5), we get the following momen-
tum, angular momentum, energy, and concentration equa-
tions:

Δ 1 =
𝜕𝜓

𝜕𝑦

𝜕
2
𝜓

𝜕𝑥𝜕𝑦

−

𝜕𝜓

𝜕𝑥

𝜕
2
𝜓

𝜕𝑦
2 −(

1
1 − 𝑁

)[

𝜕
3
𝜓

𝜕𝑦
3 −𝑁

𝜕𝜔

𝜕𝑦

]

−

𝑔
∗

𝛽
𝑇
(𝑥) (𝑇

𝑓
− 𝑇
∞
) 𝐿

3

]2Gr
𝜃

−

𝑔
∗

𝛽
𝐶
(𝑥) (𝐶

𝑤
− 𝐶
∞
) 𝐿

3

]2Gr
𝜙 = 0,

Δ 2 =
𝜕𝜓

𝜕𝑦

𝜕𝜔

𝜕𝑥

−

𝜕𝜓

𝜕𝑥

𝜕𝜔

𝜕𝑦

−(

2 − 𝑁

2 − 2𝑁
)

𝜕
2
𝜔

𝜕𝑦
2

+(

𝑁

1 − 𝑁

)[2𝜔+

𝜕
2
𝜓

𝜕𝑦
2 ] = 0,

Δ 3 =
𝜕𝜓

𝜕𝑦

𝜕𝜃

𝜕𝑥

−

𝜕𝜓

𝜕𝑥

𝜕𝜃

𝜕𝑦

−

1
Pr

𝜕
2
𝜃

𝜕𝑦
2 = 0,

Δ 4 =
𝜕𝜓

𝜕𝑦

𝜕𝜙

𝜕𝑥

−

𝜕𝜓

𝜕𝑥

𝜕𝜙

𝜕𝑦

−

1
Sc

𝜕
2
𝜙

𝜕𝑦
2 = 0.

(9)

In usual definitions, ] is the kinematic viscosity, Pr = ]/𝛼 is
the Prandtl number, Sc = ]/𝐷 is the Schmidt number, 𝑁 =

𝜅/(𝜇 + 𝜅) (0 ≤ 𝑁 < 1) is the coupling number [25], and the
microinertia density is taken to be 𝑗 = 𝐿

2
/Gr1/2.
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Now boundary conditions (6a) and (6b) become

𝜕𝜓

𝜕𝑦

= 0,

𝜕𝜓

𝜕𝑥

= 𝑓
𝑤
,

𝜔 = − 𝑛

𝜕
2
𝜓

𝜕𝑦
2 ,

𝜕𝜃

𝜕𝑦

= −Bi (1− 𝜃) ,

𝜙 = 1,

at 𝑦 = 0,

(10a)

𝜕𝜓

𝜕𝑦

= 0,

𝜔 = 0,

𝜃 = 0,

𝜙 = 0,

as 𝑦 󳨀→ ∞,

(10b)

where 𝑓
𝑤
= −(𝐿/]Gr1/4)V

𝑤
is the suction/injection parame-

ter. It is worth mentioning that 𝑓
𝑤
determines the transpira-

tion rate at the surface, with𝑓
𝑤
> 0 for suction and𝑓

𝑤
< 0 for

injection, and𝑓
𝑤
= 0 corresponds to an impermeable surface.

Further, Bi = ℎ
𝑓
𝐿/𝑘Gr1/4 is the Biot number. It is a ratio of

the internal thermal resistance of the plate to the boundary
layer thermal resistance of the hot fluid at the bottom of the
surface.

4. Similarity Equations via Lie Scaling Group
Transformations

Aone-parameter Lie scaling group of transformations, which
is a simplified form of Lie group transformation, is selected as
(for more, see [26–31])

Γ : 𝑥
∗

= 𝑥𝑒
𝜀𝛼1

,

𝑦
∗

= 𝑦𝑒
𝜀𝛼2

,

𝜓
∗

= 𝜓𝑒
𝜀𝛼3

,

𝜔
∗

= 𝜔𝑒
𝜀𝛼4

,

𝜃
∗

= 𝜃𝑒
𝜀𝛼5

,

𝜙
∗

= 𝜙𝑒
𝜀𝛼6

,

𝛽
∗

𝑇
= 𝛽
𝑇
𝑒
𝜀𝛼7

,

𝛽
∗

𝐶
= 𝛽
𝐶
𝑒
𝜀𝛼8

.

(11)

Here 𝜀 ̸= 0 is the parameter of the group and 𝛼
𝑖
(where

𝑖 = 1, 2, 3, . . . , 8) are arbitrary real numbers whose interrela-
tionship will be determined by our analysis. Transformations

in (11) may be treated as a point transformation, transforming
the coordinates

(𝑥, 𝑦, 𝜓, 𝜔, 𝜃, 𝜙, 𝛽
𝑇
, 𝛽
𝐶
)

= (𝑥
∗

, 𝑦
∗

, 𝜓
∗

, 𝜔
∗

, 𝜃
∗

, 𝜙
∗

, 𝛽
∗

𝑇
, 𝛽
∗

𝐶
) .

(12)

We now investigate the relationship among the exponents 𝛼
𝑖

(where 𝑖 = 1, 2, 3, . . . , 8) such that

Δ
𝑗
[𝑥
∗

, 𝑦
∗

, 𝑢
∗

, V∗, . . . ,
𝜕
3
𝜓
∗

𝜕𝑦
∗3 ]

= 𝐻
𝑗
[𝑥, 𝑦, 𝑢, V, . . . ,

𝜕
3
𝜓

𝜕𝑦
3 ; 𝑎]

⋅ Δ
𝑗
[𝑥, 𝑦, 𝑢, V, . . . ,

𝜕
3
𝜓

𝜕𝑦
3 ] , (𝑗 = 1, 2, 3, 4) .

(13)

This is the requirement that the differential formsΔ 1,Δ 2,Δ 3,
and Δ 4 are conformally invariant under transformation (11).
Substituting transformations (11) in (9), we have

Δ 1 = 𝑒
𝜀(𝛼1+2𝛼2−2𝛼3)

(

𝜕𝜓
∗

𝜕𝑦
∗

𝜕
2
𝜓
∗

𝜕𝑥
∗
𝜕𝑦
∗
−

𝜕𝜓
∗

𝜕𝑥
∗

𝜕
2
𝜓
∗

𝜕𝑦
∗2 )

−(

1
1 − 𝑁

) 𝑒
𝜀(3𝛼2−𝛼3) 𝜕

3
𝜓
∗

𝜕𝑦
∗3

−(

𝑁

1 − 𝑁

) 𝑒
𝜀(𝛼2−𝛼4) 𝜕𝜔

∗

𝜕𝑦
∗

−

𝑔
∗

𝛽
∗

𝑇
(𝑇
𝑓
− 𝑇
∞
) 𝐿

3

]2Gr
𝑒
−𝜀(𝛼5+𝛼7)

𝜃
∗

−

𝑔
∗

𝛽
∗

𝐶
(𝐶
𝑤
− 𝐶
∞
) 𝐿

3

]2Gr
𝑒
−𝜀(𝛼6+𝛼8)

𝜙
∗

= 0,

(14a)

Δ 2 = 𝑒
𝜀(𝛼1+𝛼2−𝛼3−𝛼4)

(

𝜕𝜓
∗

𝜕𝑦
∗

𝜕𝜔
∗

𝜕𝑥
∗
−

𝜕𝜓
∗

𝜕𝑥
∗

𝜕𝜔
∗

𝜕𝑦
∗
)

−(

2 − 𝑁

2 − 2𝑁
) 𝑒
𝜀(2𝛼2−𝛼4) 𝜕

2
𝜔
∗

𝜕𝑦
∗2

+(

𝑁

1 − 𝑁

)(2𝜔∗𝑒−𝜀𝛼4 + 𝑒
𝜀(2𝛼2−𝛼3) 𝜕

2
𝜓
∗

𝜕𝑦
∗2 )

= 0,

(14b)

Δ 3 = 𝑒
𝜀(𝛼1+𝛼2−𝛼3−𝛼5)

(

𝜕𝜓
∗

𝜕𝑦
∗

𝜕𝜃
∗

𝜕𝑥
∗
−

𝜕𝜓
∗

𝜕𝑥
∗

𝜕𝜃
∗

𝜕𝑦
∗
)

−

1
Pr

𝑒
𝜀(2𝛼2−𝛼5)

(

𝜕
2
𝜃
∗

𝜕𝑦
∗2) = 0,

(14c)

Δ 4 = 𝑒
𝜀(𝛼1+𝛼2−𝛼3−𝛼6)

(

𝜕𝜓
∗

𝜕𝑦
∗

𝜕𝜙
∗

𝜕𝑥
∗
−

𝜕𝜓
∗

𝜕𝑥
∗

𝜕𝜙
∗

𝜕𝑦
∗
)

−

1
Sc

𝑒
𝜀(2𝛼2−𝛼6)

(

𝜕
2
𝜙
∗

𝜕𝑦
∗2) = 0.

(14d)
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Now, boundary conditions (10a) and (10b) become

𝑒
𝜀(𝛼2−𝛼3)

𝜕𝜓
∗

𝜕𝑦
∗
= 0,

𝑒
𝜀(𝛼1−𝛼3)

𝜕𝜓
∗

𝜕𝑥
∗
= 𝑓
𝑤
,

𝑒
−𝜀𝛼4

𝜔
∗

= − 𝑛𝑒
𝜀(2𝛼2−𝛼3) 𝜕

2
𝜓
∗

𝜕𝑦
∗2 ,

𝑒
𝜀(𝛼2−𝛼5) 𝜕𝜃

∗

𝜕𝑦
∗
= −Bi (1− 𝑒

−𝜀𝛼5
𝜃
∗

) ,

𝑒
−𝜀𝛼6

𝜙
∗

= 1,
at 𝑦∗ = 0,

(15a)

𝑒
𝜀(𝛼2−𝛼3)

𝜕𝜓
∗

𝜕𝑦
∗
= 0,

𝑒
−𝜀𝛼4

𝜔
∗

= 0,
𝑒
−𝜀𝛼5

𝜃
∗

= 0,
𝑒
−𝜀𝛼6

𝜙
∗

= 0,
as 𝑦∗ 󳨀→ ∞.

(15b)

The system remains invariant under the group transforma-
tion Γ. We then have the following relationships for the
parameters:

𝛼1 + 2𝛼2 − 2𝛼3 = 3𝛼2 −𝛼3 = 𝛼2 −𝛼4 = −𝛼5 −𝛼7
= −𝛼6 −𝛼8;

𝛼1 +𝛼2 −𝛼3 −𝛼4 = 2𝛼2 −𝛼4 = −𝛼4 = 2𝛼2 −𝛼3;

𝛼1 +𝛼2 −𝛼3 −𝛼5 = 2𝛼2 −𝛼5;

𝛼1 +𝛼2 −𝛼3 −𝛼6 = 2𝛼2 −𝛼6;

𝛼1 −𝛼3 = 0;

− 𝛼4 = 2𝛼2 −𝛼3;

𝛼2 −𝛼5 = 0 = −𝛼5;

𝛼6 = 0.

(16)

Solving linear system (16), we have the following relationship
among the exponents:

𝛼1 = 𝛼3 = 𝛼4 = 𝛼7 = 𝛼8,

𝛼2 = 𝛼5 = 𝛼6 = 0.
(17)

The set of transformations Γ reduces to

𝑥
∗

= 𝑥𝑒
𝜀𝛼1

,

𝑦
∗

= 𝑦,

𝜓
∗

= 𝜓𝑒
𝜀𝛼1

,

𝜔
∗

= 𝜔𝑒
𝜀𝛼1

,

𝜃
∗

= 𝜃,

𝜙
∗

= 𝜙,

𝛽
∗

𝑇
= 𝛽
𝑇
𝑒
𝜀𝛼1

,

𝛽
∗

𝐶
= 𝛽
𝐶
𝑒
𝜀𝛼1

.

(18)

Expanding by theTaylor series in power of 𝜀, keeping the term
up to the first degree (neglecting higher power of 𝜀), we get

𝑥
∗

−𝑥 = 𝜀𝛼1𝑥,

𝑦
∗

= 𝑦,

𝜓
∗

−𝜓 = 𝜀𝛼1𝜓,

𝜔
∗

−𝜔 = 𝜀𝛼1𝜔,

𝜃
∗

= 𝜃,

𝜙
∗

= 𝜙,

𝛽
∗

𝑇
−𝛽
𝑇
= 𝜀𝛼1𝛽𝑇,

𝛽
∗

𝐶
−𝛽
𝐶
= 𝜀𝛼1𝛽𝐶.

(19)

The characteristic equations are

𝑑𝑥

𝛼1𝑥
=

𝑑𝑦

0
=

𝑑𝜓

𝛼1𝜓
=

𝑑𝜔

𝛼1𝜔
=

𝑑𝜃

0
=

𝑑𝜙

0
=

𝑑𝛽
𝑇

𝛼1𝛽𝑇

=

𝑑𝛽
𝐶

𝛼1𝛽𝐶
.

(20)

Solving the above characteristic equations, we have the
following similarity transformations:

𝜂 = 𝑦,

𝜓 = 𝑥𝑓 (𝜂) ,

𝜔 = 𝑥𝑔 (𝜂) ,

𝛽
𝑇
= 𝛽
𝑇0
𝑥,

𝛽
𝐶
= 𝛽
𝐶0
𝑥,

𝜃 = 𝜃 (𝜂) ,

𝜙 = 𝜙 (𝜂) ,

(21)

where 𝛽
𝑇0
and 𝛽

𝐶0
are constant thermal and mass coefficient

of expansion.
Using (21) into (9), we get the following similarity

equations:

(

1
1 − 𝑁

)𝑓
󸀠󸀠󸀠

+𝑓𝑓
󸀠󸀠

−𝑓
󸀠2
+(

𝑁

1 − 𝑁

)𝑔
󸀠

+ 𝜃+B𝜙

= 0,

(

2 − 𝑁

2 − 2𝑁
)𝑔
󸀠󸀠

+𝑓𝑔
󸀠

−𝑓
󸀠

𝑔−(

𝑁

1 − 𝑁

) (2𝑔+𝑓
󸀠󸀠

)

= 0,

1
Pr

𝜃
󸀠󸀠

+𝑓𝜃
󸀠

= 0,

1
Sc

𝜙
󸀠󸀠

+𝑓𝜙
󸀠

= 0,

(22)

where the primes indicate differentiation with respect to 𝜂

alone andB = 𝛽
𝐶0
(𝐶
𝑤
− 𝐶
∞
)/𝛽
𝑇0
(𝑇
𝑓
− 𝑇
∞
) is the buoyancy

ratio.
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6 Advances in High Energy Physics

Boundary conditions (10a) and (10b) in terms of 𝑓, 𝑔, 𝜃,
and 𝜙 become

𝜂 = 0 : 𝑓 (0) = 𝑓
𝑤
,

𝑓
󸀠

(0) = 0,

𝑔 (0) = − 𝑛𝑓
󸀠󸀠

(0) ,

𝜃
󸀠

(0) = −Bi [1− 𝜃 (0)] ,

𝜙 (0) = 1,

(23a)

𝜂 󳨀→ ∞ : 𝑓
󸀠

(∞) = 0,

𝑔 (∞) = 0,

𝜃 (∞) = 0,

𝜙 (∞) = 0.

(23b)

5. Skin Friction, Wall Couple Stress, and Heat
and Mass Transfer Coefficients

The wall shear stress and the wall couple stress are

𝜏
𝑤
= [(𝜇 + 𝜅)

𝜕𝑢

𝜕𝑦

+ 𝜅𝜔]

𝑦=0
,

𝑚
𝑤
= 𝛾 [

𝜕𝜔

𝜕𝑦

]

𝑦=0
,

(24a)

and the heat and mass transfers from the plate, respectively,
are given by

𝑞
𝑤
= − 𝑘 [

𝜕𝑇

𝜕𝑦

]

𝑦=0
,

𝑞
𝑚
= −𝐷[

𝜕𝐶

𝜕𝑦

]

𝑦=0
.

(24b)

The nondimensional skin friction 𝐶
𝑓

= 2𝜏
𝑤
/𝜌𝑢

2
∗
, wall

couple stress 𝑀
𝑤

= 𝑚
𝑤
/𝜌𝑢

2
∗
𝑥, the local Nusselt number

𝑁𝑢
𝑥
= 𝑞
𝑤
𝑥/𝑘(𝑇

𝑓
− 𝑇
∞
), and local Sherwood number Sh

𝑥
=

𝑞
𝑚
𝑥/𝐷(𝐶

𝑤
− 𝐶
∞
) are given by

𝐶
𝑓
Gr1/4
𝑥

= 2(1 − 𝑛𝑁

1 − 𝑁

)𝑓
󸀠󸀠

(0) ,

𝑀
𝑤
Gr1/2
𝑥

= (

2 − 𝑁

2 − 2𝑁
)𝑔
󸀠

(0) ,

𝑁𝑢
𝑥

Gr1/4
𝑥

= − 𝜃
󸀠

(0) ,

Sh
𝑥

Gr1/4
𝑥

= −𝜙
󸀠

(0) ,

(25)

where 𝑢2
∗
is the characteristic velocity and Gr

𝑥
= 𝑔
∗

𝛽
𝑇0
(𝑇
𝑓
−

𝑇
∞
)𝑥

3
/]2 is the local Grashof number.

6. Numerical Solution Using the Spectral
Quasi-Linearization Method (SQLM)

In this section, we describe the quasi-linearization method
(QLM) for solving the governing system of (22) along
with boundary conditions (23a) and (23b). This QLM is
a generalization of the Newton-Raphson method and was
proposed by Bellman and Kalaba [32] for solving nonlinear
boundary value problems.

Assume that the solutions 𝑓
𝑟
, 𝑔
𝑟
, 𝜃
𝑟
, and 𝜙

𝑟
of (22) at the

(𝑟+1)th iteration are𝑓
𝑟+1, 𝑔𝑟+1, 𝜃𝑟+1, and 𝜙𝑟+1. If the solutions

at the previous iteration are sufficiently close to the solutions
at the present iteration, the nonlinear components of (22)
can be linearised using one-term Taylor series of multiple
variables so that (22) give the following iterative sequence of
linear differential equations:

(

1
1 − 𝑁

)𝑓
󸀠󸀠󸀠

𝑟+1 + 𝑎1,𝑟𝑓
󸀠󸀠

𝑟+1 + 𝑎2,𝑟𝑓
󸀠

𝑟+1 + 𝑎3,𝑟𝑓𝑟+1

+(

𝑁

1 − 𝑁

)𝑔
󸀠

𝑟+1 + 𝜃
𝑟+1 +B𝜙

𝑟+1 = 𝑅1,𝑟,

(

2 − 𝑁

2 − 2𝑁
)𝑔
󸀠󸀠

𝑟+1 + 𝑏3,𝑟𝑔
󸀠

𝑟+1 + 𝑏4,𝑟𝑔𝑟+1 + 𝑏1,𝑟𝑓
󸀠

𝑟+1

+ 𝑏2,𝑟𝑓𝑟+1 −(

𝑁

1 − 𝑁

)𝑓
󸀠󸀠

𝑟+1 = 𝑅2,𝑟,

𝑐1,𝑟𝑓𝑟+1 +
1
Pr

𝜃
󸀠󸀠

𝑟+1 + 𝑐2,𝑟𝜃
󸀠

𝑟+1 = 𝑅3,𝑟,

𝑑1,𝑟𝑓𝑟+1 +
1
Sc

𝜙
󸀠󸀠

𝑟+1 +𝑑2,𝑟𝜙
󸀠

𝑟+1 = 𝑅4,𝑟,

(26)

where the coefficients 𝑎
𝑠1 ,𝑟

(𝑠1 = 1, 2, 3), 𝑏
𝑠2 ,𝑟

(𝑠2 = 1, 2, . . . ,
4), 𝑐
𝑠3 ,𝑟

(𝑠3 = 1, 2), 𝑑
𝑠4 ,𝑟

(𝑠4 = 1, 2), and 𝑅
𝑠5 ,𝑟

(𝑠5 = 1, 2, . . . ,
4) are known functions (from previous iterations) and are
defined as

𝑎1,𝑟 = 𝑓
𝑟
,

𝑎2,𝑟 = − 2𝑓󸀠
𝑟
,

𝑎3,𝑟 = 𝑓
󸀠󸀠

𝑟
,

𝑅1,𝑟 = 𝑓
𝑟
𝑓
󸀠󸀠

𝑟
− (𝑓
󸀠

𝑟
)

2
,

𝑏1,𝑟 = −𝑔
𝑟
,

𝑏2,𝑟 = 𝑔
󸀠

𝑟
,

𝑏3,𝑟 = 𝑓
𝑟
,

𝑏4,𝑟 = −𝑓
󸀠

𝑟
−(

2𝑁
1 − 𝑁

) ,

𝑅2,𝑟 = 𝑓
𝑟
𝑔
󸀠

𝑟
−𝑓
󸀠

𝑟
𝑔
𝑟
,

𝑐1,𝑟 = 𝜃
󸀠

𝑟
,

𝑐2,𝑟 = 𝑓
𝑟
,

𝑅3,𝑟 = 𝑓
𝑟
𝜃
󸀠

𝑟
,

𝑑1,𝑟 = 𝜙
󸀠

𝑟
,

𝑑2,𝑟 = 𝑓
𝑟
,

𝑅4,𝑟 = 𝑓
𝑟
𝜙
󸀠

𝑟
,

(27)
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subject to boundary conditions

𝑓
𝑟+1 (0) = 𝑓

𝑤
,

𝑓
󸀠

𝑟+1 = 0,

𝑓
󸀠

𝑟+1 (∞) = 0,

𝑔
𝑟+1 = − 𝑛𝑓

󸀠󸀠

𝑟+1 (0) ,

𝑔
𝑟+1 (∞) = 0,

𝜃
󸀠

𝑟+1 (0) = −Bi (1− 𝜃 (0)) ,

𝜃
𝑟+1 (∞) = 0,

𝜙
𝑟+1 (0) = 1,

𝜙
𝑟+1 (∞) = 0.

(28)

System (26) constitutes a linear system of coupled differen-
tial equations with variable coefficients and can be solved
iteratively using any numerical method for 𝑟 = 1, 2, 3, . . ..
In this work, as will be discussed below, the Chebyshev
pseudospectral method was used to solve the QLM scheme
(26) (for more details, refer to the works of Motsa et al.
[33, 34]):

𝑓0 (𝜂) = 𝑓
𝑤
+ 1− 𝑒

−𝜂

,

𝑔0 (𝜂) = − 𝑛𝑒
−𝜂

,

𝜃0 = 𝑒
−𝜂

Bi
Bi + 1

,

𝜙0 = 𝑒
−𝜂

,

(29)

and starting from these sets of initial approximations 𝑓0, 𝑔0,
𝜃0, and 𝜙0, the iteration schemes (26) can be solved iteratively
for 𝑓
𝑟+1(𝜂), 𝑔𝑟+1(𝜂), 𝜃𝑟+1(𝜂), and𝜙𝑟+1(𝜂) when 𝑟 = 0, 1, 2, . . ..

For this, we discretise the equation using the Chebyshev
spectral collocation method. The unknown functions are
approximated by the Chebyshev interpolating polynomials
in such way that they are collocated at the Gauss-Lobatto
collocation points defined as

𝜏
𝑗
= cos

𝜋𝑗

𝑁

, 𝑗 = 0, 1, 2, . . . , 𝑁, (30)

where 𝑁 is the number of collocation points. The physical
region [0,∞) is transformed into the region [−1, 1] using the
domain truncation technique in which the problem is solved
on the interval [0, 𝜂

∞
] instead of [0,∞). This leads to the

mapping

𝜂

𝜂
∞

=

𝜏 + 1
2

, −1 ≤ 𝜏 ≤ 1, (31)

where 𝜂
∞

is the scaling parameter used to invoke the
boundary condition at infinity. The functions 𝑓, 𝑔, 𝜃, and 𝜙

are approximated at the collocation points by

𝑓 (𝜏) =

𝑁

∑

𝑘=0
𝑓 (𝜏
𝑘
) 𝑇
𝑘
(𝜏
𝑗
) ,

𝑔 (𝜏) =

𝑁

∑

𝑘=0
𝑔 (𝜏
𝑘
) 𝑇
𝑘
(𝜏
𝑗
) ,

𝜃 (𝜏) =

𝑁

∑

𝑘=0
𝜃 (𝜏
𝑘
) 𝑇
𝑘
(𝜏
𝑗
) ,

𝜙 (𝜏) =

𝑁

∑

𝑘=0
𝜙 (𝜏
𝑘
) 𝑇
𝑘
(𝜏
𝑗
) ,

𝑗 = 0, 1, 2, . . . , 𝑁,

(32)

where 𝑇
𝑘
is the 𝑘th Chebyshev polynomial defined as

𝑇
𝑘
(𝜏) = cos [𝑘 cos−1 (𝜏)] . (33)

The derivatives of the variables at the collocation points are
represented as

𝑑
𝑝

𝑓

𝑑𝜂
𝑝
=

𝑁

∑

𝑘=0
D𝑝
𝑙𝑘
𝑓 (𝜏
𝑘
) ,

𝑑
𝑝

𝑔

𝑑𝜂
𝑝
=

𝑁

∑

𝑘=0
D𝑝
𝑙𝑘
𝑔 (𝜏
𝑘
) ,

𝑑
𝑝

𝜃

𝑑𝜂
𝑝
=

𝑁

∑

𝑘=0
D𝑝
𝑙𝑘
𝜃 (𝜏
𝑘
) ,

𝑑
𝑝

𝜙

𝑑𝜂
𝑝
=

𝑁

∑

𝑘=0
D𝑝
𝑙𝑘
𝜙 (𝜏
𝑘
) ,

𝑙 = 0, 1, . . . , 𝑁,

(34)

where 𝑝 is the order of the derivative and D = 2D/𝜂
∞

is the
Chebyshev spectral differentiation matrix and its entries are
clearly defined in Canuto et al. [35].

Substituting (31)–(34) into (26) leads to the matrix equa-
tion

𝐴𝑋 = 𝑅, (35)

subject to the boundary conditions

𝑓
𝑟+1 (𝜏𝑁) = 𝑓

𝑤
,

𝑁

∑

𝑘=0
D
𝑁𝑘

𝑓 (𝜏
𝑘
) = 0,

𝑁

∑

𝑘=0
D0𝑘𝑓 (𝜏

𝑘
) = 0,

𝑔
𝑟+1 (𝜏𝑁) = − 𝑛

𝑁

∑

𝑘=0
D2
𝑁𝑘

𝑓 (𝜏
𝑘
) ,

𝑔
𝑟+1 (𝜏0) = 0,
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8 Advances in High Energy Physics

𝑁

∑

𝑘=0
D
𝑁𝑘

𝜃
𝑟+1 (𝜏𝑘) −Bi 𝜃

𝑟+1 (𝜏𝑁) = −Bi,

𝜃
𝑟+1 (𝜏0) = 0,

𝜙
𝑟+1 (𝜏𝑁) = 1,
𝜙
𝑟+1 (𝜏0) = 0.

(36)

In (35) 𝐴 is a (4𝑁+ 4) × (4𝑁+ 4) square matrix and𝑋 and 𝑅
are (4𝑁 + 1) × 1 column vectors defined by

𝐴 =

[

[

[

[

[

[

𝐴11 𝐴12 𝐴13 𝐴14

𝐴21 𝐴22 𝐴23 𝐴24

𝐴31 𝐴32 𝐴33 𝐴34

𝐴41 𝐴42 𝐴43 𝐴44

]

]

]

]

]

]

,

𝑋 =

[

[

[

[

[

[

F
𝑟+1

G
𝑟+1

Θ
𝑟+1

Φ
𝑟+1

]

]

]

]

]

]

,

𝑅 =

[

[

[

[

[

[

R1

R2

R3

R4

]

]

]

]

]

]

,

(37)

where
F = [𝑓

𝑟+1 (𝜏0) , 𝑓𝑟+1 (𝜏1) , . . . , 𝑓𝑟+1 (𝜏𝑁)]
𝑇

,

G = [𝑔
𝑟+1 (𝜏0) , 𝑔𝑟+1 (𝜏1) , . . . , 𝑔𝑟+1 (𝜏𝑁)]

𝑇

,

Θ = [𝜃
𝑟+1 (𝜏0) , 𝜃𝑟+1 (𝜏1) , . . . , 𝜃𝑟+1 (𝜏𝑁)]

𝑇

,

Φ = [𝜙
𝑟+1 (𝜏0) , 𝜙𝑟+1 (𝜏1) , . . . , 𝜙𝑟+1 (𝜏𝑁)]

𝑇

,

𝐴11 = (

1
1 − 𝑁

)D3
+ diag [𝑎1,𝑟]D

2
+ diag [𝑎2,𝑟]D

+ diag [𝑎3,𝑟] ,

𝐴12 = (

𝑁

1 − 𝑁

)D,

𝐴13 = I,

𝐴14 = BI,

𝐴21 = −(

𝑁

1 − 𝑁

)D2
+ diag [𝑏1,𝑟]D+ diag [𝑏2,𝑟] ,

𝐴22 = (

2 − 𝑁

2 − 2𝑁
)D2

+ diag [𝑏3,𝑟]D+ diag [𝑏4,𝑟] ,

𝐴23 = 0,

𝐴24 = 0,

𝐴31 = diag [𝑐1,𝑟] ,

𝐴32 = 0,

𝐴33 =
1
Pr

D2
+ diag [𝑐2,𝑟]D,

Table 1: Comparison of −𝜃󸀠(0) for free convection along a vertical
flat plate in Newtonian fluid when 𝑁 = 0, 𝑛 = 0, B = 0, Pr = 1,
Bi → ∞, and 𝑓

𝑤
= 0.

Merkin [36] Nazar et al. [37] Molla et al. [38] Present
0.4214 0.4214 0.4214 0.4214313

𝐴34 = 0,

𝐴41 = diag [𝑑1,𝑟] ,

𝐴42 = 0,

𝐴43 = 0,

𝐴44 =
1
Sc

D2
+ diag [𝑑2,𝑟]D,

R1 = 𝑅1,𝑟,

R2 = 𝑅2,𝑟,

R3 = 𝑅3,𝑟,

R4 = 𝑅4,𝑟,

(38)

and here I is an identity matrix, the size of the matrix 0 is
(𝑁+1)×1, and diag[ ] is a diagonalmatrix of size (𝑁+1)×(𝑁+

1). Subscript r denotes the iteration number. After modifying
matrix system (35) to incorporate boundary condition (36),
the solution is obtained as

𝑋 = 𝐴
−1
𝑅. (39)

7. Results and Discussions

It is noticed that the present problem reduces to free convec-
tion heat transfer along an impermeable vertical plate in a
micropolar fluid without the convective boundary condition
when𝑓

𝑤
= 0, Bi → ∞, andB = 0. Also in the limit as𝑁 →

0, governing equations (2)–(5) reduce to the corresponding
equations for a free convection heat and mass transfer in
a viscous fluid. In order to validate the code generated the
results of the present problem have been compared with the
results obtained by Merkin [36], Nazar et al. [37], and Molla
et al. [38] as a special case by taking 𝑁 = 0, 𝑛 = 0, B = 0,
Pr = 1, Bi → ∞, and 𝑓

𝑤
= 0 and it was found that

they are in good agreement, as presented in Table 1. Also, the
comparison of heat transfer coefficient has been made with
the results obtained by Nazar et al. [37] as shown in Table 2
when 𝑛 = 0.5, B = 0, Pr = 1, Bi → ∞, and 𝑓

𝑤
= 0.

To study the effects of coupling number𝑁, suction/injection
parameter 𝑓

𝑤
, Biot number Bi, and material parameter 𝑛,

computations were carried out in the cases of B = 1.0,
Pr = 0.71, and Sc = 0.22.

The effects of the coupling number𝑁 on the dimension-
less velocity, microrotation, temperature, and concentration
are illustrated in Figures 2(a)–2(d) with fixed values of
other parameters. The coupling number 𝑁 characterizes the
coupling of linear and rotational motion arising from the
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Figure 2: Effect of𝑁 on (a) velocity, (b) microrotation, (c) temperature, and (d) concentration profiles.

Table 2: Comparison of −𝜃
󸀠

(0) for free convection flow in a
micropolar fluid obtained by Nazar et al. [37] when 𝑛 = 0.5,B = 0,
Pr = 1, Bi → ∞, and 𝑓

𝑤
= 0.

𝑁 Nazar et al. [37] Present
0.00 0.4214 0.4214
0.33 0.3991 0.3990
0.50 0.3834 0.3834
0.60 0.3709 0.3709
0.66 0.3608 0.3608
0.71 0.3522 0.3522
0.75 0.3447 0.3447

fluid particles. In the case of 𝑁 = 0 (i.e., as 𝜅 tends to
zero) the micropolarity is absent and fluid becomes nonpolar
fluid. With a large value of 𝑁 effect of microstructure
becomes significant, whereas with a diminished value of 𝑁
the individuality of the substructure is much less articulated.
As 𝑁 increases, it is found from Figure 2(a) that the max-
imum velocity decreases in amplitude and the location of
the maximum velocity moves farther away from the wall.
Since 𝑁 → 0 corresponds to viscous fluid, the velocity in
case of a micropolar fluid has been less compared to that
of viscous fluid case. It can be observed from Figure 2(b)
that, as 𝑁 increases, initially microrotation profiles tend to
become flatter and then approach their free stream values
far away from the wall. This happens due to the vanishing
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Figure 3: Effect of Bi on (a) velocity, (b) microrotation, (c) temperature, and (d) concentration profiles.

of antisymmetric part of the stress on the boundary that
corresponds to a weak concentration of microelements. This
is because an increment in the value of 𝑁 implies a higher
vortex viscosity of fluid which promotes the microrotation
of micropolar fluids. It is seen from Figures 2(c) and 2(d)
that thermal and concentration boundary layers of the
fluid increase with increase in coupling number 𝑁. Hence,
temperature and concentration in case of micropolar fluids
are more than those of the viscous fluid case.

The Biot number Bi is the ratio of internal thermal
resistance of a solid to boundary layer thermal resistance.
When Bi = 0 the plate is totally insulated, internal thermal
resistance of the plate is extremely high, and no convective
heat transfer to the cold fluid on the upper part of the

plate takes place. Figure 3(a) depicts fluid velocity profiles
for different values of the Biot number with 𝑁 = 0.5, 𝑓

𝑤
=

0.5, and 𝑛 = 0.5. Generally, fluid velocity is zero at plate
surface and increases gradually away fromplate to free stream
value satisfying boundary conditions. It is interesting to note
that an increase in the intensity of convective surface heat
transfer Bi produces significant enhancement in fluid velocity
within the momentum boundary layer. In Figure 3(b), we
bring out the behavior of microrotation with different values
of Biot number Bi for fixed values of other parameters. As the
parameter value Bi increases microrotation showing reverse
rotation near the two boundaries. Hence, the condition of
vanishing of antisymmetric part of the stress on the boundary
results in a drastic change of the microrotation profiles.
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Figure 4: Effect of 𝑓
𝑤
on (a) velocity, (b) microrotation, (c) temperature, and (d) concentration profiles.

Given that convective heating increases with Biot number,
Bi → ∞ simulates the isothermal surface which is clearly
seen from Figure 3(c), where 𝜃(0) = 1 as Bi → ∞. In
fact, a high Biot number indicates higher internal thermal
resistance of the plate than boundary layer thermal resistance.
In this fluid temperature is maximum at the plate surface
and decreases exponentially to zero value far out from the
plate satisfying boundary conditions. As a consequence, an
increment in the Biot number leads to increase of fluid
temperature efficiency. Figure 3(d) illustrates the variation of
dimensionless concentration for different values of Bi. It is
clear that the concentration of fluid decreases with increase
of Bi.

The effect of 𝑓
𝑤

on velocity profile is depicted in
Figure 4(a). Here, 𝑓

𝑤
> 0 represents suction and 𝑓

𝑤
< 0

denotes injection.The lower velocity is noticed in case of suc-
tion when compared to case of injection. From Figure 4(b),
we note that microrotation is showing reverse rotation near
two boundaries with both suction and injection parame-
ter. The dimensionless temperature for different values of
suction/injection parameters is drawn in Figure 4(c). It is
readable that the temperature of the fluid is more in case of
injection, whereas it is less in case of suction in comparison
with the impermeable surface case (𝑓

𝑤
= 0). Figure 4(d)

demonstrates dimensionless concentration for different val-
ues of suction/injection parameters. It is determined that the
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Figure 5: Effect of material parameter 𝑛 on (a) velocity, (b) microrotation, (c) temperature, and (d) concentration profiles.

concentration of fluid ismore with injection, whereas it is less
with suctionwhen compared to the impermeable surface case
(𝑓
𝑤
= 0). As a finale, the thermal and solutal boundary layer

thicknesses increase in case of injection compared to case of
suction as displayed in Figures 4(c) and 4(d).

In Figures 5(a)–5(d), the effect of material parameter
𝑛 on dimensionless velocity, microrotation, temperature,
and concentration is presented for fixed values of other
parameters, since the material parameter 𝑛 signifies the
microrotation effects (i.e., for 𝑛 = 0, particles are not free
to revolve near the surface whereas, as 𝑛 increases from 0 to
1, the microrotation term gets augmented and induces flow
enhancement). As 𝑛 increases, it is found from Figure 5(a)
that the minimum velocity increases in amplitude and the

location of the minimum velocity moves farther away from
the wall. From Figure 5(b), we observe that themicrorotation
is decreasing with increasing value of material parameter
𝑛 within the boundary layer. It is clear from Figures 5(c)-
5(d) that the thermal and solutal boundary layer thicknesses
decrease with increase of material parameter 𝑛.

The variations of −𝜃
󸀠

(0) and −𝜙
󸀠

(0) versus coupling
number 𝑁 are shown in Figures 6–8. It can be noticed from
these figures that the heat and mass transfer coefficients
are less in case of micropolar fluids when compared to the
viscous fluids. This is because as 𝑁 increases, the thermal
and solutal boundary layer thicknesses become larger, thus
giving rise to a small value of local heat and mass transfer
rates. The effect of the Biot number Bi with fixed 𝑓

𝑤
= 0.5
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Figure 6: Effect of Bi on (a) heat transfer rate and (b) mass transfer rate.
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Figure 7: Effect of 𝑓
𝑤
on (a) heat transfer rate and (b) mass transfer rate.

and 𝑛 = 0.5 on local heat transfer coefficient is exhibited
in Figure 6. It is found from Figure 6 that local heat transfer
rate increases nonlinearly with the increase in Biot number
Bi.The influence of the Biot number Bi on local mass transfer
coefficient is shown in Figure 6. Figure 6 reveals that the local
mass transfer coefficient is enhanced by the growth in the
Biot number Bi. In Figure 7, the effect of the suction/injection
parameter 𝑓

𝑤
with fixed Bi = 0.1 and 𝑛 = 0.5 on local heat

and mass transfer coefficients is displayed. It is found from
Figure 7 that the local heat and mass transfer coefficients are
less in the case of injection 𝑓

𝑤
< 0 in comparison with the

case of suction 𝑓
𝑤

> 0. Figure 8 is prepared to analyze the
effect of the material parameter 𝑛 with fixed Bi = 0.1 and

𝑓
𝑤
= 0.5 on local heat andmass transfer coefficients. Figure 8

reveals that the local heat and mass transfer coefficients are
enhanced by the increase in material parameter 𝑛. This is
because when 𝑛 increases from 0 to 1, the microrotation term
gets augmented and induces flow enhancement.

The variations of 𝐶
𝑓
Gr1/4
𝑥

and 𝑀
𝑤
Gr1/2
𝑥

, which are
proportional to the coefficients of skin friction and wall
couple stress, are shown in Table 3 with different values of
the coupling number 𝑁 for fixed 𝑛 = 0.5, 𝑓

𝑤
= 0.5, and

Bi = 0.1. It indicates that the skin friction factor is higher
for micropolar fluid than the viscous fluids (𝑁 = 0). Since
micropolar fluids offer a heavy resistance (resulting from
vortex viscosity) to fluid movement and cause larger skin
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Figure 8: Effect of material parameter 𝑛 on (a) heat transfer rate and (b) mass transfer rate.

Table 3: Effects of skin friction and wall couple stress for varying
values of Biot numbers Bi, micropolar parameter 𝑁, material
parameter 𝑛, and suction/injection parameter 𝑓

𝑤
.

𝑁 Bi 𝑓
𝑤

𝑛 𝐶
𝑓
Gr1/4
𝑥

𝑀
𝑤
Gr1/2
𝑥

0.1 0.1 0.5 0.5 2.424227 0.63279
0.3 0.1 0.5 0.5 2.502716 0.639966
0.5 0.1 0.5 0.5 2.647987 0.630863
0.7 0.1 0.5 0.5 2.943561 0.603879
0.9 0.1 0.5 0.5 3.874631 0.550891
0.5 0.1 0.5 0.5 2.647987 0.630863
0.5 1.0 0.5 0.5 3.211755 0.805879
0.5 5.0 0.5 0.5 3.533141 0.908078
0.5 20.0 0.5 0.5 3.629791 0.939137
0.5 0.1 −0.5 0.5 2.426265 0.336219
0.5 0.1 0.0 0.5 2.530014 0.465429
0.5 0.1 1.0 0.5 2.737553 0.820899
0.5 0.1 2.0 0.5 2.721244 1.193596
0.5 0.1 0.5 0.0 2.916655 −0.289339
0.5 0.1 0.5 0.5 2.647987 0.630863
0.5 0.1 0.5 1.0 2.232556 2.066191

friction factor compared to viscous fluid, the results as well
suggest larger values of coupling number 𝑁 and lower wall
couple stresses. Since the skin friction coefficient 𝑓󸀠󸀠(0) and
wall couple stress coefficient as well as high temperature and
mass transport rates are more depressed in the micropolar
fluid comparing to the viscous fluid, which may be beneficial
in flow, temperature, and concentration control of polymer
processing, thus, the presence of microscopic effects arising
from the local structure and of the fluid elements reduces the
high temperature and mass transfer coefficients. The effect
of Bi on 𝐶

𝑓
Gr1/4
𝑥

and 𝑀
𝑤
Gr1/2
𝑥

for 𝑓
𝑤

= 0.5, 𝑛 = 0.5, and

𝑁 = 0.5 is illustrated in Table 3. It can be noticed that the
skin friction and wall couple stress coefficients are increasing
with increase of Bi for fixed values of other parameters.
This notice is consistent with physical profiles presented in
Figure 3. The effects of suction/injection parameter on the
skin friction andwall couple stress coefficients are also shown
in Table 3. It is noted that the skin friction and wall couple
stress coefficients are less with injection case, whereas they
are more with suction case when compared to the case of
impermeable surface. Finally, the detailed behavior of the
material parameter 𝑛 is given in Table 3. The skin friction
decreases and wall couple stress increases with increase of
material parameter 𝑛.

8. Conclusions

In this composition, the similarity solution of the free convec-
tion flow on a permeable vertical plate of a micropolar fluid
under the convective boundary condition is obtained using
Lie group transformations. Using the similarity variables, the
governing equations are transformed into a set of nondi-
mensional parabolic equations. These equations are solved
numerically using spectral quasi-linearisation method. The
numerical computation is carried out for various values of
nondimensional physical parameters. The main findings are
summarized as follows:

(i) The numerical results indicate that velocity distribu-
tion is less near the plate but it is more far away from
the plate; the wall couple stress coefficient and rate of
heat andmass transfers are lower but the temperature
and concentration distributions and the skin friction
coefficient are higher for the micropolar fluids in
comparison with those of viscous fluids. Also, the
reverse rotation ofmicrorotation near two boundaries
is found with the increasing value of𝑁.
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(ii) An increase in Biot number Bi decreases concen-
tration distribution, whereas it causes an increase
in temperature distribution, skin friction and wall
couple stress coefficients, and heat and mass transfer
rates within the boundary layer. Further, enhancing
in Biot number Bi enhances velocity distribution
near the plate but shows the reverse behavior far
away from the plate. We observe reverse rotation
of microrotation near two boundaries within the
boundary layer in the presence of Biot number.

(iii) Less velocity, temperature, and concentration distri-
butions are observed, more skin friction and wall
couple stress coefficients and heat and mass transfer
rates in the case of suction compared to the case of
injection. Further, microrotation decreases near the
wall and depicts the opposite trend far away from the
wall.

(iv) It is found that microrotation, temperature, and con-
centration distributions and skin friction coefficients
are more in the case of a micropolar fluid with strong
concentration (i.e., 𝑛 = 0) when compared to the case
of a micropolar fluid with weak concentration (i.e.,
𝑛 = 1/2). Further, velocity is less in the case of 𝑛 = 0
when compared to the case of 𝑛 = 1/2 near the wall
and shows the opposite trend far away from the wall.
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