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ABSTRACT

In this paper, the problem of steady Poiseuille flow of two immiscible incompressible micropolar fluids
between two horizontal parallel plates of a channel with constant wall temperatures is studied in terms
of entropy generation. The flow is assumed to be governed by Eringen’s micropolar fluid flow equations.
The flow region is divided into two zones, the flow of the heavier fluid taking place in the lower zone-I. No
slip condition is taken on the plates and at the interface continuity of velocity, micro-rotation, tempera-
ture, heat flux and shear stresses is imposed. The velocity, micro-rotation and temperature fields are
derived analytically. The dimensionless quantities-entropy generation number (Ns), Bejan number (Be)
and irreversibility ratio (¢) are analytically derived. The effects of material parameters like micropolarity
(c;), couplestress (s;) on the velocity, micro-rotation and temperature are investigated. The derived equa-
tion for the dimensionless entropy generation number is used to interpret the relative importance of fric-
tions to conduction by varying viscous dissipation parameter. The entropy generation near the plates
increases more rapidly in fluid I than in fluid II as viscous dissipation effects become more important
in zone I. The velocity and temperature profiles are found to be in good agreement with the distributions
of the dimensionless entropy generation number (Ns).

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

There is a great demand in many industries and projects to
thoroughly analyze, improve and design the power systems. In
classical methods, the efficiency of the power systems is studied
based on first law of thermodynamics. The recent methodologies
study the systems based on second law of thermodynamics. The
new methodology is called exergy analysis (analysis of available
work). In heat transfer process in any system involves exergy
losses i.e., destroy the available work due to temperature gradients
and fluid frictions. This is due to irreversible work involved in the
process. This can be accounted by second law of thermodynamics.
Exergy loss is proportional to entropy generation rate. Hence min-
imization of entropy generation rate indicates optimum exergy or
amount of available work. These methods are popularly known as
Entropy Generation Minimization (EGM) methods. This was first
introduced by Bejan [1,2] and he gave good engineering sense for
the study by focusing on irreversibility. This new methodology is
based on simultaneous application of first and second law of ther-
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modynamics in analysis and design of the systems. Bejan [1] stud-
ied the heat transfer problems in the pipe flow, boundary layer
flow past a plate, flow in the entrance region of a rectangular duct
using EGM. Bejan [3] demonstrated how the difference between
reversible work and work is proportional to entropy generation
rate. In the paper he explained how EGM is useful in obtaining
optimal allocation of heat transfer area, optimal latent heat storage
temperature and optimal sensible heat storage time interval. These
methods can be found in detail in the treatises by Bejan [4-7] and
Bejan et al. [8].

The flow and heat transfer of immiscible fluids are of special
importance in the petroleum extraction and transport problem.
The reservoir rock of oil field contains many immiscible fluids in
its pores. A portion of the pores contains water and the rest con-
tains oil or gases or both. The immiscible flows in crude oil trans-
port was studied experimentally by Bakhtiyarov et al. [9].
Oscillatory flow and heat transfer in two immiscible viscous fluids
was examined analytically by Chamkha [10]. Kamisli et al. [11] ex-
plained very nicely the thermodynamic interface conditions in-
volved in a flow of immiscible fluids. They observed that
minimum temperature gradient in transverse direction of the flow
offers minimum entropy generation near the plates. variation of
irreversibility in terms of Bejan number (Be) and energy stream
line tracking inside a porous channel are explained in detail by
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Nomenclature

Be Bejan number <: 11—4))

Br Brinkman number (= EkPr)

b viscous dissipation parameter

ci= % material parameter or micropolarity parameter

C non-dimensional micro-rotation component in z-direc-
tion

djj components of the strain

D deformation tensor

E specific internal energy

Ek Eckert number

f body forces per unit mass

2h height of the free channel

h heat flux

j gyration coefficient

k1, k> thermal conductivity of the fluid in zones-I, II

1 body couple per unit mass

mj couple stress tensor

ng ratio of couple stress viscosity coefficients (: ﬁ—f)

Nk ratio of thermal conductivities (: %)

ny, ratio of viscosities (= %)

n, ratio of densities (: %)

Nf; entropy generation due to viscous dissipation

Ns; dimensionless total entropy generation number

Ny; entropy generation due to transverse conduction

Nu Nusselt number

P pressure

Pr Prandtl number

q velocity vector

Re Reynolds number

51,52 couple stress parameters

(Si)e entropy generation rate

(Si)sc  characteristic entropy transfer rate

tij stress tensor

T, T, non-dimensional temperatures of the plates

u non-dimensional velocity in X-direction
X,y non-dimensional space coordinates
XY space co-ordinates

Greek symbols

o, B,y gyration viscosity coefficients
dij kronecker delta
51 couple stress parameter ( = ﬁ
1
€ijk Levi-Civita symbol or permutation symbol
K1, K» ~ micro-rotation viscosity coefficients
W, Ua  viscosity coefficients
v micro-rotation vector
Q dimensionless temperature difference (: %)
(o} dissipation function
13 irreversibility distribution ratio (: %)
p density
0 non-dimensional temperature
Subscripts
1 fluid in zone |
2 fluid in zone II

Shohel Mahmud et al. [12]. The effect of geometric parameters to
find optimum shape of the ducts by using second law analysis is
studied by Sahin [13-15] and Hakan [16].

This paper aims at second law analysis for the flows of two
immiscible micropolar fluids in a parallel plate channel. Micropolar
fluids exhibit couple stresses and the particles of the fluid have
independent rotation vector in addition to velocity vector. This
theory of micropolar fluids was proposed by Eringen [17,18]. For
experimental determination of parameters of micropolar fluids
one can refer Migun et al. [19] and Kolpashchikov et al. [20]. An ac-
count of the earlier developments in polar fluid theory can be
found in the book by V.K.Stokes [21]. Some basic viscous flows in
micropolar fluids was discussed by Ariman et al. [22] and the exist-
ing state of art can be seen in the excellent treatise of Lukaszewicz
[23]. Jerome et al. [24] gave molecular interpretation for the
Poiseuille flow of a micropolar fluid.

The problem of simultaneous flow of immiscible fluids in chan-
nels is of importance in industrial processes such as transportation
of two or more fluids in the same pipe or channel. So there has
been widespread interest in the study of flow through channel
and tubes in the recent years. In many of the areas fluid flow, flow
of immiscible liquids or multi-phase fluids occur. For example
blood flow in arteries has been studied by many researchers con-
sidering blood as two phase flow [25]. In view of these, several
investigations on multiphase flows are reported by various
researchers. Bird et al. [26] found an exact solution for the laminar
flow of two immiscible fluids between two parallel plates. Kapur
et al. [27] have studied the flow of two immiscible incompressible
viscous fluids between two parallel plates. Bhattacharya [28] dis-
cussed the flow of immiscible fluids between rigid plates with a
time dependent pressure gradient. Mass transfer into a laminar
fluid stream from the moving interface of two immiscible fluids be-
tween parallel plates was discussed by Hikita et al.[29]. Jie Li et al.

[30] have discussed numerical study of flows of two immiscible
liquids at low Reynolds number. Chamka et al. [31] discussed flow
of two immiscible fluids in a porous and non-porous channel.
Malashetty et al. [32] have discussed the convective magnetohy-
drodynamic two fluid flow and heat transfer in an inclined channel.
Umavathi et al. [33] studied unsteady two-fluid flow and heat
transfer in a horizontal channel. Prathap Kumar et al. [34] analyt-
ically examined fully-developed free-convective flow of micropolar
and viscous fluids in a vertical channel. Dragis Nikodijevic et al.
[35] have studied MHD Couette two-fluid flow and heat transfer
in presence of uniform inclined magnetic field. The heat transfer
of two immiscible fluids in the presence of uniform inclined mag-
netic field was discussed by Nikodijevic et al. [36]. Szeri et al. [37]
discussed the flow of a non-Newtonian fluid between heated par-
allel plates. Nield et al. [38] discussed thermally developing forced
convection in a porous medium between two parallel plates with
walls maintained at uniform temperature.

The present study is taken up in view of realistic situations cited
in [9,25] and growing importance of study of entropy generation
methods (EGM). Many researchers considered the immiscible flow
of viscous fluids. But very few [33] have taken up the study of
micropolar fluids. Since micropolar fluids represent the more gen-
eral and realistic study of properties of crude oils, blood, etc. Here
we are considering the flow of immiscible micropolar fluids be-
tween the parallel plates.

2. Fomulation of the problem

The physical model of the flow shown in Fig. 1, consists of two
parallel plates extending in the X-direction. The height between
the plates is 2h. The plates are maintained at constant tempera-
tures. The width of the plates is much greater than the distance be-
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Fig. 1. Schematic of the investigated problem.

tween them. X and Y are the axial and transverse coordinates
respectively with the origin at the centre of the channel. A constant
pressure gradient acts at the mouth of the channel. The lower fluid
(viscosity u;, micropolarity x1, density p; and thermal conductiv-
ity kq) occupies the region —h <Y <0 comprising the lower half
of the channel and this region is named as zone 1. The upper fluid
(viscosity o, micropolarity x,, density p, (<p1) and thermal con-
ductivity k) is assumed to occupy the upper half of the channel
(i.e., 0 <Y< h), and this region is called zone II. In the present case,
fluid in zone I is denser than the fluid in zone II. The two walls of
the channel are held at different temperatures T; and T;; with T, < -
T;. The equations for the flow in zone I and II (i.e., —h <Y < h) are
assumed to be governed by incompressible micropolar fluid flow
equations of Eringen [17,18] and energy equation

op o

EJFV‘(PQ)—O (1)
dg - _
pazpffVPﬂchv—(uﬂc)Vxqu+(A+2,u

+KV(V-q) (2)

pj%:pi—zwﬂcvxc’]—nyVxV+(oc+ﬁ+y)V(V‘v)
3)

dE
Pt

where

= —P(V-q)+p®—(V-h) (4)

1

2
p(D:)v(V~c7)2+2u(D:D)+4K< V><(]—V> + (V)

\S}

+9(VV: V) + (VY : (VD))

The Eqgs. (1)-(4) represent conservation of mass, balance of linear
momentum, angular momentum and energy equation respectively.
The scalar quantities p and j are, respectively, the density and gyra-
tion coefficient and are assumed to be constants. The vectors g, v, f
and / are the velocity, micro-rotation, body force per unit mass and
body couple per unit mass, respectively. P is the fluid pressure at
any point. The material constants (4, i, x) are viscosity coefficients
and (a,pB,7) are gyro-viscosity coefficients. These confirm to the
inequalities, kK > 0; 2u+x > 0; 32+2u+Kx >0, y=>0; |f|< 7,
3o+ B +7 > 0. And in the energy equation @ is the dissipation func-
tion of mechanical energy per unit mass, D denotes the deformation
tensor i.e, D=1(qy+ ), E is the specific internal energy and
h = —kVT is the heat flux, where k is the thermal conductivity.
We remark that for x =« = =y =0, and vanishing [ and f , mi-
cro-rotation v becomes zero, and Eq. (2) reduces to the classical
Navier-Stokes equations. Also we note that for x = 0, the velocity

g and the micro-rotation v are not coupled and the micro-rotations
do not effect the velocity field.
The stress tensor t; and the couple stress tensor mj; are given by

ti = (—P+ div(q))d5 + 2u + K)dij + K€Ejm(Wm — Vi) (5)

m; = ocv,,,éij + ﬂv,-j + PVji (6)

where v; and w; are the components of the micro-rotation vector
and the vorticity vector respectively, d; are the components of rate
of shear strain, d; is the Kronecker symbol, €, is the Levi-Civita
symbol given by 1 if i, j, m are cyclic, —1 if i, j, m are acyclic and 0
if any two of i, j, m are equal and comma denotes covariant
differentiation.

To develop the governing equations for the considered model,
the following assumptions are made:

(i) The flow is assumed to be one-dimensional and steady.
(ii) The fluids are assumed to be incompressible.
(iii) The gravity effect is negligible.

We assume that the velocity of the fluid to be g = (U(Y),0,0)
and micro-rotation vector as v = (0,0, C(Y)).
We introduce the non-dimensional variables:

xf)ﬁ 7X ufg 7L CﬁCUG
_h7 y—h, —U07 p—plugv - h

where U, is the maximum velocity of the fluid in the channel. Equa-
tion of continuity (1) is satisfied identically for the assumed form of
velocity and neglecting body forces and body couples from Egs. (2)
and (3), we get the following sets of non-dimensional form of gov-
erning equations and boundary conditions corresponding to the
flow in two zones.

3. Governing equations

We take velocity and micro-rotation as
ur(y)

uy) = {
uz(y)

Zone-I: (-1 <y<0)
The governing equations in the zone I can be written as:

-1<y<0
0<y<1

and C(y) = {

d2U1 Cq d61 _ 1 dp
Tyﬁ(Hc])W—(uc])Rea @)
d2C1 dU]

TyZ -5 T ZS]C] =0 (8)

Zone-II: (0<y<1)
The governing equations in the zone II can be written as:

d*u, ¢ \d& ( 1 \n,,dp

Tyﬁ(ucz)w— (ucz)aR% ®)
dZCZ dllz

7dy2 — S 7dy —25C,=0 (10)

" . 2 .
where Re = ”‘TU]L’“ =" 5 ="4"andn, = 2, (i=12),

Iy Vi

4. Boundary and interface conditions

A characteristic feature of the two-layer flow problem is the
coupling across liquid/liquid interfaces.The liquid layers are
mechanically coupled via transfer of momentum across the inter-
faces. Transfer of momentum results from the continuity of inter-
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face tangential velocity and from a stress balance across the inter-
face. The above Eqgs. (7)-(10) are solved using the following bound-
ary conditions.

4.1. Poiseuille flow: (flow due to applied pressure gradient)

The plates are kept fixed and the flow is maintained by constant
pressure gradient. Hence d"—B=constant. The boundary condi-
tions are given as: At the lower plate boundary velocity and mi-
cro-rotation vanish due to no slip and hyper-stick conditions:

uy=0and C;=0 aty=-1 (11)

At the fluid interface velocity, micro-rotation, shear stress and cou-
ple stress are continuous:

Uy = Uy, C1=Cy, Tyyl; = Tyyl, and my |, =myl, aty
=0 (12)

At the upper plate boundary the velocity and micro-rotation vanish
due to no slip and hyper-stick conditions:

=0 and C; =0 at y=1 (13)

Shear stress and couple stresses are taken from Eqgs. (5) and (6)
4.2. Note on hyper stick condition

The hyper-stick condition is taken at the boundary as: The mi-
cro-rotation vector on the boundary = angular velocity of the fluid
on the boundary, i.e., Cyar = 3 (V x Quan)- A more general condition
is taken as Cyan = 5 (V X Gwanr) Where 0 <n < 1 (Refer Lukaszewicz
[23], p. 31). This value of n indicates the concentration of micropo-
larity or interaction of fluid particles with the boundary. The case
n=0 indicates C = 0 at the plates. It represents flow of concen-
trated particles in which the microelements closed to the wall sur-
face are unable to rotate (Jena [39]). This case is also known as
strong concentration of microelements. The case corresponding
to n = 0.5 results in the vanishing of antisymmetric part of stress
tensor and represents weak concentrations of microelements.
The particle spin is equal to fluid vorticity at the boundary for
the fine particle suspensions. The case corresponding to n=1 is
representative of turbulent boundary layer flows (Peddieson
[40]). Here we are considering the case n=0. Authors Rees et al.
[41] and Bhattacharyya et al. [42] have used this more general
condition.

4.3. Shear stress

The dimensionless non-zero shear stress at fluid interface is gi-
ven by

Ty = {%+2< Ci )c,} =12 (14)
y=0

dy

The dimensionless shear stress at the lower and upper boundaries
are given by

_ [ou _ [ou
TX,V B |:ay:|y:—17 TXy B |:8y:|y:1 (15)

4.4. Couple stress

The dimensionless non-zero couple stress at the interface is gi-
ven by

0Cq

B
R where n;="2 at y=0 (16)

b1

The elaborated expressions are not reported for brevity.

0C;
Myl =n5—=

mel] = ay

5. Solution of the problem
5.1. Velocity and micro-rotation distributions

Zone-I: (-1 <y<0)
Eliminating C; from (7), (8) we have

4 2
dli]_ (2+c1>du1__ 251 Re B (17)
dy 1+c1) dy? (1+c)
Substituting % from (7) in (8) we have
- 1du1 (1+C1)du1
Cl(J’)*—EE—Tls] a0y’ (18)
Solving (17) we get,
. ReB
U1 (¥) = €11 + C12Y + 13 cosh oy + c14 Sinh oy + € ¥y (19)
(24 c1)
and substituting u(y) in (18) we have
1 .
Ci(y) = —Czﬁ — o ( 1— Cl) (c13 sinh oy + €14 cosh o y)
1
ReB
- 20
Zone-1I: (0<y<1)
Eliminating C, from (9), (10) we have
d4L£12 s, (2 + c2> dzuz 2, n, 21)
dy T+a)df (I+c)my
Substituting %2 from (9) in (10) we have
_ 1 du, (1 + Cz) d3u2
Cy) = T2dy 208, 7dy3 (22)
Solving (21) we get,
Uz (Y) = €21 + C22Y + Ca3 cOsh oy + €4 Sinh oy + T+0)
”f’ “Re B % (23)
and substituting up(y) in (22), we have
1 .
Cy) = *Czﬁ — 0y <7j CZ) (€23 sinh oy + €24 cosh o,y)
2
1 n,
- —F ReB 24
(1+c2) ny evy (24)
where o2 = s; (ﬁg), o3 =5, (ﬁg)

The solutions u;(y), Ci1(y) and uy(y), C>(y) involve 8 constants
C11, C12, €13, C14, C21, C22, C23 and cp4. These constants are found from
the 8 boundary conditions given in (11)-(13) and they are solved
using Mathematica. As the expressions are cumbersome, they are
not presented here.

5.2. Volumetric flow rate

The non-dimensional volumetric flow rate of the channel is gi-
ven by q = q; + g, where

0 c c
4 :/4 u(y)dy:Ocil“—cn+%2—%£ sinh o, +—coshcx1
ReB

T32+40a) 23)

-1
q, :/ u(y)dy = f—+C21 +7+ smhocz +— cosh o,
0

ReB n,

32 o),

(26)
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5.3. Temperature distribution

Once the velocity and micro-rotation distributions are known,
the temperature distributions for the two zones are determined
by solving the energy equation (4) in the respective zones, subject
to the appropriate boundary and interface conditions. Thermal
coupling is achieved through continuity of temperature at the
interface and the balance of heat flux across the interface. In the
present problem, it is assumed that the two walls are maintained
at constant temperatures T; and Ty (T; < Ty).

We take temperature T(Y) as

_[Ti(Y) -h<Y<0
T(Y)_{TZ(Y) 0<Y<h

The governing equation for the temperature T; of the conducting
fluid in zone I is then given by

A (U 2 dc\?

The governing equation for the temperature T, of the conducting
fluid in zone II is then given by

T, _ [ rdu, du, 2 dc,
ky—= % - ,uz( ) +K2<dy+2C2> +ﬁ2<dy> (28)

In order to non-dimensionalize the above equations, the following
transformation is used in addition to those already introduced in
above: 0 = {11

The Egs. (27) and (28) are then reduced to the following form:

d201 - dU1 dU1 dCl
a [(@) va(Gre) o () )
d262_ Br duz 2 duz - dCz 2
W m H(@) ”Z(dy”@ #mn (G
S (Eckert number),

where Br = Ek Pr (Brinkman number) Ek = T

Pr= ’“C"‘ (Prandtl number) n = k, ny = (Ratio of couple stress

(couple stress parameter).

(30)

coefﬁc1ents) and 6, =

In the non—dlmensmnal form, the boundary conditions for tem-
perature and heat flux at the walls and interface become:

(i) at the lower and upper plate boundaries the temperatures
are respectively,

=0 at y=-1 and 0;=1 at y=1 (31)
(i) at the fluid interface temperature () and heat flux (h) are
continuous:
do do
0, =0, and dyl— "dz at y=0 (32)

The solutions of Egs. (29) and (30) are given by

01(y) = Br[P1y* + P2y? + P3y* + P4y (c1aCoshoy
+ c¢13Sinhoyy) + PsCoshoyy + PgSinhoy
+ P;Cosh20,y + PgSinh20y] + ¢15y + Ci6 (33)

Br
0 (y) = e [Poy* + P10y® + P11y? + P1ay(c13Coshany

+ c14Sinhoy) + Pi3Coshayy + PiaSinhoyy
+ P15C05h20(2y + P165inh2062y] + C25Y + Ca6 (34)

The solution involves 4 constants c;s, Ci6, C25 and ¢ and these
are found from the 4 boundary conditions ( (31) and (32)) and are
obtained using Mathematica. Also all P's (i = 1-16) are known con-
stants involving the constants ¢y, €2, €13, C14, C21, C22, C23 and Cpa4.

5.4. Nusselt number

_ Heat transfer coefficient at the walls is given by Fourier’s law

h = —kVT. In non-dimensional form this represents Nusselt num-

ber Nu = d"] - This is studied only at the walls of the channel.
y==+

6. Entropy generation
6.1. The volumetric entropy generation

It is assumed that each micropolar fluid of the constant physical
properties (p,u,k,c,) is flowing in the channel subjected to con-
stant wall temperatures on the each plate. If we take an infinites-
imal fluid element in each zone and assume that the element as an
open thermodynamic system subjected to mass fluxes, energy
transfer and entropy transfer interactions through a fixed control
surface. The volumetric rate of entropy generation for incompress-
ible micropolar fluid is given as

k,' 8T, 2 i 8U, 2 8U 2
sie=gi (ow) +12(ov) +7, (5v +2000)

B (9C\*

+ T, <W> (35)
where the value of i can be either 1 or 2 that represent fluid I and
fluid II, respectively. The right hand side of the above equation
the first term represents the heat conduction and the remaining
three terms represent the viscous dissipation function, ® for an
incompressible micropolar fluid.

6.2. The characteristic entropy generation rate

The dimensionless entropy generation number Ns [1] is ob-
tained by dividing the total entropy transfer rate (S;)¢ (in Eq.
(35)) with the characteristic entropy rate (S;)c,c that is defined as

o[0T [k(aT)?
(Sl)G.C - |:](,*T(2):| - |: hzTﬁ :| (36)

6.3. The entropy generation number

In the above equation, h; is the heat flux, T, is the absolute ref-
erence temperature, AT; is the reference temperature (entrance
temperature) difference and h is the characteristic length that de-
pends on geometry and type of problem. Here it is equal to the half
transverse distance of the channel. The entropy generation number
for each fluid with dimensionless variables are given by

do,\?
%= ()
Br | /dui\? du, dc,
Q|:(dy> +C]<dy +261) +(31<dy) (37)
doy\?
e (4
Br duy\ 2 du, 2 dc,\*
+—QH<W> “Z(ay”("Z) ”l"/f(@)

(38)



J.V. Ramana Murthy, J. Srinivas/International Journal of Heat and Mass Transfer 65 (2013) 254-264 259

2 . . . .
where Br = (’,j;i’;) is the Brinkman number, which determines

importance of viscous dissipation because of the fluid frictions rel-
ative to the conduction heat flow resulting from the impressed tem-
perature difference and Q = (?—T) is the dimensionless temperature

difference.

In order to obtain a global Brinkman number that is valid for the
both fluids confined in the channel, in the above equations the
characteristic entropy transfer rates of the fluids are taken to be
equal to one another as follows:

h? ki(AT;)?
(SI)G,C =(S2)ec = (ﬁ) = <%)

Egs. (37), (38) can be expressed alternatively as follows:
Ns; = Ny; + Nf; 39

On the right hand side of Eq. (39) the first term (Ny;) denotes the en-
tropy generation by heat transfer due to transverse conduction, the
second term (Nf;) represents the entropy generation due to viscous
dissipation effect that results from the fluid frictions. The entropy
generation number for both the fluids in terms of dimensionless
temperature distributions are given by Eqs. (37) and (38).

It is desirable to consider the Ek and Pr in a group that is called
the Brinkman number (Br=Ek.Pr) for evaluating the relative
importance of the energy due to viscous dissipation to the energy
because of heat conduction. It was reported that Br is much less
than unity for many engineering processes [1]. The irreversibility
distribution ratio ¢ is defined as the ratio of entropy generation
due to fluid frictions (Nf) to heat transfer in transverse direction
(Ny)ie., ¢ = (,’:’,-i . The viscous dissipation parameter is an impor-
tant dimensionléss number for the irreversibility analysis. It deter-
mines the relative importance of the viscous effects for the entropy
generation and it is equal to the ratio of Brinkman number to the
dimensionless temperature difference i.e.,(%). The irreversibility
distribution ratio ¢ can be interpreted as follows:If 0 < ¢ < 1, then
¢ indicates that heat transfer irreversibility dominates and if ¢ > 1
the fluid friction dominates. For the case of ¢ =1, both the heat
transfer and fluid friction have the same contribution for entropy
generation.

6.4. The Bejan number

An alternative irreversibility distribution parameter was de-
fined by Paoletti et al. [43] as ratio of entropy generation due to
heat transfer to the total entropy generation that is called Bejan
number given by

Ny Ny _ 1
Ns Ny+Nf 1+¢

The above equation can be interpreted according to values of ¢ as
described above. Hence, the range of Bejan number is between 0
and 1. The value of Be — 1 indicates that the heat transfer irre-
versibility dominates over fluid friction, which corresponds to
the case of ¢ —» 0. On the other hand, if Be —» 0 indicates that
the fluid friction irreversibility dominates over the irreversibility
due to the heat transfer, which corresponds the limit of ¢ — oo.
The case of Be =1 shows that the entropy generation due to heat
transfer and fluid friction irreversibility are of same order, and
corresponds to the case of ¢ =1. By substituting Eqs. (37) and
(38) into Eq. (40) with considering Eq. (39), Bejan number, in
terms of dimensionless temperature, can be obtained as follows
for each fluid.

Be— (40)

_ Ny Ny,
BelfN—S],Besz—sz (41)

6.5. Importance of second law

By first law of thermodynamics, we can find the temperature
distributions of fluids within the channel and heat transfer coeffi-
cients can be calculated at the walls. But this law will not give the
information regarding relative effects of viscosity and heat convec-
tion for entropy generation. Second law states that entropy is al-
ways positive and the law is stated in the form of inequality of
entropy generation. Second law analysis makes it possible to com-
pare many different interactions in a system, and to identify the
major sources of exergy destructions/losses. Hence within the en-
tire fluid region where exactly the entropy generation is more, can
be studied by second law. To study this effect Bejan [1,2] intro-
duced entropy generation number (Ns). Relative effects of dissipa-
tion energy and heat transfer can be studied by Bejan number (Be)
[43].

7. Results and discussion

Exact solutions for the flow of two immiscible micropolar fluids
are obtained and reported in the previous section. These solutions
are evaluated numerically and depicted graphically. The variations
of velocity, micro-rotation, temperature and entropy generation
rate for different values of parameters are shown through figures.

7.1. Effect of couple stress parameter (s;)

From Figs. 2-6 we notice that as couple stress parameter s, in-
creases, velocity, micro-rotation, temperature and entropy genera-
tion number are increasing. As s, —» oo we get the case of
Newtonian (viscous) fluids. Hence Fig. 2 indicates that the veloci-
ties of viscous fluids is more than the velocities of the micropolar
fluids. But the velocities will change slightly by increasing s,. A part
of velocity in micropolar fluids is due to couple stress tensor gen-
erated by rotation of particles. Hence we conclude that in one
dimensional straight flow, the effect of couple stresses on velocity
is small. From Fig. 3, we see that the effect of couple stresses on mi-
cro-rotation is very high. Hence we can say that couple stresses can
effect micro-rotation very much and velocity slightly. Since veloc-
ity is changing slightly, the temperature due to dissipation of en-
ergy (depending on velocity) also changes very slightly. This is
seen in Fig. 4, as s, increases temperature increases slightly. The
same effect is seen on entropy generation number Ns in Fig. 5.
But near the plates effect of couple stresses on Ns is considerable.

0.25
s =1
. 2
2 5
0.20 82_2
. [s,=3
------------- s,=4
0.15 -
N
=
0.10
0.05
zone-| zone-ll
0.00 : T - - T
1.0 0.5 0.0 0.5 1.0
y ----- >

Fig. 2. Effect of couple stress parameter s, on velocity u for B=-0.8, ¢; =0.1,
¢=12,Re=1.2,n,=0.6,n;=09,n,=0.6, s, =2.



260 J.V. Ramana Murthy, ]. Srinivas /International Journal of Heat and Mass Transfer 65 (2013) 254-264

0.3
| ——s,=1
- --s=2
0.2 2
il s,=3
014 [ SZ=4
A 00
O 14
-0.2
-0.3
0.4 . . . . . .
-1.0 -0.5 0.0 0.5 1.0

Fig. 3. Effect of couple stress parameter s, on microrotation C for B= -2, ¢; =3,
c;=3,Re=3,n,=06,n;=0.8,n,=0.5,5=5.
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Fig. 4. Effect of couple stress parameter s, on temperature 0 for B=—1, Br=2,
¢=08,c,=12,m=11,n,=06,n,=03,n;=09,06,=07,Re=2,5;=2.
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Fig. 5. Effect of couple stress parameter s, on entropy generation number Ns as a
function of y for B=-2, Br=04, ¢;=0.11, ¢;=0.11, n,=08, n,=038, 6;=0.8,
n;=09,n,=11,R=2,5=6Q=1.
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Fig. 6. Effect of couple stress parameter s, on Bejan number Be as a function of y for
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$=2,Q=1.

0.25

0.15

U ——->

0.10 4

zone-l
0.00 r T T T T T

-1.0 -0.5 0.0 0.5 1.0
y ——>

Fig. 7. Effect of micropolarity parameter c, on velocity u for B=-0.5, ¢; =2,
Re=1.5,n,=0.7,n;=0.8,n,=0.5,5;=5,5,=5.

This may be due to more friction near the walls. From Fig. 6 we see
that Bejan number is high at the interface. From the limiting case of
S, — oo, we see that Be for viscous fluids is less than the micropolar
fluids. A slight increase in couple stress parameter s,, increases Be-
jan number Be very much at the interface. Since Be is nearly zero
near to the plates, entropy generation rate in transverse direction
is almost zero and fluid friction dominates.

7.2. Effect of cross viscosity or micro-polarity parameter (c;)

From Figs. 7-11. We observe that as micropolarity parameter c,
increases, velocity decreases considerably, micro-rotation de-
creases numerically and temperature decreases. But Bejan number
Be increases. As ¢; — oo, fluid particles will rotate about them-
selves with high angular velocities and hence fluid velocity de-
creases, as most of the momentum of the particles is transferred
to the rotation of the particles. Since velocity is decreasing, dissipa-
tion of energy due to velocity decreases and hence temperature de-
creases. In Fig. 10, the variation of the entropy generation number
Ns is shown, which varies in entire region of y with variation
in ¢, is shown. We observe that Ns is minimum at interface and
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Fig. 11. Effect of micropolarity parameter c; on Bejan number Be as a function of y
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Fig. 12. Effect of Reynolds number Re on velocity u for B=—0.8, ¢; =1.2, c; = 1.5,
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Fig. 13. Effect of Reynolds number Re on micro-rotation C for B= -2, ¢, =3, ¢, =0.2,
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variation in ¢, will not effect Ns but ¢, effects Ns very much near
the plates. The opposite behavior is seen in the case of Bejan num-
ber Be (Fig. 11). As c; increases, Be also increases. This is in contrast
to the behavior of Ns as s, increases. We see that Be at any point y is
more than 0.625 near the plates. This indicates that even near to
the plates effect of friction is less. This is very useful property.
We can conclude that micropolarity of fluids reduces the frictional
effects near the walls.

7.3. Effect of Reynolds number (Re)

From Figs. 12-16 we observe that as Reynolds number Re in-
creases, increasing nature in velocity, micro-rotation (numeri-
cally), temperature and entropy generation number Ns is seen.
All these values of u, C, 6 and Ns raise very much with a small raise
in the Re values. But near the walls Bejan number decreases as Re
increases which shows high dissipation of energy or entropy gen-
eration rate near the plates. Fig. 17 shows that as Reynolds number
Re increases, Nusselt number Nu increases. This may be due to ra-
pid increase of velocity as Re increases.
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0.0 . . . . . .
-1.0 -0.5 0.0 0.5 1.0
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Fig. 14. Effect of Reynolds number Re on temperature 0 for B=—-0.8, c; =1.5,
c=12,n=11,n,=06,n,=08,n;=09,,=07,5=15,5,=1.8.
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Fig. 15. Effect of Reynolds number Re on Entropy generation number Ns as a

function of y for B= -2, Br=0.5, ¢; =2.5, c; =3, n, =04, n,=0.6, 6, =0.6, n;=0.9,
ne=11,51=2,5=2,Q=1.
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Fig. 16. Effect of Reynolds number Re on Bejan number Be as a function of y for

B=-08, Br=0.1, ¢;=3, c;=3, n,=0.5, n,=0.6, 6;=0.6, n;=0.9, n,=1.1, s, =5,
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Fig. 17. Effect of Reynolds number Re on Nusselt number Nu as a function of Br for
B=-08, ¢,=12, ;=1.1, n,=06, n,=0.6, 6;=0.7, nz=09, m=1.1, 51=1.2,
Sp=1.2.

7.4. Effect of viscous dissipation parameter (5)

Dissipation parameter & occurs only in the equations for tem-
peratures. The effect of the parameter £ on entropy generation
number Ns and on Bejan number Be is shown in Figs. 18 and 19.
A small raise in the values of &, increases the values of entropy gen-
eration number Ns and decreases the values of Bejan number Be
very much. The figures indicate that at the interface y = 0, entropy
generation rate is minimum i.e., available energy in transverse
direction at the interface is maximum. At the walls Be is minimum
and Ns is maximum i.e., the fluid friction dominates near the walls.
These results are similar to the results obtained by Subba Reddy
et al. [44].

From Figs. 6 and 11, the comparative study of effect of couple
stress parameter s, and micropolarity parameter c; on Be shows
that near the walls s, has no effect but c, increases the values of
Be. Again we observed that Be is more than 0.625 near the walls
for ¢, and Be is almost zero near the walls for s, in Figs. 6 and
11. This indicates that micropolarity parameter offers smoothness
to the walls and hence friction near the walls deceases. This shows
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Fig. 18. Effect of viscous dissipation parameter £ on Entropy generation number Ns
as a function of y for B=-3, ¢;=2.5, =3, m¢=1.1, n,=0.6, n, =04, n;=0.9,
61=0.6,Re=3,51=5,5,=5Q=1.
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Fig. 19. Effect of viscous dissipation parameter & on Bejan number Be as a function
of y for B=—0.8, c; =2.5,c;=2.5, n,=1.1,n,=0.6,n,=0.5,n5=0.6, Re = 0.8, sy = 5,
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an industrial application that micropolar fluids with high micropo-
larity and less couples stresses will act as a good lubricant. The rea-
son for this may be due to the fact that much of momentum of the
fluid particles is transferred to the rotation of the particles by
decreasing their velocity. Hence friction and dissipation of energy
decreases near the plates.

7.5. Effect of ratio of viscosities (n,,)

In Fig. 20, we observe that as n, (: Z—f) increases, velocity de-

creases. This may be due to the fact that as n, increases, viscosity
increases and offers more resistance to flow. Hence velocity
decreases.

The similar results are observed by Umavathi et al. [33] in the
flow of viscous fluids in horizontal channel and by Prathap Kumar
et al. [34] in the flow of micropolar and viscous fluids in vertical
channel.

As a special case of micropolar fluids (as ¢ — 0, s — oo, we get
viscous fluids) our results are in agreement with the observations
of [33,34].
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Fig. 20. Effect of ratio of viscosity on velocity for B=-0.8,c; =1.2,c;=1.5,n,=04,
ng=0.5, Re=20,s;=2.0,5,=2.0.

8. Conclusion

The flow of immiscible micropolar fluids between two parallel
plates due to the constant pressure gradient is studied. The veloc-
ity, micro-rotation and temperature distributions are found analyt-
ically. The exergy loss distribution is studied in terms of second
law of thermodynamics. The entropy generation number Ns at
every point y between the channels is found. The effect of viscous
dissipation parameter & on entropy generation number (Ns), Bejan
number (Be) is studied through figures.

It is observed that:

1. Near the plates the values of Ns are more than the values of Ns
at the interface, indicating that friction due to surfaces on the
fluids increases entropy generation rate.

2. Near the plates in zone-I values of Ns are more than the values
of Ns in zone-II. This indicates the more the viscosity of the fluid
is, the more the entropy generation.

3. At the interface of the fluids Bejan number is maximum and
hence irreversibility ratio ¢ is minimum. This indicates that
amount of exergy (available energy) is maximum and irrevers-
ibility is minimum at the interface between the fluids.

4. Based on limiting values of micropolarity parameter and couple
stress parameter, we conclude that the values of velocity, tem-
perature and entropy generation number for viscous fluid are
more than the corresponding values for micropolar fluid case.
This may be due to the fact that in viscous fluids microrotations
are absent and hence exergy is not used for this purpose.

5. As micropolarity increases, entropy generation number at the
plates decreases and Bejan number increases. This indicates
an industrial application for micropolar fluids to use them as
a good lubricant.
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