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Abstract—Wireless sensor networks (WSN’s)are highly re-
source constrained and require energy efficient and strong cryp-
tographic techniques to ensure secure connectivity. Elliptic Curve
Cryptography (ECC) is a very popular public key cryptography
technique due to the extremely complex and difficult Elliptic
Curve Discrete Logarithm Problem (ECDLP), it relies upon. In
this paper, a technique for speeding up point multiplication, a
fundamental operation involved in ECC, is presented. Specifi-
cally, the computation cost of the width—w Non-Adjacent Form
(NAF) method of point multiplication is drastically reduced by
employing a mixed coordinate system to perform the basic point
doubling and addition operations. This paper demonstrates that
this technique results in a reduction of about 62% in the number
of field multiplications required when compared to the traditional
techniques for elliptic curve point multiplication.

Index Terms—NAF, ECC, Point Multiplicaton, WSN

I. INTRODUCTION

The advent of the world wide web in the 1990s started
bringing the world closer than ever before, creating new
avenues for information sharing. The Internet, since then,
has been on an expanding spree, and has resulted in the
emergence and ubiquitous spread of devices like the Personal
Digital Assistants (PDAs). With information sharing hitting
unprecedented levels, security of the information being
shared becomes paramount. The risks associated with
sharing information through the internet, or any local area
network, can be mitigated using easy-to-use and inexpensive
cryptographic techniques.

With rapid strides being made in the field of networking
and information sharing, wireless sensor networks became
prominent for their potential applications include earthquake
monitoring and intrusion detection among others. These
sensor devices interact with each other in a distributed
fashion, collecting and processing information from their
physical surroundings. However, wireless sensor networks are
unlike any traditional networks, or the Internet for that matter
and traditional cryptographic algorithms cannot be applied.
A major limiting factor of WSNs is that they are extremely
energy-constrained and this motivates the need to have
energy-efficient cryptographic techniques. The cryptographic
standard prevelant today is RSA. However, Elliptic Curve
Cryptography (ECC), introduced independently by Koblitz
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in [9] and Miller in [12] is emerging as a viable alternative
to RSA, for ECC provides same level of security as RSA at
much lower sizes of the key. ECC, in recent years, has also
been standardized by organizations such as the ISO [1], IEEE
[14] and NIST [13]. However, ECC is compute-intensive, as
will be demonstrated in the subsequent sections. This work
focuses focuses on reducing the computational cost of ECC
from the viewpoint of wireless sensor networks. Specifically,
the computational demands of the point multiplication
operation, a basic step involved in encryption and decryption
using ECC, is addressed.

II. ErLietic CURVE CRYPTOGRAPHY

ECC makes use of elliptic curves in which the variables and
coeflicients are restricted to the elements of a finite field, Z,,
where p is a prime number. For example, in case of coefficients
and variables limited to Z,, the elliptic curve equation used is

V= +ax+b)

The set of all points satisfying this equation for given values
of p, a and b is denoted by E,(a, b). Given two points P and
Qin E,(a, b), it would be useful to calculate R = P+ (Q, whose
coordinates are: xg = (12— xp —xp) and yg = (A(xp—xg) —yp),

_ y —y _ . _ . . .
where A1 = ngx};. If P=Q,ie, R = 2P, A is given by:
1= 3x§,+a

T

A fundamental operation in ECC is the point multiplication.
Given an integer k and a point P € E,(a,b), the point
multiplication operation is defined as Q = kP, Q € E,(a,b).
kP is nothing but repeated addition, i.e., kP = P+P+P---+P
(k times). Therefore, point multiplication involves repeated
use of point addition and point doubling equations given
above. The most popular algorithm for point multiplication,
double and add algorithm as given by the algorithm 1.

III. RELATED WORK AND OUR CONTRIBUTION

A number of improved versions of the traditional double
and add algorithm have been proposed in the past to mitigate
the computational complexity of point multiplication. In the
case of an elliptic curve over a prime field, for a given point
P(x,y), =P = (x,(p — y)). Hence, subtraction of points over a
prime field is as efficient as addition. This has motivated the
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Algorithm 1 The Double and Add algorithm

Algorithm 2 Computing width-w NAF

Input: k(in its binary form), P
Output Q = kP

A. Q = ¢ (infinity point).

B. fori=t-1 downto 0
Q=2Q
ifki=1,Q0=0+P.

C. Return Q

development of a signed digit representation for k, and details
can be found in [7]. Solinas [16] proposes a sliding window
approach to point multiplication and achieves reasonable
efficiency. Huang [8] introduces the idea of fuzzy optimization
of the trade-off between window size, as defined in [16], and
computational complexity. There have also been instances
wherein different radices have been used to represent the
scalars. Ciet et al [4] introduced the binary/ternary method
of scalar representation using radices 2 and 3. Longa et al
[11] introduced the multi-base non-adjacent form (mbNAF)
method, which efficiently represents integers using multiple
bases.

As will be seen in the subsequent sections, the width-w
NAF representation offers a lower computation cost when
compared to the double and add algorithm. However, width-w
NAF multiplication requires pre-computatation of P; = iP
for i =3,.--,2" — 1, and their storage. The pre-computation
of these points is performed using the conventional double
and add algorithm. Hence, it is essential that efficiency
is achieved with these pre-computations in order to speed
up point multiplication. In this work, the primary focus
is on speeding up the width—-w NAF method of point
multiplication. This is achieved through the use of different
coordinate systems for the point addition and doubling field
operations. In addition, the cost requirements of the odd
point pre-computation operation are also addressed. The
contributions of this work is enumerated below:

1) a mixed coordinate system [5] is used to reduce the
computation cost of point multiplication, and

2) a primary problem with using the double and add
algorithm for pre-computations is field inversion. This
problem is overcome by using the Montgomery trick
described in [2], which trades inversions with multipli-
cations. To carry out subsequent point multiplications,
the points are represented using the mixed coordinate
system to achieve greater efficiency.

IV. LivrtaTioNs OF THE DOUBLE AND ADD ALGORITHM AND THE
NAF REPRESENTATION

The double and add algorithm utilizes the binary
representation of k. Assuming a ¢—bit binary representation,
the expected number of 1’s in the binary representation
of k would be t/2. This implies that the cost of the
double and add algorithm would be ¢ point doublings and #/2

Input: k
Output: width-w NAF of k
A.i=0.
B. while k > 1 do
if k is odd
k; = u, where u = k(mod2")
k=k—k;
else k; = 0.
C. k=k/2
D.i=i+1

Return {ki_1, k2, - , k1, ko}

point additions. For a large value of &, this complexity is huge.

This complexity motivates the development of different
decimal number representation schemes. The core idea
behind these schemes is to minimize the number of 1’s in
the representation, thereby leading to a reduced number of
point addition operations. One such scheme is the signed
digit representation, according to which k = 6’1 k2!, where
k; € {0, £1}. A particularly useful signed-digit represenation is
the Non-Adjacent Form (NAF), which has the property that
no two adjacent coefficients k; are non-zero.

In this case, the average density of non-zero coefficients
is 1/3, thereby reducing the number of point additions to be
performed. This computation cost can be further reduced by
using a variant of the NAF, called the width-w NAF. In a
width-w NAF representation, each coefficient k; is odd and
satisfies the following:

o ki< (2" =1).

« at most one of any w consequtive coefficients is non-zero.
In this case, the average density of non-zero coefficients is
approximately ﬁ

The algorithm for width-w NAF point multiplication is
given in algorithm 3 [16].

Algorithm 3 Width-w NAF Point Multiplication
Input: w, width-w NAF of k, P

Output: Q = kP
A. Compute P; =iP fori=1,3,---,2" - 1.
B. 0 =¢.
C. for i = t-1 downto 0 do
0=20.
if k; # 0 then
if k; >0 then Q = Q + Py,.
else O = Q — Py,
Return Q.

A. Illustrations

Let us compare the computational cost of the point
multiplication operation kP, where k is represented in binary
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form and in width-w NAF. Let k be equal to 1234567.

1) Binary Representation: The binary representation of
1234567 is 100101101011010000111. It contains 21 bits,
out of which 11 are 1’s and the remaing are 0’s. Therefore,
the computation cost of kP in this case would be 20 point
doublings (D) and 10 point additions (A), or 20D + 10A.

2) Width-w NAF: The width-4 NAF representation of
1234567 is 9000013000013000000 7. Notice the
increased number of 0’s when compared to its binary represen-
tation. In this case, the computational cost would be 18D +4A,
provided 9P, 13P and 7P are pre-computed. If computational
efficiency can be achieved with these pre-computations, a
reduction in the computational cost of point multiplication can
be obtained over the binary representation.

V. CoOoRDINATE SYSTEMS AND CoMPUTATION COST

The coordinate system in which points on elliptic curves
are represented also dictates the computational cost of point
multiplication. A few coordinate systems and the correspond-
ing computation costs incurred are described in the following
subsections.

A. Affine Coordinates

In the normal affine coordinates [15], the point addition and
doubling (R = P + Q) formulae are as given in section II. In
this case, the computation cost of one point addition would
be: 1 inversion (I), 2 multiplication (M) and 1 squaring (S), or
I+2M + S. Note that addition, subtraction and multiplication
by a constant are neglected because they are usually faster than
point multiplication and inversion. Similarly, the computation
cost of one point doubling would be 7 +2M + 2S.

B. Projective Coordinates

In projective coordinates [10], the following substitutions
are made: x = X/Z and y = Y/Z. The point addition formulae
would be: Xz = VA, Yr = u(szpZQ —A) - v3YpZQ and
ZR = V3ZPZQ, where u = YQZP - YPZQ, V= XQZP - XPZQ and
A= MZZPZQ - V3 - 2V2XPZQ.

The point doubling formulae would be: Xz = 2hs,
Yr =w@B—-h) - 8Y1%s2 and Zg = 8s°, where w = aZf, + 3X12,,
s = YPZP, B= XPYPS and h = W2 — 8B.

C. Jacobian Coordinates

In the Jacobian coordinate system [3], following
substitutions are made: x = X/Z? and y = Y/Z?. The
point addition formulae would be: Xz = —H> — 2UH? + r?,
Yr = —SlH3 + V(U1H2 - XR) and Zp = ZPZQH, where
Ui = XpZ) = XoZp, S1 = YpZ}), S2 = YoZp, H = U = U,
and r = Sz -5 1.

The point doubling formulae would be: Xz = T,
Yg = —8Y} + M(S —T) and Zg = 2YpZp where S = 4XpY3,
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TABLE I: Point doubling and addition costs in various coor-
dinate systems

Operation Affine Projective Jacobian
Point Addition I1+2M+S 12M +2S | 12M +4S
Point Doubling | I+2M +2S ™M + 58 4M + 6S

TABLE II: Computation cost for the illustration of sec-
tion IV-A

Format Affine Projective Jacobian
Binary 645M +50S | 260M + 1205 | 200M + 160S
Width-w NAF | 473M + 408 174M + 98S 120M + 1248

M =3X}+aZ, and T = =25 + M>.

The computation costs incurred in all these operations are
tabulated in Table L.

D. Discussion

On an average, the cost of the inversion operation I in ellip-
tic curve arithmetic would relate to the cost of multiplication
operation M as [5]:

OM <I<30M

for prime p larger than 100 bits. Therefore, it would be
straightforward to see than projective coordinates offer a
drastic reduction in the computation cost of point addition and
doubling.

Let us once again consider the illustration given in
section IV-A. For k = 1234567 in binary form, the cost is
20D + 10A which would translate into 307 + 60M + 50§ in
affine coordinates. Substituting / = 19.5M (average), this cost
becomes 645M + 50S. Similarly the cost of width-w NAF is
computed in both coordinate systems, and all these results
are tabulated in Table II.

As can be observed from Table I, an interesting aspect
of the Jacobian coordinate system is that it offers faster
doubling than the projective coordinate system. However, the
projective coordinate system offers faster addition. Hence,
using different coordinate systems for addition and doubling
is something which might turn out to be very cost-effective.
Therefore, in all our subsequent analysis, different coordinate
systems are used for the point addition and doubling
operations. This is noted in Table III.

TABLE III: The mixed coordinate system

Operation Coordinate system
Point addition Projective
Point doubling Jacobian

VI. Cost ANALYSIS OF WIDTH-W NAF POINT MULTIPLICATION USING
MIXED COORDINATES

In this section, an analysis of the computational require-
ments of the width-w NAF point multiplication algorithm
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using the mixed coordinate system is performed. Assume a
t bit width-w NAF representation of the scalar k. As already
noted, the average density of non-zero coefficients in the NAF
representation of k is ﬁ Therefore, the average number of
non-zero coefficients in a r—bit NAF representation of £ would
be 1. The computational cost of algorithm 3 would hence
be equivalent to  point doublings and 5 point additions.
However, the use of the mixed coordinate system would
result in additional overhead of converting points from one
coordinate system to another. The entire cost analysis of
algorithm 3 using mixed coordinates is enumerated below:

1. Assuming the original point is input in affine coor-
dinates, it would have to be converted to Jacobian
coordinates, for the first step in algorithm 3 is doubling,
and according to the mixed coordinate system described
above, the Jacobian coordinate system is used for dou-
bling and Projective coordinate system for addition. The
cost of this conversion from Affine to Jacobian would
be S +2M.

2. Since t point doublings are performed, the cost would
be ¢ times the cost of point doubling in Jacobian coor-
dinates, i.e., H(6S + 4M).

3. The points would have to be converted from Jacobian
to Projective system —i7 times, for point addition is
performed those many times, as can be observed from
algorithm 3. The cost of this conversion would be
— (I +2M).

4. Next, the point addition operation is performed in the
projective coordinate system —I5 times. In this step,
the pre-computed points P, would also have to be
convereted from affine to projective system. The net cost
of this step would be ﬁ(lZM +2S +2M).

5. Since the iteration from addition to doubling happens
ﬁ times, the result of addition, which is in Projective
system, would have to be converted into the Jacobian
system. The cost of this step would be —-(2M).

6. Finally, the result is converted from Projective system
to affine system.

Hence, the total cost Cy,qy Would add upto

t

Conar = (AM + S) + 1(6S +4M
fF=@M+S)+16S + )+w+1

(I+2S +18M) (1)

Rewriting this equation,

2t
w+ 1

t

Conar =1
f (w+1

)+ MA+4t+

18t1)+S(6t+1+ ) (2)

w+
A. Evaluations

In this section, the cost of the mixed coordinate based witdh-
w NAF point multiplication method is compared with the
traditional double and add algorithm. The average cost Cg,
of the traditional double and add algorithm, based on affine
coordinates, would be

Cdazt(1+2M+ZS)+%(I+2M+S) 3)

605

Rewriting,
t
Cau =15 + MG +5(3) @)

1) The case of a 160-bit and a 192-bit scalar: Consider
a 160-bit and a 192-bit scalar k. It has been pointed out
that the NAF representation of k is atmost one longer than
the binary representation [7]. Therefore, assuming ¢ to be
almost same across both binary and NAF representation, and
considering the average case of I = 19.5M as noted earlier, a
cost comparison of double and add method and the mixed
coordinate based width-w NAF method is performed. The
comparison is given in Table IV.

TABLE IV: Computation cost comparison

Bit Width Cdu Cmnuf

1844M + 10258
1664M + 1014.38
1501.14M + 1006.7S
1394M + 10018
1310.67M + 996.5S
2209M + 1229.8S
1972M + 12178
1800.57M + 1207.85S
1672M + 12018
1572M + 1195.67S

160 5160M + 4008

192 6192M + 4808

oo A N V| K| ool o\ K| =

VII. TrRADING FIELD INVERSIONS WITH MULTIPLICATIONS - THE
MoNTGOMERY TRICK

In the previous sections, it has been seen that a mixed
coordinate system can provide best computational efficieny
with the point multiplication operation. However, this is just
half the problem solved. As established previously, a key
step in the performance of the width-w NAF multiplication
algorithm is the precomputation of the points P; = iP for
i=13,---,2" — 1. In our work, the technique introduced
by Dahmen et al in [6] is used. This technique determines
(2i = 1)P as

Qi-1)P=2P+(2i-3)P

The formulae for determining these points in affine coordinates
are listed below:

2P(x2,y2) :
Xy = /lf -2x1
y2 = A1(x1 — x2) -
3xi+a
A = 2;1

3P(x3,y3) :
x3 = (15— x3 — x1)
¥3 = (A2(x2 — x3) — y2)

— 27N
/12 - X2—X1

(2i = DP(xis1,Yis1) : Xiv1 = (A2 = x2 — x;)

Yis1 = (i(x2 = Xi41) — y2)
A= Yi—Y2
Xi — X2

As can be seen in the formulae listed above, the most critical
component of these pre-computations is field inversion, i.e.,
determining the inverses of the denominators den; = 2y,
deny = (x—x) and in general, den; = (x;—x,). It is, however,
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possible to compute all these den; simultaneously using the
Montgomery trick [2].

The cost Cpecomp of precomputing the points P; = iP for
i=3,---,2" =1 by using Dahmen’s method in conjunction
with the Montgomery’s trick is given by

Cprecomp = (105 2" = 11)M +2"*1S + 1 (5)

An extensive mathematical proof of equation 5 can be found in
[6]. Table V shows the cost (I = 19.5M as before) for various
values of w.

TABLE V: Cprecomp Versus w

Cpr('comp
98.5M + 328
168.5M + 645

328.5M + 1288
648.5M + 2568
1288.5M + 5128

ool oy wn K| =

A. Total Cost Analysis

This Cpyecomp has to be added to C,,q to determine the total
cost of the mixed coordinate based width-w NAF method of
point multiplication. A total cost comparison of this method
with the traditional double and add algorithm is given in
Table VI.

TABLE VI: Total computation cost comparison - 192-bit k

Cda Cmna f

2307.5M +1261.8S

2140.5M + 12818
2129.07M + 1335.85S

2320.5M + 14578
2860.5M + 1707.67S

6192M + 4808

oo oy Lb| & =

However, it is to be noted that this pre-computation has to
be performed only once for a given w, and hence the total cost
given in Table VI is only one time cost. For any subsequent
calculations, the cost would be as per table IV, assuming that
w remains the same.

VIII. Resurrs AND CONCLUSIONS

As can be seen from Table II, the width-w NAF method of
point multiplication offers superior performance when com-
pared to the traditional double and add method. In addition,
as can be seen from Table IV, Table V and Table VI,
the use of a mixed coordinate system in the width-w NAF
greatly enhances the efficiency of the point multiplication
operation. Specifically, let us focus on the number of field
multiplication operations, since the amount of resources one
field multiplication operation requires is generally much higher
when compared to a field squaring operation. Referring to
Table VI, in the case of w = 6, the number of field multiplica-
tions required by the mixed-coordinate based width—w NAF
algorithm is approximately 2129 whereas the double and add
algorithm requires 6192 field multiplications. This represents
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a reduction of about 66% in the number of field multiplication
operations. A Table representing this cost reduction for various
values of the window parameter w is given below.

TABLE VII: Table showing the reduction in the number of
field multiplication operations required

w Double Mixed Coordinate | Reduction
and add width-w NAF

4 6192 2307.5 62%

5 6192 2140.5 65%

6 6192 2129.07 66%

7 6192 2320.5 62%

8 6192 2860.5 54%

As can be seen from Table VII, an average reduction of
about 62% in the number of field multiplications required has
been achieved by employing the mixed coordinate system in
the width—w NAF method of point multiplication.
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