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a b s t r a c t

The Hall and Ion-slip effects on fully developed electrically conducting couple stress
fluid flow between parallel disks has been considered. The governing non-linear partial
differential equations are transformed into a system of ordinary differential equations
using similarity transformations and then solved using Homotopy AnalysisMethod (HAM).
The effects of themagnetic parameter, Hall parameter, Ion-Slip parameter, Prandtl number
and couple stress fluid parameter on velocity and temperature are discussed and shown
graphically.
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1. Introduction

Rotating-disk flow has long been an important topic in fluid dynamic research for the interests in practical as well as
academic senses. After the similarity analysis for the free-disk flow proposed by von Karman [1], numerous investigations
have been carried out for the flow fields associated with either single-disk or two coaxial disks. Fluid flow and Heat
transfer associated with a rotating disk system are of academic and practical interest for the wide applications of rotating
machinery, lubrication, computer storage devices and crystal growth processes. Due to the massive applications of the
heat transfer and also the rotating disk flows, it is important to establish some special theoretical results by which we
can solve the Navier–Stokes equations. In the past decades, several researchers have explored the flow structure, heat
and mass transfer characteristics associated with the rotating-disk flows. In a rapidly rotating system with the presence
of the fluid temperature gradient, buoyancy effects induced by rotational forces may appear in the flow field. Under the
Boussinesq approximation and invoking a density–temperature relation, a model for investigation of rotational buoyancy
can be formulated. Soong [2] presented the theoretical analysis for axisymmetricmixed convection between rotating coaxial
disks, later he studied the Prandtl number effects [3]. Dimian and Essawy [4] obtained the magnetic field effects on mixed
convection between rotating coaxial disks. Soong [5] considered the non-isothermal flow mechanisms in rotating systems
with emphasis on the rotation-induced thermal buoyancy effects stemming from the coexistence of rotational body forces
and the non-uniformity of the fluid temperature field. Soong [6] studied the fluid flow and convective heat transfer between
two co-axial disks rotating independently. Jiji and Ganatos [7] considered steady laminar flow and heat transfer generated
by two infinite parallel disks. Atif and Tahir [8] investigated the effects of disks contracting, rotation and heat transfer on
the viscous fluid between heated contracting rotating disks. Batista [9] obtained analytical solution of the Navier–Stokes
equations for the case of the steady flow of an incompressible fluid between two uniformly co-rotating disks.
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Fig. 1. Physical model and coordinate system.

Fig. 2. h curve for H(η).

Themixed convection flow of an electrically conducting fluid between rotating disks in the presence of an axial magnetic
field is of special technical significance because of its frequent occurrence inmany industrial applications such as petroleum
technology to study the movement of natural gas, oil and water through the oil reservoirs, in chemical engineering for
filtration and purification process, in agriculture engineering to study the underground water resources etc. This type
of problem also arises in electronic packages, microelectronic devices during their operations. In recent years, several
investigators have extendedmany of the available convection heat transfer and fluid flow problems to include the effects of
magnetic fields for those cases when the fluid is electrically conducting. Ibrahim [10] considered the unsteady flow between
two rotating disks with heat transfer. The magnetohydrodynamic effects on a fluid film squeezed between two rotating
surfaces presented by Hamza [11]. Kumari et al. [12] discussed the unsteady flow of a viscous fluid between two parallel
disks with a time varying gap width and a magnetic field. In most of the MHD flow problems, the Hall and Ion-slip terms
in Ohm’s law were ignored. However, in the presence of strong magnetic field, the influence of Hall current and Ion-slip
are important. Attia [13] considered the flow due to a rotating disk, taking the Ion-slip into consideration. Hall and Ion-Slip
effects on three-dimensional flow of a second grade fluid presented by Hayat and Nawaz [14].

The classical Navier–Stokes theory does not describe the flow properties of polymeric fluids, colloidal suspension and
fluids containing certain additives. Different models have been proposed to explain the behavior of such fluids. Stokes [15]
proposed the theory of couple stress fluids, which shows the size dependent effect in the presence of couple stresses,
body couples and non-symmetric stress tensor. These fluids are capable of describing various types of lubricants, blood,
suspension fluids etc. The study of couple-stress fluids has applications in a number of processes that occur in industry
such as the extrusion of polymer fluids, solidification of liquid crystals, cooling of metallic plate in a bath, and colloidal
solutions etc. Stokes [15] discussed the hydro-magnetic steady flow of a fluid with couple stress effects. A review of couple
stress (polar) fluid dynamics was reported by Stokes [16]. Also, the study of magnetohydrodynamics and couple stress fluid
with Hall and ion-slip currents with heat transfer has important engineering application e.g. in power generators, MHD
accelerators, refrigeration coils, transmission lines, electric transformers and heating elements. Recently, Srinivasacharya
and Kaladhar [17,18] discussed the convection flow of couple stress fluid in vertical channel with Hall and Ion-slip effects.
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Fig. 3. h curve for G(η).

Fig. 4. h curve for θ(η).

Fig. 5. Relative error of H(η).

In the present work the mixed convection in couple stress fluid with heat transfer flow between two infinite rotating
disks in an axial uniform steady magnetic field is studied, considering both the Hall effect and the Ion-Slip. The Homotopy
Analysismethod is employed to solve the governing nonlinear equations. The homotopy analysismethodwas first proposed
by Liao [19] in 1992, is one of the most efficient methods in solving different types of nonlinear equations such as coupled,
decoupled, homogeneous and non-homogeneous. Also, HAM provides us a great freedom to choose different base functions
to express solutions of a nonlinear problem [20]. Convergence of the derived series solution is analyzed. The behavior of
emerging flow parameters on the velocity and temperature is discussed.
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Fig. 6. Relative error of G(η).

Fig. 7. Relative error of θ(η).

Fig. 8. The ratio βH from the theorem to reveal the convergence of the HAM solutions.

2. Mathematical formulation

Consider the axisymmetric steady flow of a incompressible couple stress fluid with Hall and Ion-Slip effects between two
horizontal parallel infinite disks separated by a spacing d. The disks lie at constant temperatures T1 and T2, and rotate with
rotational speedsΩ1 andΩ2, respectively, as shown in Fig. 1. Cylindrical coordinates (R, ϕ, Z) are fixed on the lower disk and
their origin lies at the disk center. It is assumed that the gravitational force and the stress work effects are negligibly small.
The flow is assumed laminar with constant properties. The Coriolis force (2ρΩ × q) and centrifugal forces (ρΩ × (Ω × R),
where R is the position vector) due to disk-rotation appear in momentum balance explicitly and, therefore, Boussinesq
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Fig. 9. The ratio βG from the theorem to reveal the convergence of the HAM solutions.

Fig. 10. The ratio βθ from the theorem to reveal the convergence of the HAM solutions.

Fig. 11. Magnetic effect (Ha) on F at γ = −1, Re = 50, βh = 0.20, βi = 0.20, Pr = 0.01, S = 1.0.

approximation can be easily implemented i.e. the density associated with the terms of gravity, the centrifugal and the
Coriolis forces due to the disk rotation, and the curvilinear motion of the fluids are all considered as variable. The linear
density–temperature relation, ρ = ρr [1 − β(T − Tr)], is employed for accounting the rotational buoyancy effects induced
by the body forces [5,6]. The subscript r denotes the reference condition and the parameter β is the thermal-expansion
coefficient. In the present study, thewall condition of disk 1 is used as the reference state. The reference state is of conditions
q = 0, T = Tr , ρ = ρr and P = Pr . At the reference state, the original momentum equation can be reduced to
∇Pr/ρr = Ω×(Ω×R)+g , which is the conservative part of the centrifugal and gravitational forces in flow field. Amagnetic
field of strength B0 is applied normal to the disk surface, and it is assumed that the magnetic Reynolds number is small.
Hence the induced magnetic field can be neglected, as compared to the applied magnetic field. Further, the electron-atom
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Fig. 12. Magnetic effect (Ha) on G at γ = −1, Re = 50, βh = 0.20, βi = 0.20, Pr = 0.01, S = 1.0.

collision frequency is assumed to be relatively high, so that the Hall effect and the ion slip cannot be neglected. With the
above considerations and approximations, the governing equations for the flow can be depicted [15,5], as

∇ · q = 0, (1)

(q · ∇)q + 2[1 − β(T − Tr)](Ω × q) + β(T − Tr)Ω × (Ω × R) − β(T − Tr)g =
−∇P∗

ρr

− ν∇ × ∇ × q −
η1

ρr
∇ × ∇ × ∇ × ∇ × q +

J × B
ρr

(2)

(q · ∇)T = α∇
2T (3)

in which P∗
= P − Pr is the pressure departure from the reference condition, Ω = Ω1ez , R = Rer , ez and er are the unit

vectors in the axial and radial directions, respectively. The last two terms on Left hand side of Eq. (2) are vorticity generation
by centrifugal buoyancy and Coriolis effect, respectively. Let the velocity components in the R, ϕ and Z directions are U , V
and W , respectively. In the present analysis, the following dimensionless variables are used,

U = RΩ1F(η), V = RΩ1G(η), W =
√

νΩ1H(η), η =
Z
d
, T − T1 = 1Tθ

where 1T = T2 − T1 is the characteristic temperature difference. G, H , and θ are the tangential, axial velocities and the
temperature function, respectively. The transformation is essentially of von Karman type but with an additional treatment
to the temperature function in the energy equation. The governing equations (1)–(3) can thus be cast into the following
dimensionless form:

S2Hvi
− H iv

+ 4Re3/2[(1 + G)G′
− B(Gθ ′

+ G′θ)] + Re1/2HH ′′′
− 2BRe3/2θ ′

+
Ha2αeH ′′

α2
e + β2

h
+ 2

Re1/2Ha2βh

α2
e + β2

h
G′

= 0 (4)

S2Giv
+ Re1/2[HG′

− H ′G − H ′
+ BH ′θ ] − G′′

−
1
2
Ha2Re1/2βhH ′

α2
e + β2

h
+

Ha2αe

α2
e + β2

h
G = 0 (5)

θ ′′
= PrRe1/2Hθ ′ (6)

in which the continuity equation

H ′
= 2Re1/2F (7)

has been introduced to simplify the system by eliminating the radial velocity function F(η). The superscript ()′ denotes
differentiation with respect to η, Eqs. (4) and (5), respectively, are the radial and circumferential components of the
momentum equation (2). Here Pr =

ν
α
is the Prandtl number which indicates the relative importance of viscous to thermal

diffusion effects, Re =
d2Ω1

ν
is the Reynolds numberwhich characterizes the rotational effect, its range is from 50 to 500, B =

β1T is the thermal Rossby number which measures the buoyancy effect, βh, βi indicates the Hall and Ion-slip effects. Ha =

B0d


σ
µ

is the Hartmann number implies the Magnetic effect, S =
1
d


η1
µ

is the Couple stress parameter. The effects of

couple-stress are significant for large values of S(= l/d), where l =


η1
µ

is the material constant. If l is a function of the
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Fig. 13. Magnetic effect (Ha) on H at γ = −1, Re = 50, βh = 0.20, βi = 0.20, Pr = 0.01, S = 1.0.

Fig. 14. Magnetic effect (Ha) on θ at γ = −1, Re = 50, βh = 0.20, βi = 0.20, Pr = 0.01, S = 1.0.

Fig. 15. Effect of βh on F at γ = −1, Re = 50, Pr = 0.01, βi = 0.20, S = 1.0,Ha = 10.0.

molecular dimensions of the liquid, it will vary greatly for different liquids. For example, the length of a polymer chain may
be a million times the diameter of water molecule [15]. Therefore, there are all the reasons to expect that couple-stresses
appear in noticeable magnitudes in liquids with large molecules.

The parameter γ =
Ω2−Ω1

Ω1
denotes the relative rotation rate of the disk 2 with respect to that of the disk 1. For example,

the values of γ = 0 and γ = −1 correspond to the cases of co-rotating disks (Ω1 = Ω2) and rotor–stator (Ω1 ≠ Ω2),
respectively. Note that, in this two-disk flow configuration, the cases of γ = 0 and B ≠ 0 are the pure free-convection.
While the forced convection is characterized by γ ≠ 0 and B = 0. For the non-zero B as well as γ , the problem becomes a
mixed convection one, in which Re can be used to characterize the forced flow effect.
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Fig. 16. Effect of βh on G at γ = −1, Re = 50, Pr = 0.01, βi = 0.20, S = 1.0,Ha = 10.0.

Fig. 17. Effect of βh on H at γ = −1, Re = 50, Pr = 0.01, βi = 0.20, S = 1.0,Ha = 10.0.

Boundary conditions
On the disks, according to the no-slip condition, the radial and axial velocities are zero. The tangential velocity G at the

disk l is identically zero; however, due to relativemotion of two disks, the tangential velocity at disk 2 is R(Ω2−Ω1). Thermal
boundary conditions at disk 1 and disk 2 are uniformwall temperatures T1 and T2, respectively. By defining a dimensionless
rotation rate for disk 2, the boundary conditions can be written as

.

H(0) = 0, H ′(0) = 0, G(0) = 0, H(1) = 0, H ′(1) = 0, G(1) − γ = 0, θ(0) = 0,
θ(1) = 1 (8a)

H ′′′(0) = 0, H ′′′(1) = 0, G′(0) = 0, G′(1) = 0. (8b)

The boundary condition (8b) imply that the couple stresses are zero at the disk surfaces.

3. The HAM solution of the problem

For HAM solutions, we choose the initial approximations of H(η), G(η) and θ(η) as follows:

H0(η) = 0, G0(η) = γ (3η2
− 2η3), θ0(η) = η; (9)

and choose the auxiliary linear operators:

L1 =
∂6

∂η6
, L2 =

∂4

∂η4
, L3 =

∂2

∂η2
(10)

such that

L1(c1 + c2η + c3η2
+ c4η3

+ c5η4
+ c6η5) = 0, L2(c7 + c8η + c9η2

+ c10η3) = 0 L3(c11 + c12η) = 0 (11)
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Fig. 18. Effect of βh on θ at γ = −1, Re = 50, Pr = 0.01, βi = 0.20, S = 1.0,Ha = 10.0.

Fig. 19. Effect of βi on F at γ = −1, Re = 50, Pr = 0.01, βh = 0.20, S = 1.0,Ha = 10.0.

Fig. 20. Effect of βi on G at γ = −1, Re = 50, Pr = 0.01, βh = 0.20, S = 1.0,Ha = 10.0.

where ci (i = 1, 2, . . . , 12) are constants. Introducing non-zero auxiliary parameters h1, h2 and h3, we develop the zeroth-
order deformation problems as follow:

(1 − p)L1[H(η; p) − H0(η)] = ph1N1[H(η; p)] (12)

(1 − p)L2[G(η; p) − G0(η)] = ph2N2[G(η; p)] (13)

(1 − p)L3[θ(η; p) − θ0(η)] = ph3N3[θ(η; p)] (14)
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Fig. 21. Effect of βi on H at γ = −1, Re = 50, Pr = 0.01, βh = 0.20, S = 1.0,Ha = 10.0.

Fig. 22. Effect of βi on θ at γ = −1, Re = 50, Pr = 0.01, βh = 0.20, S = 1.0,Ha = 10.0.

subject to the boundary conditions

H(0; p) = 0, H ′(0; p) = 0, G(0; p) = 0, H ′′′(0; p) = 0, G′(0; p) = 0

H(1; p) = 0, H ′(1; p) = 0, G(1; p) = γ , H ′′′(1; p) = 0 G′(1; p) = 0
θ(0; p) = 0, θ(1; p) = 1

(15)

where p ∈ [0, 1] is the embedding parameter and the non-linear operators N1, N2 and N3 are defined as:

N1[H(η, p),G(η, p), θ(η, p)] = S2Hvi
− H iv

+ 4Re3/2[(1 + G)G′
− B(Gθ ′

+ G′θ)]

+ Re1/2HH ′′′
− 2BRe3/2θ ′

+
Ha2αe

α2
e + β2

h
H ′′

+ 2
Re1/2Ha2βh

α2
e + β2

h
G′ (16)

N2[H(η, p),G(η, p), θ(η, p)] = S2Giv
+ Re1/2[HG′

− H ′G − H ′
+ BH ′θ ] − G′′

−
1
2
Ha2Re1/2βh

α2
e + β2

h
H ′

+
Ha2αe

α2
e + β2

h
G (17)

N3[H(η, p),G(η, p), θ(η, p)] = θ ′′
− PrRe1/2Hθ ′. (18)

For p = 0, we have the initial guess approximations

H(η; 0) = H0(η), G(η; 0) = G0(η), θ(η; 0) = θ0(η). (19)

When p = 1, Eqs. (12)–(14) are same as (4)–(6) respectively, therefore at p = 1 we get the final solutions

H(η; 1) = H(η), G(η; 1) = G(η) θ(η; 1) = θ(η). (20)

Hence the process of giving an increment to p from 0 to 1 is the process ofH(η; p) varying continuously from the initial guess
H0(η) to the final solution H(η) (similar for G(η, p) and θ(η, p)). This kind of continuous variation is called deformation in
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Fig. 23. Effect of S on F at γ = −1, Re = 50, Pr = 0.01, βi = 2.0, βh = 2.0,Ha = 5.0.

topology so that we call system Eqs. (12)–(15), the zeroth-order deformation equation. Next, the mth-order deformation
equations follow as

L1[Hm(η) − χmHm−1(η)] = h1RH
m(η), (21)

L2[Gm(η) − χmGm−1(η)] = h2RG
m(η), (22)

L3[θm(η) − χmθm−1(η)] = h3Rθ
m(η), (23)

with the boundary conditions

Hm(0) = 0, H ′

m(0) = 0, Gm(0) = 0, H ′′′

m (0) = 0, G′

m(0) = 0

Hm(1) = 0, H ′

m(1) = 0, Gm(1) = 0, H ′′′

m (1) = 0 G′

m(1) = 0
θm(0) = 0, θm(1) = 0

(24)

where

RH
m(η) = S2Hvi

− H iv
+ 4Re3/2


G′

+

m−1
n=0

G′

m−1−nGn − B
m−1
n=0

(Gnθ
′

m−1−n + G′

m−1−nθn)



+ Re1/2
m−1
n=0

HnH ′′′

m−1−n − 2BRe3/2θ ′
+

Ha2αe

α2
e + β2

h
H ′′

+ 2
Re1/2Ha2βh

α2
e + β2

h
G′ (25)

RG
m(η) = S2Giv

+ Re1/2


m−1
n=0

(HnG′

m−1−n − H ′

m−1−nGn + BH ′

m−1−nθn) − H ′


− G′′

−
1
2
Ha2Re1/2βh

α2
e + β2

h
H ′

+
Ha2αe

α2
e + β2

h
G (26)

Rθ
m(η) = θ ′′

= PrRe1/2
m−1
n=0

Hnθ
′

m−1−n (27)

and, form being integer
χm = 0 form ≤ 1

= 1 form > 1. (28)
The initial guess approximations H0(η),G0(η) and θ0(η), the linear operators L1, L2 and L3 and the auxiliary parameters
h1, h2 and h3 are assumed to be selected such that equations (12)–(15) have solution at each point p ∈ [0, 1] and also with
the help of Taylor series and due to Eq. (19) H(η; p),G(η; p) and θ(η; p) can be expressed as

H(η; p) = H0(η) +

∞
m=1

Hm(η)pm (29)

G(η; p) = G0(η) +

∞
m=1

Gm(η)pm (30)

θ(η; p) = θ0(η) +

∞
m=1

θm(η)pm (31)
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Fig. 24. Effect of S on G at γ = −1, Re = 50, Pr = 0.01, βi = 2.0, βh = 2.0,Ha = 5.0.

Fig. 25. Effect of S on H at γ = −1, Re = 50, Pr = 0.01, βi = 2.0, βh = 2.0,Ha = 5.0.

in which h1, h2 and h3 are chosen in such a way that the series (29)–(31) are convergent at p = 1. Therefore we have from
(20) that

H(η) = H0(η) +

∞
m=1

Hm(η), (32)

G(η) = G0(η) +

∞
m=1

Gm(η) (33)

θ(η) = θ0(η) +

∞
m=1

θm(η) (34)

for which we presume that the initial guesses to H , G and θ the auxiliary linear operators L and the non-zero
auxiliary parameters h1, h2 and h3 are so properly selected that the deformation H(η, p), G(η, p) and θ(η, p) are smooth
enough and their mth-order derivatives with respect to p in equations (32)–(34) exist and are given respectively by
Hm(η) =

1
m!

∂mH(η;p)
∂pm


p=0

, Gm(η) =
1
m!

∂mG(η;p)
∂pm


p=0

, θm(η) =
1
m!

∂mθ(η;p)
∂pm


p=0

. It is clear that the convergence of Taylor series

at p = 1 is a prior assumption, whose justification is provided via a theorem [21], so that the system in (32)–(34) holds
true. The formulas in (32)–(34) provide us with a direct relationship between the initial guesses and the exact solutions.
All the effects of interaction of the magnetic field as well as of the heat transfer, Hall and Ion effects and couple stress
flow field can be studied from the exact formulas (32)–(34). Moreover, a special emphasize should be placed here that the
mth-order deformation system (21)–(24) is a linear differential equation systemwith the auxiliary linear operators Lwhose
fundamental solution is known.
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Fig. 26. Effect of S on θ at γ = −1, Re = 50, Pr = 0.01, βi = 2.0, βh = 2.0,Ha = 5.0.

4. Convergence of the HAM solution

The expressions forH,G and θ contain the auxiliary parameters h1, h2 and h3. As pointed out by Liao [19], the convergence
and the rate of approximation for the HAM solution strongly depend on the values of auxiliary parameter h. For this purpose,
h-curves are plotted by choosing h1, h2 and h3 in such a manner that the solutions (29)–(31) ensure convergence [19]. Here
to see the admissible values of h1, h2 and h3, the h-curves are plotted for 15th-order of approximation in Figs. 2–4 by taking
the values of the parameters Re = 50, Ha = 2.0, βh = 2.0, βi = 2.0, Pr = 0.01, S = 1, γ = −1, and B = 0.05. It is
clearly noted from Fig. 2 that the range for the admissible values of h1 is−1.35 < h1 < −0.6. From Fig. 3, it can be seen that
the h-curve has a parallel line segment that corresponds to a region −1.5 < h2 < −0.6. Fig. 4 depicts that the admissible
value of h3 are −1.25 < h3 < −0.6. A wide valid zone is evident in these figures ensuring convergence of the series. To
choose optimal value of auxiliary parameter, the average residual errors (see Ref. [22] for more details) are defined as

EH,m =
1
K

K
i=0


N1


m
j=0

Hj(i1t)

2

(35)

EG,m =
1
K

K
i=0


N2


m
j=0

Gj(i1t)

2

(36)

Eθ,m =
1
K

K
i=0


N3


m
j=0

θj(i1t)

2

(37)

where 1t = 1/K and K = 5. At different order of approximations (m), minimum of average residual errors are shown in
Tables 1–3. It is clear fromTable 1 that the average residual error forH isminimumat h1 = −1.03. It can be seen fromTable 2
that theminimumof average residual error forW attains at h2 = −1. Table 3 depicts that at h3 = −0.9, Eθ attainsminimum.
Therefore, the optimum values of convergence control parameters are taken as h1 = −1.03, h2 = −1, h3 = −0.9.

To see the accuracy of the solutions, the residual errors are defined for the system as

REH = S2Hvi
n − H iv

n + 4Re3/2[(1 + Gn)G′

n − B(Gnθ
′

n + G′

nθn)] + Re1/2HnH ′′′

n − 2BRe3/2θ ′

n

+
Ha2αe

α2
e + β2

h
H ′′

n + 2
Re1/2Ha2βh

α2
e + β2

h
G′

n (38)

REG = S2Giv
n + Re1/2[HnG′

n − H ′

nGn − H ′

n + BH ′

nθn] − G′′

n −
1
2
Ha2Re1/2βh

α2
e + β2

h
H ′

n +
Ha2αe

α2
e + β2

h
Gn (39)

REθ = θ ′′
= PrRe1/2Hθ ′ (40)

where Hn(η), Gn(η) and θn(η) are the HAM solution for H(η), G(η) and θ(η). For optimality of the convergence control
parameters, residual error for different values of h in the convergence region displayed in Figs. 5–7. We examine that h1 =

−1.03, h2 = −1, h3 = −0.9 gives a better solution. Table 4 establishes the convergence of the obtained series solution. It
is found from the above observations that the series given by (29)–(31) converge in thewhole region of ηwhen h1 = −1.03,
h2 = −1, h3 = −0.9.
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Fig. 27. Prandtl number Pr effect on F at γ = −1, Re = 100, Pr = 0.01, βi = 0.2, βh = 0.20,Ha = 2.0.

Fig. 28. Prandtl number Pr effect on G at γ = −1, Re = 100, Pr = 0.01, βi = 0.2, βh = 0.20,Ha = 2.0.

In order to pursue the convergence of the HAM solutions to the exact ones, the graphs for the ratio (following the recent
work of [21])

βH =

 Hm(h)
Hm−1(h)

 , βG =

 Gm(h)
Gm−1(h)

 , βθ =

 θm(h)
θm−1(h)

 (41)

against the number of terms m in the homotopy series is presented in Figs. 8–10. Figures strongly indicate that a finite
limit of β will be attained in the limit of m → ∞, which will remain less than unity (actually figures imply a limit of 0.12,
0.14, 0.096 for H , G and θ respectively). The velocity and temperature solutions seem to converge in an oscillatory manner
requiring more terms in the homotopy series. Thus, the convergence to the exact solution is assured by the HAMmethod.

5. Results and discussion

The solutions for F(η),G(η),H(η) and θ(η) have been computed and shown graphically in Figs. 11–30. The effects of
magnetic parameter (Ha), Hall parameter (βh), Ion-slip parameter (βi), couple stress fluid parameter (α) and Prandtl Pr effect
have been discussed. To study the effects ofHa, βh, βi, S and Pr , computations were carried out by taking γ = −1, B = 0.05.

Figs. 11–14 display the effect of the magnetic parameter Ha on F(η),G(η),H(η) and θ(η). It can be observed that the
velocities F(η),G(η) and H(η) decreases with an increase in parameter Ha, while temperature distribution is independent
of the magnetic field. This is because of the applied axial magnetic field, which gives rise to resistive force known as Lorentz
force of an electrically conducting fluid in a rotating system.

The variation of velocity components F(η),G(η), H(η) and temperature θ(η) with βh is shown in Figs. 15–18. We see
that the dimensionless velocity components F(η), H(η) decrease and G(η) increases with an increase in parameter βh. The
inclusion of Hall parameter decreases the resistive force imposed by the magnetic field due to its effect in reducing the
effective conductivity. As the energy equation is independent of Hall parameter, temperature have no significant change
with the Hall parameter.

Figs. 19–22 represent the effect of the Ion-slip parameter βi on F(η),G(η),H(η) and θ(η). We see that from the velocities
F(η) and G(η) decrease with an increase in parameter βi. Fig. 21 depicts that the induced flow in the ϕ-direction increases
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Fig. 29. Prandtl number Pr effect on H at γ = −1, Re = 100, Pr = 0.01, βi = 0.2, βh = 0.20,Ha = 2.0.

Fig. 30. Prandtl number Pr effect on θ at γ = −1, Re = 100, Pr = 0.01, βi = 0.2, βh = 0.20,Ha = 2.0.

with an increase in the parameter βi. As βi increases the effective conductivity also increases, in turn, decreases the damping
force on the velocity component in the direction of the flow, and hence the velocity component in the flow direction
increases. Unremarkable variation can be find in temperature distribution in Fig. 22, because of absence of Ion-slip parameter
in energy equation.

Figs. 23–26 indicate the effect of the Couple stress fluid parameter S on F(η),G(η), H(η) and θ(η). As the Couple stress
fluid parameter S increases, the radial velocity F(η), the tangential velocity G(η) and axial velocity H(η) decrease. It is also
clear that the temperature θ(η) decreases with an increase in α. It can be noted that the velocity in case of couple stress
fluid is less than that of a Newtonian fluid case. Thus, the presence of couple stresses in the fluid decreases the velocity and
temperature.

In Figs. 27–30 with B = 0.05, the Prandtl number effect significantly alters the flow fields. For large Prandtl number,
Pr = 1, the temperature function changes abruptly in the thin thermal boundary layer but remains uniform in large portion
of the wheel space. As Pr decreases from 1 to 0.01, the thermal diffusion is getting more and more important and, then, the
temperature variation appears notably in the whole domain rather than confined in a narrow region. For small Pr , the tem-
perature gradient near the disk 1, i.e. Z = 0, is alleviated. Due to coupling of the Coriolis induced buoyancy in circumferential
fluid motion and the Prandtl number effects, salient Pr-dependence of the circumferential velocity is presented.

6. Conclusions

In this paper, the Hall and Ion-slip effects on fully developed electrically conducting couple stress fluid flow between two
parallel Disks has been studied. The governing equations are expressed in the non-dimensional form and are solved by using
HAM. The features of flow characteristics are analyzed by plotting graphs and are discussed in detail. The main findings are
summarized as follows:

• As the magnetic parameter increases, velocity decreases.
• The tangential velocity increased as the Hall and Ion-slip parameters increased.
• Increase in the Hall and Ion-slip parameters leads to decrease in radial and axial velocities.
• The presence of couple stresses in the fluid decreases the velocity and temperature.
• Increase in the Prandtl number leads to the increase in temperature and decrease in velocity.
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Table 1
Optimal value of h1 at different order of
approximations.

Order Optimal of h1 Minimum of Em

10 −1.015 2.93 × 10−7

15 −1.03 1.36 × 10−8

20 −1.03 −1.41 × 10−9

Table 2
Optimal value of h2 at different order of
approximations.

Order Optimal of h2 Minimum of Em

10 −1 −1.91 × 10−6

15 −1 1.83 × 10−8

20 −1 −5.59 × 10−10

Table 3
Optimal value of h3 at different order of
approximations.

Order Optimal of h3 Minimum of Em

10 −0.85 4.90 × 10−6

15 −0.9 −2.75 × 10−8

20 −0.9 −5.63 × 10−10

Table 4
Convergence of HAM solutions for different order of approximations.

Order U(0) W (0) θ(0)

5 −0.0978237509 −0.5018297787 0.5436232327
10 −0.09782161851 −0.5018272424 0.5434752547
20 −0.09782161122 −0.5018272423 0.5434752142
30 −0.09782161122 −0.5018272423 0.5434752142
40 −0.09782161122 −0.5018272423 0.5434752142
50 −0.09782161122 −0.5018272423 0.5434752142
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