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Abstract—Wireless sensor networks facilitate real-time data
processing in many applications such as intrusion detection and
military surveillance. These applications inherently demand a
high level of security. Public key cryptographic techniques such
as Elliptic Curve Cryptography (ECC) provide a flexible interface
to ensure security, requiring no pre-distribution of keys. However,
ECC is very compute-intensive, owing to the computationally
complex elliptic curve point multiplication operation. This work
presents a technique to speed up the elliptic curve point multi-
plication operation, achieving a cost reduction of about 48% over
the double and add algorithm and about 40% over the width-
w Non Adjacent Form (NAF) algorithm. Additionally, results
of its software implementation are also presented, simulating the
specifications of MEMSIC’s wireless sensor network development
kit. Finally, we conclude that the timing results obtained from
the software implementation conform to the theoretical results.

Index Terms—WSN, ECC, Point Multiplication, NAF

I. INTRODUCTION

Wireless Sensor Networks consist of numerous tiny nodes,
each capable of performing real-time data processing. Nowa-
days, these networks are widely being used in applications
such as military surveillance and intrusion detection. The
sensor nodes belonging to a network interact with each other
in a distributed fashion, collecting and processing information
from their physical surroundings. However, these sensor nodes
have several constraints when compared to a traditional desk-
top computer, with the most notable being limited memory
and processing capabilities. These limitations pose a serious
challenge to implementing security schemes on such devices.
Despite these limitations, it is essential that these devices
are installed with adequate security schemes to protect data
integrity.

Public key cryptographic (PKC) schemes offer a flexible
interface, and do not require pre-distribution of keys. The PKC
standard widely used today is RSA. However, ECC [6] [9] is
emerging as a viable alternative to RSA, for ECC provides
same level of security as RSA at much lower sizes of the
key. ECC, in recent years, has also been standardized by
organizations such as the ISO [1] and has gained acceptance
among various industry sectors. In spite of the computational
requirements, 160-bit ECC has been implemented on Atmel’s
ATmega 128, demonstrating that ECC is indeed feasible on
resource constrained wireless sensor networks [3]. This work
focuses on speeding up the point multiplication operation, a
key step in any application using Elliptic Curve Cryptography.

The paper is organized as follows: section I-A gives a
brief introduction to the hardware platform which will be
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TABLE I
Fearures oF MEMSIC’s WSN DEVELOPMENT KIT
Feature Type/Value
Chip ATmega 1281
Clock Frequency 7.37 MHz
Bit Width 8—bit
Program Memory 128 KB
Static RAM 8 KB
Power Source Type AA, 2x
Power Source Capacity | 2000 mA-Hr

simulated in our implementations, section I-B gives a brief
introduction to Elliptic Curve Cryptography, section II gives
a brief literature survey and enumerates our contributions and
sections III, IV and V describe our technique for elliptic curve
point multiplication. Final theoretical and implementation re-
sults are given in section VI.

A. MEMSIC’s Wireless Sensor Network Development kit

The hardware platform used by the development kit is IRIS,
the latest generation of motes from MEMSIC [8]. Table I gives
the salient features of the development kit that will help us set
up the simulation environment to verify various hypotheses
and theoretical results.

B. Elliptic Curve Cryptography

ECC uses elliptic curves in which the variables and coeffi-
cients from the elements of a finite field, Z, (p — prime). The
elliptic curve equation that we work with for ECC applications
is

y2 = (x3 +ax + b)

The set of all points satisfying this equation for given values
of p, a and b is denoted by E,(a, b). Given two points P and
Qin E,(a, b), it would be useful to calculate R = P+ (Q, whose
coordinates are:

xp = (A = xp — xp),

yr = (A(xp — Xg) — yp),

Yo—Yyp

where 4 = < m— This operation is called point addition. In
case of P = 6, i.e, R = 2P (called point doubling), 4 would
be given as
3x12,, +a
-~ 2yp
A fundamental operation in ECC is point multiplication.
The point multiplication operation is defined as B = rA, A,B €
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E,(a,b) and r € Z, the set of integers. rA can be written as,
ie, T A = A+A+A+---+ A (r times). Therefore, point
multiplication involves repeated use of point addition and point
doubling equations given above. The most popular algorithm
for point multiplication, called the "double and add" algorithm
[5] is given in algorithm 1.

Algorithm 1 The Double and Add algorithm
Input: r(in its binary form), A

1. B = ¢ (infinity point).

2. fori=1-1 downto 0

B =2B.
if =1, B=B+A.
3. Return B
Output: B =rA

II. LITERATURE SURVEY AND OUR CONTRIBUTIONS

Many improved versions of the traditional double and
add algorithm have been reported previously to mitigate the
cost complexity of the elliptic curve point multiplication
operation. Point subtraction over a prime field is as efficient
as point addition, which has motivated the development
of signed representations for the scalar r [5]. A windowed
approach to point multiplication was proposed by Solinas
[11] and achieved reasonable efficiency. Recently, multi-radix
representations of the scalars are becoming popular to achieve
cost efficiency. In [2], a method of scalar representation using
radices 2 and 3 was introduced. In [7], a multi-base NAF
form, which efficiently represents integers using multiple
bases, was introduced.

As will be seen in section III, the width-w NAF representation
offers a lower computation cost when compared to the double
and add algorithm. However, the width-w NAF algorithm
requires odd point pre-computation, i.e., A; = iA for
i = 3,---,2% — 1. These points are computed using the
conventional double and add algorithm and hence this step
is a bottleneck in the performance of the width—w NAF
algorithm. In this paper, we present a technique that results
in a speed up in both the double and add and width—w
NAF algorithms. We achieve this through the use of a mixed
coordinate system, employing different coordinate systems for
the doubling and addition field operations. The contributions
of this paper are enumerated below:
1) a mixed coordinate system is used to reduce the com-
putation cost of point multiplication, and
2) implementation results of simulations performed using
AVR Studio that simulates the performance of our
technique on the hardware described in section I-A are
also given.

III. THE NAF REPRESENTATION

The double and add algorithm makes use of the binary
representation of the scalar r. If the scalar’s binary represen-
tation consists of 7 bits, the expected number of ones in it

Algorithm 2 Determining width-w NAF representation
Input: r
Output: width—w NAF of r
1. i=0.
2. while r > 1 do
if r is odd
r;i = u, where u = r mod 2"
r=r—ri

else r; = 0.
3. r=r/2
4. i=i+1

Return {ri_1,ri_p,- -+ , 71,70}

would be #/2. This results in the double and add algorithm
costing #/2 point additions and ¢ point doublings. For a 160—-bit
scalar, this cost turns out to be pretty large. This motivates
the development of schemes which reduce the average den-
sity of ones in the representation, resulting in lesser point
addition operations to be performed. One such scheme is the
signed digit representation, according to which r = 3§ r;2/,
r; € {0,+1}. A class of signed integer representations which
has proved to be useful is the Non-Adjacent Form (NAF). In
this representation, the non-zero coeflicient density is about
1/3 on an average, resulting in a reduction in the number of
field addition operations to be performed. This computation
cost can be further reduced by using a variant of the NAF,
called the width—w NAF. In a width-w NAF, each coefficient
r; is odd and satisfies the following:

o 1 <2V —1).

« Out of any sequence of w consecutive coefficients, at most

one is non-zero.

In this case, the average non-zero coefficient density is ap-
proximately —-.

The algorithm for width—w NAF point multiplication is
given in algorithm 3 [11].

Algorithm 3 Width—w NAF Point Multiplication
Input: w, width—w NAF of r, A
1. Determine A; = iA for i =3,---,2" — 1.

2. B=¢.
3. fori=t—-1 downto O do
B =2B.
if r; # 0 then
if ;>0 then B=B+A,,.
else B=B-A,,.
Return B.
Output: B =rA

IV. CooRDINATE SYSTEMS AND COMPUTATION COST

The coordinate system in which the elliptic curve points
are represented also impacts the cost of the point multi-
plication operation. This section tabulates the formulae for
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point addition and doubling operations and the corresponding
computation costs incurred in various coordinate systems.

TABLE II
POINT DOUBLING AND ADDITION COSTS IN VARIOUS COORDINATE SYSTEMS
Operation Affine Projective Jacobian
Point Addition I+2M+S 12M +2S | 12M +4S
Point Doubling | 7+2M +2S TM + 58 4M + 6S
TABLE III
CoORDINATE SYSTEM CONVERSIONS
Coordinate System | Typical Point Substitution
Affine (x,y) -
Projective X,Y,2) x=X/Z,y=X/Z
Jacobian X,Y.Z) |x=X/Z%, y=Y/Z?
TABLE IV

THE MIXED COORDINATE SYSTEM

Operation | Coordinate system
Point addition Projective
Point doubling Jacobian

As can be seen from table II, the Jacobian coordinate
system offers faster doubling than the projective coordinate
system. However, the projective coordinate system offers faster
addition. Hence, using different coordinate systems for ad-
dition and doubling might potentially turn out to be very
cost-effective. Therefore, in all our subsequent analysis, the
Jacobian coordinate system is used for point addition and
projective coordinate system is used for the point doubling
operation. This is noted in table IV.

V. Mixep COORDINATE SYSTEM BASED WIDTH—w NAF
MULTIPLICATION ALGORITHM

Here, the mixed coordinate system based width—w NAF
multiplication algorithm is presented. It is noted in algo-
rithm 4. A detailed explanation including cost analysis is given
in the next section.

A. Cost analysis

In this section, the computational requirements of the mixed
coordinate system based width-w NAF point multiplication
algorithm is analysed. Assume a ¢ bit width—w NAF represen-
tation of the scalar r. As already noted, the non-zero coeflicient
density in the NAF representation of r is ﬁ Therefore,
the average number of non-zero coefficients in a r—bit NAF
representation of » would be —. The computational cost of
algorithm 3 would hence be equivalent to ¢ point doublings and
ﬁ point additions. However, the use of the mixed coordinate
system would result in additional overhead of converting
points from one coordinate system to another. The entire cost
analysis of algorithm 3 using mixed coordinates is enumerated
below:

1. The original point (affine system) would have to be

converted into Jacobian coordinates, for the first step

TABLE V
FORMULAE FOR POINT ADDITION

Coordinate System| Point Addition (R = P + Q)
Xg =vA
Yr = u(VXpZg — A) = V3 YpZg
Zr =V3ZpZg
where u = YQZp - YPZQ,
v= XQZP - XPZQ,
and A = u’ZpZo - v’ = 2" XpZg
Xg = —H> = 2UH* + r*
Yr = =S1H? + r(U1H? = Xg)
Zr = ZpZoH
where U = XpZ2, Uy = XoZ2,
S1=YpZ}. S2 = YoZ},
H=U,-Ujandr=5,-5;

Projective

Jacobian

TABLE VI
FORMULAE FOR POINT DOUBLING

Coordinate System Point Doubling (R = 2P)
Xg = 2hs
Yr = w(4B — h) - 8Y3s?
Zg = 8s°
where w = aZI% + 3Xf,,

s = YPZP, B= XPYPS,
and h = w? - 8B
Xgp=T
Yr=-8Y} +M(S -T)

Zr = 2YpZp
where Uy = XpZj), Us = XoZj,
S1=YpZ}, S2 = YoZ},
H=U,-Ujand r=5,-5;

Projective

Jacobian

in algorithm 3 is doubling, and according to the mixed
coordinate system described above, the Jacobian co-
ordinate system is used for doubling and Projective
coordinate system is used addition. The cost of this
conversion from Affine to Jacobian would be S +2M.
2. Since t point doublings are performed, the cost would
be ¢ times the cost of point doubling in Jacobian coor-

Algorithm 4 Mixed coordinate system based width—w NAF
Point Multiplication Algorithm
Input: w, width—w NAF of r, A (affine coordinates)
1. Compute A; = iA for i =3,5,---,2" - 1.
2. B=¢.
3. Baffine - Bjacobian
4. fori =t—-1 downto 0 do
4.1 B =2B.
4.2 if r; # 0 then
4.2.1 Bjacobian - Bpmjective
422 Ar;affine - Ar,pmjective
423 if r; >0 then B=B+A,.
4.2.4 else B=B-A,,.

4.3 Bprojecrive - Bjac'obian

5. Bprojecrive - Baffine
6. Return B.
Output: B = rA
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dinates, i.e., H(6S + 4M).

3. The points would have to be converted from Jacobian
to Projective system —= times, for the point addition
operation is performed those many times, as can be
observed from algorithm 3. The cost of this conversion
would be (7 +2M).

4. Next, the point addition operation in projective coordi-
nate system is performed —+ times. In this step, it is also
required that the pre-computed points A,, are converted
from affine to projective system. The net cost of this
step would be —=(12M + 2§ +2M).

5. Since the addition to doubling iteration happens -
times, the result of addition would have to be converted,
which is in Projective system, to the Jacobian system.
The cost of this step would be ﬁ(ZM).

6. Finally, the result is converted from Projective system

to affine system.

t

Hence, the total cost Cy,qy would add upto
t

Comay = (AM + S) + 1(6S +4M) + (I+25 +18M) (1)

w+1
Rewriting this equation,
t 181 2t
Chnar =1 M4 +4¢ S6r+1 2
/ (W+1)+ @+ +w+1)+ (6r+ +w+1)()

B. Theoretical Comparisons

In this section, the cost of the mixed coordinate system
based width-w NAF point multiplication method is compared
with the traditional double and add and width—w NAF algo-
rithms. The average cost Cy, of the traditional double and add
algorithm, using affine coordinates, would be

Cdazt(1+2M+25)+%(1+2M+S) 3)
Rewriting,
3 5
Cau =15+ MG) +S(3) )

Next, in the case of the width—-w NAF method of multipli-
cation, as noted in section III, the average density of non-
zero coefficients is approximately ﬁ Hence, the cost of the
width—w NAF multiplication algorithm will be

t

Coay = (1 +2M +25) + (I+2M+5) 5)

w+ 1
Rewriting,
Chap = 1(t + ! )+ MQ2t + 2 )+ S+ ) (6)
’ w+1 w+1 w+1

For software implementations of ECC, an assumption of
8M < I < 20M is reasonable [4]. However, this assumption
might not hold good in all cases. Specifically, it has been
established by Seysen [10] that this //M ratio can get as
large as 100 in smart cards, where a cryptography specific
co-processor is employed to perform computations. Hence,
in this section, a generic //M ratio analysis is performed for
the mixed-coordinate based width—w NAF method of point

25000

" Double and Add —o—
Width-4 NAF — —
Mixed Coordinate width-4 NAF —e—

20000 [

15000

10000

Number of multiplications

5000

1 1 1 1
0 20 40 60 80 100
I/M ratio, b

Fig. 1. A plot showing the number of multiplications versus the //M ratio
b; key size = 160 bits.

multiplication.

Let I/M ratio be equal to b. Setting the S/M ratio to
0.8, equations 2 and 4 become,

Chnar = M(4.8 + 8.81 + %leb)t) 7
b
Cp= M2 )
2
(b+2.8)t

Crar = M((b +3.6)t + =) )

For a key size of 160 bits and window parameter w = 4,
these equations reduce to

Comay = M(2040 + 32b) (10)
Cua = M(240b + 400) (11)
Cray = M(665.6 + 192b) (12)

The costs given in 10, 11 and 12 are plotted against b by
varying the window parameter w. The plot is shown in figure 1.
As can be seen from the plot, the number of multiplications
required by the mixed coordinate based width—w NAF method
of point multiplication is much less when compared to the
traditional double and add algorithm as well as the width—w
NAF algorithm over a large range of I/M ratios. As can
be seen from the graph, the mixed coordinate system based
width-w NAF point multiplication algorithm achieves a drastic
reduction in the number of multiplications for high values of
b.

VI. REsuLrs

This section presents a discussion on the computational
requirements of the mixed-coordinate system based width—w
NAF method and compares it with those of the traditional
double and add and the width—w NAF algorithms. As noted
earlier, the width—w NAF method of point multiplication offers
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superior performance when compared to the traditional double
and add method. In addition, as can be seen from figure 1,
the use of a mixed coordinate system in the width—w NAF
greatly enhances the efficiency of the point multiplication
operation. As noted earlier, for software implementations of
ECC, the I/M ratio b varies between 4 and 20. As can be
seen from figure 1, for the case of b = 20, the number of
field multiplications required by these three techniques and
the reduction in the case of the mixed coordinate system based
width—w NAF algorithm is tabulated in table VIIL

As can be noted from table VII, the mixed coordinate
system based width-w NAF method of point multiplication has
resulted in a reduction by about 48.4% in the number of field
multiplications with respect to the double and add algorithm,
whereas the reduction with respect to the traditional width—w
NAF technique of multiplication is about 40%.

TABLE VII
THEORETICAL RESULTS (w = 4, b = 20)

Point Multiplication Algorithm Number of multiplications

Double and Add 5200
Width-w NAF 4505.6
Mixed Coordinate width—w NAF 2680

Next, the results obtained from the C++ implementation
of the mixed coordinate system based width—w NAF point
multiplication algorithm is discussed. The simulation envi-
ronment is set up keeping in mind the specifications of
MEMSIC’s WSN development kit, described in section I-A.
All simulations are performed using AVR Studio 5, for it
provides good simulation environment customizability. The
following settings are done in AVR Studio’s project options
to simulate testing on the WSN development kit:

o Chip: ATmega 1281

o Clock Frequency: 7370000 Hz

The purpose of this simulation exercise is to verify that the
theoretical results discussed earlier are indeed true. Towards
this end, we make use of the in-built cycle counter feature
of AVR Studio 5, which gives the number of clock cycles
elapsed since the start of program execution. Given the clock
frequency, the execution time of the program can be easily
determined from the number of clock cycles. The execution
times of the following algorithms are compared:

« Double and Add

o Width-w NAF

o Mixed Coordinate System based Width-w NAF
Table VIII summarizes the results obtained.

As can be seen from Table VIII, the mixed coordinate
system based width—w NAF system resulted in an execution
time reduction of about 48% in the case of 160—bit prime
field and about 46% in the case of a 192—bit prime field with
respect to the double and add algorithm. With respect to the
traditional width-w NAF technique, the reduction is about 37%
in the case of 160-bit prime field and about 32% in the case
of 192-bit prime field. These results are in agreement with
the theoretical results discussed earlier.

TABLE VIII
C++ IMPLEMENTATION RESULTS FOR W = 4 (ALL TIMES IN MILLISECONDS)
Point Multiplication Algorithm GF(160) | GF(192)
Double and Add 19.75 30.87
Width-w NAF 16.08 24.45
Mixed Coordinate Width-w NAF 10.23 16.67

VII. CONCLUSIONS

In this paper, a mixed coordinate system based width-
w NAF elliptic point multiplication algorithm is presented,
achieving a computation cost reduction of about 48% with
respect to the traditional double and add algorithm and about
40% with respect to the traditional width—w NAF algorithm.
To verify the accuracy of these theoretical values, timing
results from the software implementations are also given,
simulating the specifications of MEMSIC’s wireless sensor
network development Kkit.
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