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An analysis is presented to investigate the Hall and Ion-slip effects on fully developed elec-
trically conducting couple stress fluid flow between vertical parallel plates in the presence
of a temperature dependent heat source. The governing non-linear partial differential
equations are transformed into a system of ordinary differential equations using similarity
transformations and then solved using homotopy analysis method (HAM). The effects of
the magnetic parameter, Hall parameter, Ion-slip parameter and couple stress fluid param-
eter on velocity and temperature are discussed and shown graphically.
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1. Introduction

Heat transfer in free and mixed convection in vertical channel has been the focus of extensive investigation for many dec-
ades due to its wide range of applications in the design of cooling systems for electronic devices and in the field of solar en-
ergy collection, etc. Heat exchanger technology involves convective flows in vertical channels. Several researchers have
studied analytically and mostly numerically the problem of mixed convection heat transfer and fluid flow between vertical
parallel plates. Aung and Worku [1] presented an exact solution for fully developed mixed convection in a parallel-plate ver-
tical channel and compared it to their numerical results for developing flow at great distances from the channel entry. Cheng
et al. [2] have investigated the problem of flow reversal and heat transfer of fully developed mixed convection in vertical
channels. Analytical solution for fully developed mixed convection between parallel vertical plates with heat and mass trans-
fer presented by Boulama and Galanis [3]. Rao and Narasimham [4] have considered the laminar conjugate mixed convection
in a vertical channel with heat generating components. Ameni et al. [5] investigated numerically the mixed convection in a
vertical heated channel.

A combined free and forced convection flow of an electrically conducting fluid in a channel in the presence of a transverse
magnetic field is of special technical significance because of its frequent occurrence in many industrial applications such as
geothermal reservoirs, cooling of nuclear reactors, thermal insulation, petroleum reservoirs, etc. This type of problem also
arises in electronic packages, microelectronic devices during their operations. In recent years, several convection heat trans-
fer and fluid flow problems have received new attention within the more general context of magnetohydrodynamics (MHD).
Several investigators have extended many of the available convection heat transfer and fluid flow problems to include the
effects of magnetic fields for those cases when the fluid is electrically conducting. Alireza and Sahai [6] studied the effect of
temperature-dependent transport properties on the developing MHD flow and heat transfer in a parallel-plate channel
. All rights reserved.
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whose walls were held at constant and equal temperatures. Umavathi and Malashetty [7] analyzed the problem of combined
free and forced convective magnetohydrodynamic flow in a vertical channel by taking into account the effect of viscous and
ohmic dissipations. Barletta and Ceilla [8] obtained the solutions both analytically by a power series method and numerically
for Mixed convection MHD flow in a vertical channel by taking into account the effects of Joule heating and viscous dissi-
pation. Recently Prathap Kumar et al. [9] studied mixed convection of composite porous medium in a vertical channel with
a symmetric wall heating conditions.

In most of the MHD flow problems, the Hall and Ion-slip terms in Ohms law were ignored. However, in the presence of
strong magnetic field, the influence of Hall current and Ion-slip are important. Tani [10] studied the Hall effects on the steady
motion of electrically conducting viscous fluid in channels. Hall and Ion-slip effects on MHD Couette flow with heat transfer
have been considered by Soundelgekar et al. [11]. Attia [12] considered the steady Couette flow of an electrically conducting
viscous incompressible fluid between two parallel horizontal non-conducting porous plates with heat transfer, taking the
Ion-slip into consideration.

During recent years the study of convection heat and mass transfer in non-Newtonian fluids has received much attention
and this is because the traditional Newtonian fluids cannot precisely describe the characteristics of the real fluids. A theo-
retical study of the fully developed mixed convection flow of a micropolar fluid in a parallel plate vertical channel with an
asymmetric wall temperature distribution has been presented by Ali and Chamkha [13]. Ziabakhsh and Domairry [14] have
obtained the solution for natural convection of the Rivlin–Ericksen fluid of grade three between two infinite parallel vertical
flat plates. Sajid et al. [15] studied fully developed mixed convection flow of a viscoelastic fluid between permeable parallel
vertical walls using HAM. Some of the published papers on different non-Newtonian fluids, such as Brian [16], Kaloni and
Siddiqui [17], Rudraiah et al. [18], Kaloni and Lou [19], Hayat et al. [20–22], Fetecau et al. [23–25]. In addition, progress
has been considerably made in the study heat and mass transfer in magneto hydrodynamic flow of non-Newtonian fluids
due to its application in many devices, like the MHD power generator, aerodynamics heating, electrostatic precipitation
and Hall accelerator etc. Different models have been proposed to explain the behavior of non-Newtonian fluids. Among
these, couple stress fluids introduced by Stokes [26] have distinct features, such as the presence of couple stresses, body cou-
ples and non-symmetric stress tensor. The couple stress fluid theory presents models for fluids whose microstructure is
mechanically significant. The effect of very small microstructure in a fluid can be felt if the characteristic geometric dimen-
sion of the problem considered is of the same order of magnitude as the size of the microstructure. The main feature of cou-
ple stresses is to introduce a size dependent effect. Classical continuum mechanics neglects the size effect of material
particles within the continua. This is consistent with ignoring the rotational interaction among particles, which results in
symmetry of the force-stress tensor. However, in some important cases such as fluid flow with suspended particles, this can-
not be true and a size dependent couple-stress theory is needed. The spin field due to microrotation of freely suspended par-
ticles set up an antisymetric stress, known as couple-stress, and thus forming couple-stress fluid. These fluids are capable of
describing various types of lubricants, blood, suspension fluids etc. The study of couple-stress fluids has applications in a
number of processes that occur in industry such as the extrusion of polymer fluids, solidification of liquid crystals, cooling
of metallic plate in a bath, and colloidal solutions etc. Stokes [26] discussed the hydromagnetic steady flow of a fluid with
couple stress effects. A review of couple stress (polar) fluid dynamics was reported by Stokes [27].

The homotopy analysis method [28] was first proposed by Liao in 1992, is one of the most efficient methods in solving
different types of nonlinear equations such as coupled, decoupled, homogeneous and non-homogeneous. Also, HAM provides
us a great freedom to choose different base functions to express solutions of a nonlinear problem [29]. The application of the
homotopy analysis method (HAM) in engineering problems is highly considered by scientists, because HAM provides us with
a convenient way to control the convergence of approximation series, which is a fundamental qualitative difference in anal-
ysis between HAM and other methods. Later Liao [30] presented an optimal homotopy analysis approach for strongly non-
linear differential equations. HAM is used to get analytic approximate solutions for heat transfer of a micropolar fluid
through a porous medium with radiation by Rashidi et al. [31]. Si et al. [32] accessed HAM solutions for the asymmetric lam-
inar flow in a porous channel with expanding or contracting walls. Recent developments of HAM, like convergence of HAM
solution, Optimality of convergence control parameter discussed by Turkyilmazoglu [33,34].

In this paper, we have investigated the Hall and Ion-slip effects on steady mixed convective heat transfer flow between
two vertical parallel plates in couple stress fluid. The homotopy analysis method is employed to solve the governing nonlin-
ear equations. Convergence of the derived series solution is analyzed. The behavior of emerging flow parameters on the
velocity and temperature is discussed.
2. Mathematical formulation

Consider an incompressible electrically conducting couple stress fluid flow between two vertical parallel plates distance
2d apart. Choose the coordinate system such that x-axis be taken along vertically upward direction through the central line
of the channel, y is perpendicular to the plates and the two plates are infinitely extended in the direction of x and z. The
plates of the channel are at y = ± d. The flow is subjected to a uniform magnetic field perpendicular to the flow direction with
the Hall and Ion-slip effects. The effect of Hall and Ion-slip current gives rise to force in the z-direction, which induces a cross
flow in that direction and hence the flow becomes three dimensional. Assume that the flow is steady and the magnetic Rey-
nolds number is very small so that the induced magnetic field can be neglected in comparison with the applied magnetic
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field. Further, assume that all the fluid properties are constant except the density in the buoyancy term of the balance of
momentum equation. With the above assumptions, the equations governing the steady flow of an incompressible couple
stress fluid, under usual MHD approximations are
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where u, v, w are respectively the x-, y- and z-components of the velocity, p is the pressure, q is the density, Cp is the specific
heat, l is the coefficient of viscosity, bh is the Hall parameter, bi is the Ion-slip parameter, ae = 1 + bhbi, bT is the coefficient of
thermal expansion, Kf is the coefficient of thermal conductivity, g1 is the couple stress fluid parameter, T0 is the temperature
in hydrostatic state, c0 is the constant of proportionality and c0v(T � T0) is the amount of heat generated per unit volume in
unit time, which is assumed to be a linear function of temperature. From Eq. (1), we observe that the velocity component v is
constant i.e. v = v0.

The boundary conditions are given by
u ¼ 0; w ¼ 0; at y ¼ �d; ð5aÞ
uyy ¼ 0; wyy ¼ 0 at y ¼ �d; ð5bÞ
T ¼ T1; at y ¼ �d; T ¼ T2; at y ¼ d: ð5cÞ
The boundary condition (5a) corresponds to the classical no-slip condition from viscous fluid dynamics. The boundary con-
dition (5b) imply that the couple stresses are zero at the plate surfaces.

Introducing the following similarity transformations
y ¼ gd; u ¼ u0U; w ¼ u0W ; T � T0 ¼ ðT2 � T0Þh ð6Þ
in Eqs. (2)–(4), we get the following nonlinear system of differential equations
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where primes denote differentiation with respect to g;a ¼ 1
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is the dimensionless vertical distance.

Boundary conditions (5) in terms of U,W, h become
U ¼ 0; W ¼ 0; U00 ¼ 0; W 00 ¼ 0; h ¼ rT at g ¼ �1;
U ¼ 0; W ¼ 0; U00 ¼ 0; W 00 ¼ 0; h ¼ 1 at g ¼ 1;

ð10Þ
where rT is the wall temperature parameter.

3. The HAM solution of the problem

For HAM solutions, we choose the initial approximations of U(g), W(g) and h(g) as follows:
U0ðgÞ ¼ 0; W0ðgÞ ¼ 0; h0ðgÞ ¼
1
2
ð1þ rTÞ þ

1
2
ð1� rTÞg; ð11Þ
and choose the auxiliary linear operators:
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such that
L1 c1 þ c2gþ c3g2 þ c4g3� �
¼ 0; L2ðc5 þ c6gÞ ¼ 0: ð13Þ
where ci(i = 1,2, . . . ,6) are constants. Introducing non-zero auxiliary parameters h1, h2 and h3, we develop the zeroth-order
deformation problems as follow:
ð1� pÞL1½Uðg; pÞ � U0ðgÞ� ¼ ph1N1½Uðg; pÞ�; ð14Þ
ð1� pÞL1½Wðg; pÞ �W0ðgÞ� ¼ ph2N2½Wðg; pÞ�; ð15Þ
ð1� pÞL2½hðg; pÞ � h0ðgÞ� ¼ ph3N3½hðg; pÞ�; ð16Þ
subject to the boundary conditions
Uð�1; pÞ ¼ 0; Uð1; pÞ ¼ 0; U00ð�1; pÞ ¼ 0; U00ð1; pÞ ¼ 0; Wð�1; pÞ ¼ 0;
Wð1; pÞ ¼ 0; W 00ð�1; pÞ ¼ 0; W 00ð1; pÞ ¼ 0; hð�1; pÞ ¼ rT ; hð1; pÞ ¼ 1;

ð17Þ
where p 2 [0,1] is the embedding parameter and the non-linear operators N1, N2 and N3 are defined as:
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For p = 0, we have the initial guess approximations
Uðg; 0Þ ¼ U0ðgÞ; Wðg; 0Þ ¼W0ðgÞ; hðg; 0Þ ¼ h0ðgÞ: ð21Þ
When p = 1, Eqs. (14)–(16) are same as (7)–(9) respectively, therefore at p = 1 we get the final solutions
Uðg; 1Þ ¼ UðgÞ; Wðg; 1Þ ¼WðgÞ hðg; 1Þ ¼ hðgÞ: ð22Þ
Hence the process of giving an increment to p from 0 to 1 is the process of U(g;p) varying continuously from the initial guess
U0(g) to the final solution U(g) (similar for W(g,p) and h(g,p)). This kind of continuous variation is called deformation in
topology so that we call system Eqs. (14)–(17), the zeroth-order deformation equation. Next, the mth-order deformation
equations follow as
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Fig. 1. h curve for U(g) at bh = 2, bi = 2, a = 0.5, Ha = 2.



D. Srinivasacharya, K. Kaladhar / Commun Nonlinear Sci Numer Simulat 17 (2012) 2447–2462 2451
L1½UmðgÞ � vmUm�1ðgÞ� ¼ h1RU
mðgÞ; ð23Þ

L1½WmðgÞ � vmWm�1ðgÞ� ¼ h2RW
m ðgÞ; ð24Þ

L2½hmðgÞ � vmhm�1ðgÞ� ¼ h3Rh
mðgÞ; ð25Þ
with the boundary conditions
Umð�1Þ ¼ 0; Umð1Þ ¼ 0; U00mð�1Þ ¼ 0; U00mð1Þ ¼ 0; Wmð�1Þ ¼ 0;
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Fig. 2. h curve for W(g) at bh = 2, bi = 2, a = 0.5, Ha = 2.
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and, for m being integer
vm ¼ 0 for m 6 1
¼ 1 for m > 1

ð30Þ
The initial guess approximations U0(g), W0(g) and h0(g), the linear operators L1, L2 and the auxiliary parameters h1,h2 and h3

are assumed to be selected such that Eqs. (14)–(17) have solution at each point p 2 [0,1] and also with the help of Taylors
series and due to Eq. (21) U(g;p), W(g;p) and h(g;p) can be expressed as
Table 1
Optimal value of h1 at different order of approximations.

Order Optimal of h1 Minimum of Em

10 �1.04 9.76 � 10�5

15 �1.02 1.06 � 10�6

20 �1.02 5.07 � 10�7

Table 2
Optimal value of h2 at different order of approximations.

Order Optimal of h2 Minimum of Em

10 �0.96 1.98 � 10�7

15 �0.99 4.49 � 10�8

20 �0.99 4.75 � 10�9

Table 3
Optimal value of h3 at different order of approximations.

Order Optimal of h3 Minimum of Em

10 �0.96 9.77 � 10�5

15 �0.98 3.58 � 10�6

20 �0.98 9.23 � 10�8
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Fig. 4. Relative Error of U(g) when bh = 2, bi = 2, a = 0.5, Ha = 2.
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Table 4
Convergence of HAM solutions for different order of approximations.

Order U(0) W(0) h(0)

1 0.25625 0 1.86
5 0.266892314450323 0.0556513580716558 2.11301459157974

10 0.268922610628038 0.0547091691168198 2.13760247150632
15 0.268624397816504 0.0547282266072091 2.13823334196944
20 0.268624368904798 0.0547282179662947 2.13823318126976
30 0.268624368512822 0.0547282121359142 2.13823315212266
40 0.268624368431322 0.0547282121235081 2.13823315071245
50 0.268624368430807 0.0547282121227252 2.13823315070315
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in which h1, h2 and h3 are choosen in such a way that the series (31)–(33) are convergent at p = 1. Therefore we have from
(22) that
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for which we presume that the initial guesses to U, W and h the auxiliary linear operators L and the non-zero auxiliary
parameters h1, h2 and h3 are so properly selected that the deformation U(g,p), W(g,p) and h(g,p) are smooth enough and their

mth-order derivatives with respect to p in Eqs. (34)–(36) exist and are given respectively by UmðgÞ ¼ 1
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. It is clear that the convergence of Taylor series at p = 1 is a prior assumption,

whose justification is provided via a theorem [34], so that the system in (34)–(36) holds true. The formulae in (34)–(36) pro-
vide us with a direct relationship between the initial guesses and the exact solutions. All the effects of interaction of the mag-
netic field as well as of the heat transfer, Hall and Ion effects and couple stress flow field can be studied from the exact
formulas (34)–(36). Moreover, a special emphasize should be placed here that the mth-order deformation system
(23)–(26) is a linear differential equation system with the auxiliary linear operators L whose fundamental solution is known.

4. Convergence of the HAM solution

The expressions for U, W and hcontain the auxiliary parameters h1, h2 and h3. As pointed out by Liao [28], the convergence
and the rate of approximation for the HAM solution strongly depend on the values of auxiliary parameter h. For this purpose,
h-curves are plotted by choosing h1, h2 and h3 in such a manner that the solutions (31)–(33) ensure convergence [28]. Here to
see the admissible values of h1, h2 and h3, the h-curves are plotted for 15th-order of approximation in Figs. 1–3 by taking the
values of the parameters Pr = 0.71, Gr = 10, rT = 0.5, R = 2, Re = 2, bh = 2, bi = 2, a = 1, Ha = 2, Br = 0.5 and A = 1. It is clearly
noted from Fig. 1 that the range for the admissible values of h1 is �1.25 < h1 < �0.25. From Fig. 2, it can be seen that the
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Fig. 7. The ratio bU from the theorem to reveal the convergence of the HAM solutions.
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h-curve has a parallel line segment that corresponds to a region�1.2 < h2 < �0.4. Fig. 3 depicts that the admissible value of h3

are�1.5 < h3 < �0.5. A wide valid zone is evident in these figures ensuring convergence of the series. To choose optimal value
of auxiliary parameter, the average residual errors (see Ref. [30] for more details) are defined as
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1

2K

XK

i¼�K

N2

Xm

j¼0

WjðiMtÞ
" # !2

; ð38Þ

Eh;m ¼
1

2K

XK

i¼�K

N3

Xm

j¼0

hjðiMtÞ
" # !2

; ð39Þ



Table 5
Comparison of flow velocity (U) for Ha = R = Gr/Re = 0.

a = 0.5 a = 0. 75 a = 1

g Analytical HAM Analytical HAM Analytical HAM

�1 0 0 0 0 0 0
�0.5 0.227539 0.227539 0.153714 0.153714 0.105763 0.105763

0 0.316451 0.316451 0.21478 0.21478 0.148054 0.148054
0.5 0.227539 0.227539 0.153714 0.153714 0.105763 0.105763
�1 0 0 0 0 0 0
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Fig. 10. Magnetic effect (Ha) on U at bh = 2.0, bi = 2.0, h = �1, a = 0.5.
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Fig. 11. Magnetic effect (Ha) on W at bh = 2.0, bi = 2.0, h = �1, a = 0.5.
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where Mt = 1/K and K = 5. At different order of approximations (m), minimum of average residual errors are shown in Tables
1–3. It is clear from Table 1 that the average residual error for U is minimum at h1 = �1.02. It can be seen from Table 2 that
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Fig. 12. Magnetic effect (Ha) on h at bh = 2.0, bi = 2.0, h = �1, a = 0.5.
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Fig. 13. Effect of bh on U at bi = 2.0, h = �1, a = 0.5, Ha = 5.
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the minimum of average residual error for W attains at h2 = �0.99. Table 3 depicts that at h3 = �0.98, Eh attains minimum.
Therefore, the optimum values of convergence control parameters are taken as h1 = �1.02, h2 = �0.99, h3 = �0.98.

To see the accuracy of the solutions, the residual errors are defined for the system as
REU ¼ a2UðivÞn � U00n þ RU0n �
Gr
Re

hn þ
Ha2

a2
e þ b2

h

ðaeUn þ bhWnÞ þ A; ð40Þ

REW ¼ a2W ðivÞ
n �W 00

n þ RW 0
n �

Ha2

a2
e þ b2

h

ðbhUn � aeWnÞ; ð41Þ

REh ¼ h00n � RPrh0n þ c1RPrhn þ 2Br½ðU0nÞ
2 þ ðW 0

nÞ
2� þ a2Br½ðU00nÞ

2 þ ðW 00
nÞ

2�; ð42Þ
where Un(g), Wn(g) and hn(g) are the HAM solution for U(g), W(g) and h(g). For optimality of the convergence control param-
eters, residual error [31] for different values of h in the convergence region displayed in Figs. 4–6. We examine that
h1 = �1.02, h2 = �0.99, h3 = �0.98 gives a better solution. Table 4 establishes the convergence of the obtained series solution.
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Fig. 14. Effect of bh on W at bi = 2.0, h = �1, a = 0.5, Ha = 5.
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Fig. 15. Effect of bh on h at bi = 2.0, h = �1, a = 0.5, Ha = 5.
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It is found from the above observations that the series given by (31)–(33) converge in the whole region of g when h1 = �1.02,
h2 = �0.99, h3 = �0.98.

In order to pursue the convergence of the HAM solutions to the exact ones, the graphs for the ratio (following the recent
work of [34])
bU ¼
UmðhÞ

Um�1ðhÞ

����
����; bW ¼

WmðhÞ
Wm�1ðhÞ

����
����; bh ¼

hmðhÞ
hm�1ðhÞ

����
���� ð43Þ
against the number of terms m in the homotopy series is presented in Figs. 7–9. Figures strongly indicate that a finite limit of
b will be attained in the limit of m ?1, which will remain less than unity (actually figures imply a limit of 0.88 for U, W and
h). The velocity and temperature solutions seem to converge in an oscillatory manner requiring more terms in the homotopy
series. Thus, the convergence to the exact solution is assured by the HAM method.
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Fig. 16. Effect of bi on U at bh = 2.0, h = �1, a = 0.5, Ha = 5.
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Fig. 17. Effect of bi on W at h = �1, a = 0.5, Ha = 5.
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5. Results and discussion

In the absence of Hartmann number Ha, suction/injuction parameter R and Buoyancy ratio Gr/Re, Eq. (7) reduces to the
equation of motion for the flow between parallel plates given in text book by Stokes ([26], page no. 44). Analytical solution of
that equation with type A conditions and HAM solution at different a are shown in Table 5. The comparisons are found to be
in a very good agreement. Therefore, the HAM code can be used with great confidence to study the problem considered in
this paper.

The solutions for U(g), W(g) and h(g) have been computed and shown graphically in Figs. 10–21. The effects of magnetic
parameter (Ha), Hall parameter (bh), Ion-slip parameter (bi) and couple stress fluid parameter (a) have been discussed. To
study the effect of Ha, bh, bi and a, computations were carried out by taking Pr = 0.73, Gr = 10, rT = 0.5, R = 2, Re = 2,
Br = 0.5 and A = 1.

Fig. 10 displays the effect of the magnetic parameter Ha on U(g). It can be observed that the velocity U(g) decreases with
an increase in the parameter Ha. This is due to the fact that, the introduction of a transverse magnetic field, normal to the
flow direction, has a tendency to create the drag known as the Lorentz force which tends to resist the flow. Hence the
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Fig. 19. a Effect on U at bh = 2.0, bi = 2.0, h = �1, Ha = 5.
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Fig. 18. Effect of bi on h at bh = 2.0, h = �1, a = 0.5, Ha = 5.
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velocity decrease as the magnetic parameter Ha increases. The effect of Ha on the induced flow in z-direction W(g) is shown
in Fig. 11. It can be seen from this figure that W(g) increases with an increase in the parameter Ha. Fig. 12 depicts the var-
iation of temperature with Ha. The temperature h(g) decreases with an increase in the parameter Ha. As explained above, the
transverse magnetic field gives rise to a resistive force known as the Lorentz force of an electrically conducting fluid. This
force makes the fluid experience a resistance by increasing the friction between its layers and thus decreases its temperature
and concentration.

The variation of velocity components U(g) and W(g) and temperature h(g) with bh is shown in Figs. 13–15. We see that the
dimensionless velocity component U(g) and temperature h(g) increase with an increase in the parameter bh. The inclusion of
Hall parameter decreases the resistive force imposed by the magnetic field due to its effect in reducing the effective conduc-
tivity. Hence, the velocity component U(g) and temperature h(g) increases as the Hall parameter increases. The induced flow
in the z-direction decreases as bh increases.

Figs. 16–18 represent the effect of the Ion-slip parameter bi on U(g), W(g) and h(g). It can be seen from these figures that
the velocity U(g) increase with an increase in the parameter bi. The induced flow in the z-direction decreases with an
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increase in the parameter bi. The temperature h(g) increases with an increase in parameter bi. As bi increases the effective
conductivity also increases, in turn, decreases the damping force on the velocity component in the direction of the flow,
and hence the velocity component in the flow direction increases.

Figs. 19–21 indicate the effect of the Couple stress fluid parameter a on U(g), W(g) and h(g). As the couple stress fluid
parameter a increases, the velocity U(g), the induced flow in the z-direction W(g) decrease. It is also clear that the temper-
ature h(g) decreases with an increase in a. It can be noted that the velocity in case of couple stress fluid is less than that of a
Newtonian fluid case. Thus, the presence of couple stresses in the fluid decreases the velocity and temperature.

6. Conclusions

In this paper, the Hall and Ion-slip effects on fully developed electrically conducting couple stress fluid flow between ver-
tical parallel plates has been studied. The governing equations are expressed in the non-dimensional form and are solved by
using HAM. The features of flow characteristics are analyzed by plotting graphs and discussed in detail. The main findings are
summarized as follows:
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� As the magnetic parameter increases, velocity in the direction of the flow and the temperature are decreased and the
induced flow velocity component is increased.
� The velocity in the flow direction and temperature are increasing and the induced flow in the z-direction is decreasing as

the Hall parameter increases.
� The velocity in the flow direction and the temperature increase and induced flow in the z-direction decreases with an

increase in the Ion slip parameter.
� It is noticed that the presence of couple stresses in the fluid decreases the velocity and temperature.
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