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We investigate linear and weakly nonlinear properties of rotating convection in a sparsely
packed Porous medium. We obtain the values of Takens–Bogdanov bifurcation points and
co-dimension two bifurcation points by plotting graphs of neutral curves corresponding to
stationary and oscillatory convection for different values of physical parameters relevant to
rotating convection in a sparsely packed porous medium near a supercritical pitchfork
bifurcation. We derive a nonlinear two-dimensional Landau–Ginzburg equation with real
coefficients by using Newell–Whitehead method [16]. We investigate the effect of param-
eter values on the stability mode and show the occurrence of secondary instabilities viz.,
Eckhaus and Zigzag Instabilities. We study Nusselt number contribution at the onset of sta-
tionary convection. We derive two nonlinear one-dimensional coupled Landau–Ginzburg
type equations with complex coefficients near the onset of oscillatory convection at a
supercritical Hopf bifurcation and discuss the stability regions of standing and travelling
waves.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Nonlinear rotating convection in a porous medium uniformly heated from below is of considerable interest in geophysical
fluid dynamics, as this phenomena may occur within the Earth’s outer core. Earth’s outer core consists of molten Iron and
lighter alloying element, sulphur in its molten form. This lighter alloying element present in the liquid phase is released
as the new iron freezes due to supercooling onto the solid Inner core. Hence we get a mushy layer near the inner core bound-
ary, where the problem becomes convective instability in a porous medium [19]. The mushy layer is a region of coexisting
liquid and solid phases, forming as a consequence of constitutional supercooling, when a binary alloy solidifies directionally
[25]. The effect of rotating field on the convective instability is of interest in geophysics, particular in the study of Earth’s
interior where the molten liquid Iron is electrically conducting, which can become convectively unstable as a result of dif-
ferential diffusion.

Rotating convection in an electrically conducting fluid in a nonporous medium has been studied extensively
[6,3–5,26,22–24,9,8]. But its counterpart in a porous medium has not been given much attention inspite of its geophysical
applications. The multiplicity of control parameters makes this system an interesting one for the study of hydrodynamic sta-
bility, bifurcation and turbulence [11]. Palm et al. [18] investigated Rayleigh–Benard convection problem in a porous med-
ium. Brand and Steinberg [1] investigated convecting instabilities in binary liquid in a porous medium. However, Palm et al.
[18], Brand and Steinberg [2] and Steinberg and Brand [21] have made use of Darcy’s law (�mr2V is replaced by KV where K
is the permeability of a porous medium. For nonporous medium K is infinity). They have also not considered usual convective
nonlinearity. It is well known that Darcy’s law breaks down in situations where in other effects like viscous shear and inertia
. All rights reserved.
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come into play. In fact Darcy’s law is applicable to densely packed porous medium. An alternative to Darcy’s equation is
Brinkman equation and is of the form
r0q0 � q0g ¼ �l
K

V 0 þ ler02V 0;
where l is the fluid viscosity and le is the effective fluid viscosity, Brinkman model is valid for a sparsely packed porous
medium wherein there is more window fluid to flow so that the distortion of velocity give rise to the usual shear force. Lap-
wood [14] was the first to suggest the inclusion of convective term ðV 0:r0ÞV 0 in the momentum equation and study the Ray-
leigh–Benard convection in a sparsely packed porous medium. Recently, Tagare and Benerji Babu [22] have investigated the
problem of nonlinear convection in a sparsely packed porous medium due to thermal and compositional buoyancy.

In this paper, we investigate the problem of rotating convection in a sparsely packed porous medium. Rudraiah and Sri-
mani [20] have studied linear stability analysis in the case of thermal convection in a rotating fluid saturated porous medium
using Brinkman model but they have taken effective viscosity le same as fluid viscosity l, However, experiments show that
the ratio of effective viscosity le takes the value ranging from 0.5 to 10.9 [7]. In Section 2, we write basic dimensionless equa-
tions in Boussinesq approximation for rotating convection a in a sparsely packed medium by using for a momentum equa-
tion Darcy–Lapwood-Brinkman model with effective viscosity different from fluid viscosity. In Section 3, we study linear
stability analysis. In Section 4, by using multiple-scale analysis of Newell and Whitehead [16], we derive two dimensional
nonlinear Landau–Ginzburg equation in complex amplitude AðX;Y; TÞ with real coefficients near the supercritical pitchfork
bifurcation, where X;Y and T are slow space and time variables. In Section 4.1, we show the occurrence of secondary insta-
bilities such as Eckhaus and Zigzag Instabilities and also we study the Nusselt number contribution at the onset of stationary
convection from Landau–Ginzburg equation. In Section 5, we derive two nonlinear one-dimensional time-dependent cou-
pled Landau–Ginzburg type equations with complex coefficients near the onset of oscillatory convection at supercritical
Hopf bifurcation, here A1RðX;Y ; TÞ and A1LðX;Y; TÞ stands for amplitudes of right-hand and left-hand travelling waves.
In Section 5.1, following Matthews and Rucklidge [15], we neglect the slow space dependence and obtain two ordinary dif-
ferential equations in A1RðTÞ and A1LðTÞ with complex coefficients and discuss the stability regions of travelling and standing
waves. In Section 5.2, we also discuss Benjamin–Feir instability and occurrence of tri-critical points. In Section 6, we write
conclusions of the paper.

2. Basic equations

Consider a horizontal, infinitely extended layer of fluid in a porous medium of depth d which is kept rotating at a constant
angular velocity X about z-axis, this layer is heated from below. The upper and lower bounding surfaces of the layer are as-
sumed to be stress-free. Physical properties of the fluid are assumed constant, except density in the buoyancy term, so that
the Boussinesq approximation is valid. The porous medium is considered homogeneous and isotropic. The onset of convec-
tion is such a layer is governed by the following equations [17]
r0 � V 0 ¼ 0; ð2:1Þ

q00
1
/
@V 0

@t0
þ 1

/2 ðV
0 � r0ÞV 0 þX� X� r0

� �
þ 2

/
X� V 0
� �" #

¼ �r0P0 þ q0g � l
K

V 0 � ler02V 0; ð2:2Þ

M
@T 0

@t0
þ ðV 0:r0ÞT 0 ¼ jTr02T 0 ð2:3Þ
and
q0 ¼ q00½1� aðT 0 � T 0bÞ�: ð2:4Þ

Here X ¼ Xêz is angular velocity about z-axis, r0 is a position vector of a fluid particle, a ¼ �q0�1

0 @q0=@T 0
� �

is thermal expan-
sion coefficient, P0 is pressure, V 0 is mean flow velocity, g is an acceleration due to gravity, K is permeability of porous med-
ium, l is fluid velocity and le is coefficient of effective fluid viscosity. Eq. (2.2) is known as Darcy–Lapwood–Brinkman
equation and is valid for 0:8 < / < 1. Givler and Altobelli [7] shown that the range of K ¼ ðle=lÞ varies from 0.5 to 10.9.
M is dimensionless heat capacity and is defined as the ratio of the effective heat capacity of the porous medium to the heat
capacity ðq0CpÞf of the fluid. In a nonporous medium, K ¼ M ¼ / ¼ 1 and K !1 and Eq. (2.2) reduces to Navier–Stokes equa-
tion. In this paper, for sparsely packed porous medium, we consider M ¼ 0:9 and / ¼ 0:9. The conduction state is character-
ized by
V 0s ¼ 0; T 0s ¼ T 0b � ðDT 0=dÞz0 ð2:5Þ

and we take the temperature perturbation as h0 ¼ T 0 � T 0s. We use the scaling
x ¼ x0=d; y ¼ y0=d; z ¼ z0=d; t ¼ t0

Md2
=jT

; u ¼ u0

jT=Md
; v ¼ v 0

jT=Md
; w ¼ w0

jT=Md
; h ¼ h0

DT 0
;

P ¼ P0

q00M�2j2
T d�2 : ð2:6Þ
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Here Md2
=jT is thermal diffusion time in a porous medium. Using Eqs. (2.4) and (2.6), we can write basic dimensionless

equations of rotating fluid in a porous medium as
r � V ¼ 0; ð2:7Þ

1
M2/Pr

@V
@t
þ 1

/
ðV � rÞV

" #
¼ �r P

MPr
� TaPr

8M/2 jêz � rj2
� �

� 1
MDa

V þ Ta
1
2

/
V � êz
� �

þ K
M
r2V þ Rhêz; ð2:8Þ

@h
@t
þ 1

M
ðV � rÞh ¼ w

M
þr2h: ð2:9Þ
The dimensionless numbers required for the description of the motion are Rayleigh number: R ¼ gaDTd3
=jm, Prandtl number

Pr ¼ m=jT , Darcy number Da ¼ K=d2 and Taylor number Ta ¼ 4X2d4
=m2. The Curl of Eq. (2.8) gives
1
M2/Pr

@

@t
þ 1

MDa
� K

M
r2

� �
x� Rr� hêzð Þ � Ta

1
2

/
r� V � êz

� �
¼ � 1

M2/2Pr
½r � V � r

� �
V �; ð2:10Þ
where vorticity x ¼ r� V and r� ½ðV :rÞV � ¼ ½ðV � rÞx� ðx � rÞV �. The Curl of Eq. (2.10) in turn gives, after use of Eq.
(2.10).
1
M2/Pr

@

@t
þ 1

MDa
� K

M
r2

� �
r2V � R r2 hêzð Þ � r @h

@z

� 	
þ Ta

1
2

/
@x
@z
¼ 1

M2/2Pr
½r �r� V :r

� �
V �: ð2:11Þ
The z-component of Eqs. (2.10) and (2.11) are
1
M2/Pr

@

@t
þ 1

MDa
� K

M
r2

� �
xz �

Ta
1
2

/
@w
@z
¼ � 1

M2/2Pr
êz � ½r � V � r

� �
V �; ð2:12Þ

1
M2/Pr

@

@t
þ 1

MDa
� K

M
r2

� �
r2w� Rr2

hhþ
Ta

1
2

/
@xz

@z
¼ 1

M2/2Pr
êz � ½r �r� V � r

� �
V �; ð2:13Þ
where xz and w are the z-components of vorticity and velocity respectively andr2 ¼ ð@2=@x2 þ @2=@z2Þ is a horizontal Lapla-
cian operator. Eliminating h and xz from the linear part of Eqs. (2.9), (2.12) and (2.13), we get
Lw ¼ N ; ð2:14Þ
where
L ¼ DD2
Prr2 þD Ta

/2

@2

@z2 �DPr
R
M
r2

h; ð2:15Þ

N ¼ �DPr
R
M
r2

h V :r
� �

hþD Ta
1
2

M2/3Pr

@

@z
êz � ½r � V � r

� �
V � þ DDPr

1
M2/2Pr

êz � ½r �r� V � r
� �

V �; ð2:16Þ
here D ¼ @
@t �r

2
� �

and DPr ¼ 1
M2/Pr

@
@t þ 1

MDa
� K

Mr
2

� �
and r2

h ¼ @2

@x2.

2.1. Boundary conditions

We assume that fluid is confined between z ¼ 0 and z ¼ 1 corresponds to a mantle boundary. For perfectly conducting
boundary with temperature, we have
h ¼ 0 on z ¼ 0; z ¼ 1 for all x; y:
Also the normal component of the velocity would vanish on z ¼ 0; z ¼ 1,
i:e:; w ¼ 0 on z ¼ 0; z ¼ 1 for all x; y:
However, there are two more conditions to be imposed on velocity depending on the nature of the surface. In this paper we
consider free–free boundary conditions, i.e., on surfaces the tangential stresses vanish, which is equivalent to
Pxz ¼ l @u
@z
þ @w
@x

� �
¼ 0; Pyz ¼ l @v

@z
þ @w
@y

� �
¼ 0;
where l ¼ cq0 is dynamic viscosity. Since w vanishes for x; y on z ¼ 0; z ¼ 1, it follows that @u=@z ¼ @v=@z ¼ 0 on a free sur-
face z ¼ 0; z ¼ 1. Hence from equation of continuity we have @2w=@z2 ¼ 0 on z ¼ 0; z ¼ 1 for all x; y. In this paper we have
considered only the idealized stress-free conditions on the surface and vanishing of temperature fluctuations. Thus
w ¼ D2w ¼ D4w ¼ 0 at z ¼ 0;1. w and its even derivatives vanish at z ¼ 0 and z ¼ 1.
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3. Linear stability analysis

We perform a linear stability analysis of the problem by substituting
w ¼WðzÞeiqxþpt ; ð3:1Þ
into linearized version of Eq. (2.14) viz., Lw ¼ 0, and obtain an equation
ðD2 � q2Þðp� D2 þ q2Þ p

M2/Pr
þ 1

MDa
� K

M
ðD2 � q2Þ

� 	2

þ Ta

/2 D2ðp� D2 þ q2Þ
"

þ Rq2

M
p

M2/Pr
þ 1

MDa
� K

M
ðD2 � q2Þ

� 	#
WðzÞ ¼ 0; ð3:2Þ
where D ¼ ðd=dzÞ. We consider stress-free boundary conditions, then W ¼ D2W ¼ 0 on z ¼ 0; z ¼ 1 for all x; y.

3.1. Determination of marginal stability when Rayleigh number R is a dependent variable

Substituting WðzÞ ¼ sinpz and p ¼ ix into (3.2), we get
R ¼ M
q2 A1 þ ixðA2x2 þ A3Þ

 �

; ð3:3Þ
where
A1 ¼ r2 r1 r2
1d

4
sc �

x2d4
sc

M4/2Pr2 þ
Ta

/2 p2d2
sc �

2d2
scx2

M2/Pr
r1

( )
þ x2

M2/Pr
r2

1d
2
sc �

x2d2
sc

M4/2Pr2 þ
Ta

/2 p2 þ 2d4
sc

M2/Pr
r1

( )" #
; ð3:4Þ

A2 ¼ r2
d4

sc

M6/3Pr3 þ
r1d

2
sc

M4/2Pr

" #
; ð3:5Þ

A3 ¼ r2 r1 r2
1d

2
sc þ

Ta

/2 p2 þ 2d4
sc

M2/Pr
r1

( )
� 1

M2/Pr
r2

1d
4
sc þ

Ta

/2 p2d2
sc

� 
" #
; ð3:6Þ� � � �
here d2
sc ¼ ðp2 þ q2

scÞ;r1 ¼ 1
MDa
þ K

M d2
sc and r2 ¼ r2

1 þ x2

M4/2Pr2

�1
, from Eq. (3.5), A2 > 0.

3.1.1. Stationary convection ðx ¼ 0Þ
Substituting x ¼ 0 in Eq. (3.3), we get
Rs ¼
M
q2

s

d4
s

1
MDa
þ K

M d2
s

� �2
þ Ta

/2 p2d2
s

1
MDa
þ K

M d2
s

� �
264

375; ð3:7Þ
where d2
s ¼ ðp2 þ q2

s Þ. Here Rs is the value of the Rayleigh number for stationary convection. The minimum value of Rs is ob-
tained for qs ¼ qsc , where
2
qsc

p

� �6
þ 3

qsc

p

� �4
¼ 1þ Ta

p4

M
K/

� �2

: ð3:8Þ
Threshold for the onset of stationary convection is given by Eq. (3.7) with qs ¼ qsc ,
Rsc ¼
M
q2

sc

d4
scr2

1 þ Ta
/2 p2d2

sc

r1

" #
; ð3:9Þ
where d2
sc ¼ ðp2 þ q2

scÞ. For Ta=p4 � 1 (for large Taylor number), The required root of Eq. (3.8) becomes
qsc

p

� �
’ TaM2

2p4K2/2

 !1
6

:

The corresponding asymptotic values of qsc and Rsc are
qsc ’
p2TaM2

2K2/2

 !1
6

; ð3:10aÞ

Rsc ’ 3Kp4 M2Ta

2K2/2p4

 !2
3

: ð3:10bÞ
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In the free–free boundary conditions, for large Taylor number, we have
Rsc / Ta
2
3 and qsc / Ta

1
6: ð3:11Þ
This is also true for rigid-rigid and rigid-free boundary conditions.

3.1.2. Oscillatory convection ðx2 > 0Þ
For the oscillatory convection (x – 0) and from Eq. (3.3), R will be complex. But the physical meaning of R requires it to be

real. The condition that R is real implies that imaginary part of Eq. (3.3) is zero, i.e.,
A2x2 þ A3 ¼ 0; ð3:12Þ
where A2 and A3 are given by Eqs. (3.5) and (3.6). For oscillatory convection x2 ¼ ð�A3=A2Þ > 0 i.e.,
x2 ¼ M2Pr2

d2
oð1þMPrK/Þ

Tap2M2ð1�MPrK/Þ � d6
oK

2/2ð1þMPrK/Þ
h i

; ð3:13Þ
where d2
o ¼ p2 þ q2

o . Substituting x2 from Eq. (3.13) into the real part of Eq. (3.3), we get
Ro ¼
2Kð1þMPrK/Þ

Mq2
o

d6
o þ

M4p2Pr2Ta

ð1þMPrK/Þ2

" #
: ð3:14Þ
A necessary condition for x2 > 0 is Pr < 1. However, this is not sufficient condition and one must have in addition
Ta >
ð1þMPrK/ÞK2/2d6

o

M2p2ð1�MPrK/Þ
:

Ta ¼ Tac ¼
ð1þMPrK/ÞK2/2d6

o

M2p2ð1�MPrK/Þ
; q ¼ qc ð3:15Þ
is a solution of A3ðTacÞ ¼ 0 and corresponds to a Takens–Bogdanov bifurcation point. At Takens–Bogdanov bifurcation point
qo ¼ qs ¼ qc and A3ðqcÞ ¼ 0. We note that from Eq. (3.13), if x2 > 0 then RoðqoÞwill be less than RsðqoÞ and not RsðqsÞ given by
Eq. (3.7), which corresponds to stationary convection. However, at Takens–Bogdanov bifurcation point
RoðqoÞ ¼ RsðqsÞ ¼ RcðqcÞ; qo ¼ qs ¼ qc
and x2 ¼ 0 is a double zero at Ta ¼ TacðqcÞ. The Takens–Bogdanov bifurcation point occurs where neutral curves for Hopf and
pitchfork bifurcation meet and only a single wave number is present viz., qo ¼ qs ¼ qc . If qc > qsc then for all q < qc the first
instability to set in is an oscillatory instability.

The asymptotic value qc is obtained from Eq. (3.15) and is given by
qc !
p2M2Tað1�MPrK/Þ
ð1þMPrK/ÞK2/2

" #1
6

:

Thus for large Taylor number ðTa!1Þ, we have
qc !
p2M2Tað1�MPrK/Þ
ð1þMPrK/ÞK2/2

" #1
6

and qsc !
p2TaM2

2K2/2

 !1
6

ð3:16Þ
from Eq. (3.16), qc / Ta
1
6 and qsc / Ta

1
6 for Ta!1. The critical wave number corresponding to the onset of oscillatory con-

vection for given parameters Pr and Ta is obtained for q ¼ qoc from the following equation
2
qoc

p

� �6
þ 3

qoc

p

� �4
¼ 1þ TaPr2M4

p4ð1þMPrK/Þ2
: ð3:17Þ
For large Taylor number, the required root of Eq. (3.17) becomes
qoc

p

� �
’ TaPr2M4

2p4ð1þMPrK/Þ2

 !1
6

:

The corresponding asymptotic behavior of qoc and Roc for large Taylor number are [6]
qoc ’
TaPr2M4p2

2ð1þMPrK/Þ2

 !1
6

: ð3:18aÞ
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Roc ’
2p4K

M
ð1þMPrK/Þ 2

TaPr2M4

2p4ð1þMPrK/Þ2

 !" #2
3

: ð3:18bÞ
From Eqs. (3.10b) and (3.18b), Roc ! Rsc as Ta!1 implies that for large Taylor number
2M
8
3Pr

4
3

ð1þMPrK/Þ
1
3
¼ 1: ð3:19Þ
Root of Eq. (3.19) is (Chandhrasekhar [6]) Pr ¼ Prc ¼ 0:783813. Thus RocðqocÞ ! RscðqscÞ at Pr ¼ Prc . From the monotonic
dependence of qoc and qsc on Ta, we may conclude that for Pr > Prc;Roc > Rsc for all Ta. Hence for 1 > Pr > Prc , instability will
always manifest itself, first as stationary convection. For Pr < Prc , there exist a TaðPrÞ such that for Ta 6 TaðPrÞ the onset
instability will be stationary convection at pitchfork bifurcation while for Ta > TaðPrÞ it will be oscillatory convection at Hopf
bifurcation. TaðPrÞ is a function of Prandtl number Pr and for Ta ¼ TaðPrÞ,
RocðqocÞ ¼ RscðqscÞ but qoc – qsc: ð3:20Þ
This condition (3.20) gives codimension two bifurcation point where critical Rayleigh numbers of stationary convection and
oscillatory convection coincide at distinct critical wave numbers. Thus Takens–Bogdanov bifurcation point and codimension
two bifurcation point are different. There is no simple formula to give TaðPrÞ as a function of Pr. In the next subsection we
obtain Ta as a function of Pr at the codimension two bifurcation point by assuming R as an independent variable. Such kind of
interesting relation is not available in [6].

In Fig. 1(a–d), solid line represents stationary convection (pitchfork bifurcation) and dotted line denotes oscillatory con-
vection (Hopf bifurcation) which are plotted in (q,R)-plane. On solid line x2 ¼ 0 and dotted line x2 > 0. the value of x2 de-
creases on dotted line when q increases and x2 takes zero value at the intersection of solid and dotted line.

In Fig. 1(a–d) we have shown the effect of Taylor number Ta, over the onset of both stationary and oscillatory convection.
From these figures we can say that when Ta increases, then the onset of both stationary and oscillatory convection will in-
crease. This implies that rotation rate inhibits the onset of convection. This result is true for other parameter Pr also. In
Fig. 1(a–d), we can see three types of bifurcations like pitchfork bifurcation, Hopf bifurcation, Takens–Bogdanov bifurcation
(a) (b)

(c) (d)

Numerically calculated marginal stability curves are plotted in (R, q)-plane for Pr ¼ 0:5; Da ¼ 1500; K ¼ 0:85; / ¼ 0:9; and M ¼ 0:9, (a) Ta ¼ 106,
1012, (c) Ta ¼ 1016, (d) Ta ¼ 1020, then the onset of stationary convection and the onset of oscillatory convection increases (stationary convection

for solid lines and oscillatory convection stands dotted lines).



(a) (b)

(c)

Fig. 2. Neutral curves for the stationary bifurcation (solid lines) and for the Hopf bifurcation (dashed lines) near the codimension two point for
Ta ¼ 2000; Da ¼ 1500; K ¼ 0:85; / ¼ 0:9 and M ¼ 0:9, (a) Pr ¼ 0:5, (b) Pr ¼ 0:557, (c) Pr ¼ 0:6. x-axis wave number, y-Rayleigh numbers Rs;Ro .
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point, (the intersection point of solid and dotted line). In Fig. 2, when Pr2 increases then the onset of oscillatory convection
decreases. In Fig. 2b, we can observe the appearance of both primary bifurcations (pitchfork bifurcation, Hopf bifurcation)
and secondary bifurcations (Takens–Bosgdanov bifurcation point, co-dimension two bifurcation point).

Eq. (3.9) shows the stabilizing or inhibiting effect of rotation at the onset of stationary convection. The increase of Rsc and Roc

with the Taylor number Ta implies that disturbances in the fluid will not move upward or downward easily due to the presence
of Coriolis force. We have neglected the effect of centrifugal force. For inviscid fluid the Taylor number Ta is infinite and con-
sequently the critical Rayleigh number Rsc for the onset of stationary convection in a rotating fluid. Inviscid fluid with rotation
is stable for all vertical temperature gradients. This is a consequence of the Taylor–Proudman theorem. The patterns of con-
vection in the presence of rotation depend on both horizontal co-ordinates and Taylor number. An infinite number of patterns
are theoretically possible at same critical Rayleigh number. The patterns can be rolls, square cells, rectangular cells of all side
ratios and hexagonal cells. Chandrasekhar [6] calculated the velocity fields for these various patterns. Küppers and Lortz [13]
showed that with rotation and under slightly supercritical conditions all three-dimensional convective flows are unstable.

3.2. Determination of marginal stability when Rayleigh number R is an independent variable

Putting W ¼ sinpz, into Eq. (3.2) we get a third degree polynomial equation in p of the following form:
p3 þ Bp2 þ Cpþ D ¼ 0; ð3:21Þ
where
B ¼ d2 þ 2MPr/ Kd2 þ 1
Da

� �
; ð3:22aÞ

C ¼ d4KMPr/ 2þKMPr/ð Þ þMPr

d2 Tap2M3Pr � Rq2/
� �

þMPr/
Da

2Kd2 þ 2KMPr/d2 þMPr/
Da

� �
; ð3:22bÞ

D ¼ M2Pr2 Tap2M2 þ d6K2/2 � Rq2K/2
� �

þM2Pr2/2

Da
2d4Kþ d2

Da
� Rq2

d2

 !
: ð3:22cÞ



Table 1
Classifications of stability modes.

D < 0 D > 0 D ¼ 0

BC � D < 0 Unstable Unstable Unstable
BC � D > 0 Unstable Stable p ¼ 0; ReðpÞ < 0; ReðpÞ < 0
BC � D ¼ 0 Unstable p ¼ �d1; p ¼ ix; p ¼ �ix p ¼ 0; p ¼ 0; p < 0
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From Eq. (3.22a), B is always positive. The system will be stable when three roots of cubic Eq. (3.21) have ReðpÞ < 0. If
ReðpÞ > 0 for at least one root of the cubic equation then the system will be unstable. With each root of the cubic equation
there is an associated combination of a flow field and temperature distribution. The instability can set in as stationary con-
vection if one root of the Eq. (3.21) is zero or oscillatory convection if two roots are purely imaginary. The classification of
stability modes of the system are given Table 1 [10] from the roots of Eq. (3.21).

In Table 1, ‘unstable’ means there exists at least one root of Eq. (3.21) with ReðpÞ > 0, ‘stable’ means all roots of Eq. (3.21)
with ReðpÞ < 0. We get pitchfork bifurcation when D ¼ 0 and BC � D > 0. When D > 0 and BC � D ¼ 0, we get Hopf
bifurcation.

3.2.1. Stationary convection (x ¼ 0)
The stability of the system is determined by the sign of D and BC � D. Eq. (3.22c) shows that D < 0 when, for given q and

Ta;R is large enough. D > 0 for small enough R and D ¼ 0 when p ¼ 0. Equation D ¼ 0 gives
ðr þ p2Þ3 þ Tap2M2

/3K2 �
Rr
K
¼ 0; where r ¼ q2: ð3:23Þ
For a fixed Ta, Eq. (3.23) determines a curve
R ¼ M
rK

K2

M2 ðr þ p2Þ3 þ p2Ta

/2

" #
ð3:24Þ
in Rr-plane (critical Rayleigh number for the onset of stationary convection) there are two positive values of r say r1; r2, be-
tween which D < 0 and R < Rsc;D > 0 for all r (see Fig. 3). The system is stable for D > 0 and unstable D < 0.

On differentiating Eq. (3.24) with respect r we get Eq. (3.8), from which we find critical wave number for a given Taylor
number for the onset of stationary convection. Geometrically, there is another way is to find the critical Rayleigh number and
critical wave number for a given Taylor number under the condition that the straight line Rr is tangent to the curve

K2M�2ðr þ p2Þ3 þ Tap2/�2
h i

as shown in Fig. 4a. The straight line Rr becomes tangent to the curve only if R ¼ Rsc. At the tan-

gent say r ¼ r0, then the critical wave number q ¼ qsc obtained as qsc ¼ r0
1
2. Above discussions are done under the assumption

that R as a dependent variable and calculated critical Rayleigh number and critical wave number at a fixed Taylor number for
the onset of stationary convection. Similarly, by assuming Rayleigh number as an independent variable we can compute crit-
ical Taylor number and critical wave number for the onset of stationary convection. The analytical expressions for critical
Taylor number and critical wave number can be computed as follow.
Fig. 3. A typical diagram showing the stability regions of the system for stationary convection.



(a) (b)

Fig. 4. At the intersection point of the curve and straight line in figure (a) we get the critical wave number qsc ¼ r0
1
2 corresponding to the critical Rayleigh

number at a given Taylor number. In figure (b) the system (stationary convection) is stable in D > 0 region, unstable D < 0 region and D ¼ 0 on the curve
Tasc .
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The derivative of Eq. (3.23) with respect to r gives
R ¼ 3Kðr þ p2Þ2: ð3:25Þ
On substituting Eq. (3.25) into Eq. (3.23), we get
2
r3

p6 þ 3
r2

p4 ¼ 1þ Ta
p4

M
K/

� �2

: ð3:26Þ
Eq. (3.26) is nothing but Eq. (3.8) at r ¼ q2 and q ¼ qsc . We can write Eq. (3.25) in terms of r as
r ¼ R
3K

� �1
2

� p2: ð3:27Þ
From Eq. (3.27) we consider only positive values of r, since r ¼ q2ð> 0Þ. Substituting Eq. (3.27) into Eq. (3.23), we get critical
Taylor number Ta ¼ TascðRÞ, where
Ta ¼ Tasc ¼ R
K

1
2/2

M2

R
Rrb

� �1
2

�K/2

M2

" #
where Rrb ¼

27p4

4
: ð3:28Þ
Here Rrb is the critical Rayleigh number for the onset of stationary convection of Rayleigh–Benard convection without rota-
tion. Fig. 4b is plotted in (R; Ta)-plane for the curve (3.28). In this figure Tasc ¼ 0 on R-axis. From R-axis the curve (3.28) start-
ing from R ¼ Rrb. In (R; Ta)-plane we check the sign of D in a range of R with q ¼ qscðRÞ at a fixed Ta ¼ Tasc . For the values
{R; Ta} which are left to the curve (3.28). D > 0 and D < 0 for the values {R; Ta} which are right to the curve (3.28) and
D ¼ 0 on the curve ð3:28Þ.

3.2.2. Oscillatory convection (x2 > 0)
For oscillatory convection, substituting p ¼ ix into Eq. (3.21) and equating real and imaginary parts to zero we get

x2 ¼ D=B and x2 ¼ C. x2 is positive only if D > 0 or C > 0. From these two equations we get BC � D ¼ 0. From Table 1,
the condition D > 0 is not enough to discuss the stability of the system. So we have to also check the sign of D for the stability
of the system. Thus BC � D ¼ 0 gives
ðr þ p2Þ3 þ Tap2Pr2M4

ð1þMPrK/Þ2
� MRr

2Kð1þMPrK/Þ ¼ 0; ð3:29Þ
or
Ro ¼
2Kð1þMPrK/Þ

Mq2
o

d2
o þ

Tap2Pr2M4

ð1þMPrK/Þ2

" #
;

where Ro is the Rayleigh number for oscillatory convection. The frequency for the oscillations is given by x2 ¼ C. Using Eq.
(3.14) into C we get x2 as
x2 ¼ M2Pr2

d2
oð1þMPrK/Þ

Tap2M2ð1�MPrK/Þ � d6
oK

2/2ð1þMPrK/Þ
h i

:

We follow similar procedure to compute analytical expressions of critical Taylor number Taoc and critical wave number qoc

for the oscillatory convection as we have obtained Tasc and qsc for the stationary convection. Here we compute the analytical
expressions Taoc and qoc directly by comparing the Eqs. (3.23) and (3.29). Substituting



Fig. 5.
{R; Ta} w
right to
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Ta ¼ TaPr2M2K2/2

ð1þMPrK/Þ2
and R ¼ MR

ð1þMPrK/Þ ;
into Eq. (3.28), we get
Ta ¼ TaocðR; Pr;K;/;MÞ ¼ R
ð1þMPrK/Þ
23Pr4M5K3

� �1
2 R

Rrb

� �1
2

� ð1þMPrK/Þ
2Pr2M3K

" #
; ð3:30Þ
and
q ¼ qocðR; Pr;K;/;MÞ ¼ MR
6Kð1þMPrK/Þ

� �1
2

� p2

" #1
2

: ð3:31Þ
As we have checked the sign of D in stationary convection, similarly we have to check the signs of D and BC � D for the sta-
bility region of oscillatory convection. Here we can use Ta ¼ Tasc or Ta ¼ Taoc to identify the signs of D;BC � D. In the (R; Ta)-
plane, on the R-axis Ta ¼ 0 and the curve corresponds to (3.30) always starts from R ¼ R0 ¼ 2ð1þ PrÞRrb. In the plane
BC � D > 0 for the values R; Ta which are right to the curve (3.30) (see Fig. 5). From Table 1, when BC � D > 0 and D > 0
we get one damped mode and two oscillatory modes. Thus the system is stable in BC � D > 0 and D > 0 region. The
coefficient
ð1þMPrK/Þ
23Pr4M5K3

� �1
2

;

of R
3
2 in Eq. (3.30) is equal to unity at Pr ¼ Prc ¼ 0:783813 and it is less than unity for Pr > Prc. When Pr < Prc . Eq. (3.28) inter-

sect with (3.30) at
R ¼ Rct ¼ ð1þ!Þ2Rrb; Tact ¼
K

1
2/2

M2 ð1þ � �K
1
2Þð1þ!Þ2Rrb;

� ¼ 2
1
2ð1þMPrK/Þ � ðMð1þMPrK/ÞÞ

1
2

ðMð1þMPrK/ÞÞ
1
2 � 2

3
2Pr2K2/2M2

: ð3:32Þ
The suffix ct in Eq. (3.32) stands for parameter at codimension two bifurcation point. The Rayleigh number R ¼ Rct is obtained
by equating Eqs. (3.28) and (3.30). By substituting R ¼ Rct either into Eq. (3.28) or into Eq. (3.30), we get Ta ¼ Tact . At
Tact; Tasc ¼ Taoc and qsc – qoc. At Pr ¼ Prc; Taoc approaches to Tasc asymptotically as R!1 i.e., the intersection between
Eqs. (3.28) and (3.30) appears at infinity. In Table 2, we have given the values of TactðPrÞ and RctðPrÞ for some values of Pr
computed from Eq. (3.32). Fig. 6(a–d), show that with decreasing Pr < Prc; Tact and Rct decreases. Thus at Pr ¼ 0, we get codi-
mension two bifurcation point at Rct ¼ 2M�1Rrb and Tact ¼ 2M

�3
2 ð2

1
2 �M

1
2ÞRrb. When Ta < Tact we get stationary convection as

a first instability while for Ta > Tact the first instability will be oscillatory convection. By eliminating Ta from equations C ¼ 0
and D ¼ 0, we get
q6 þ 3q4p2 þ 3p4 þ RðMPrK/� 1Þ
2K

� 	
q2 þ p6 ¼ 0: ð3:33Þ
(a) (b)

The typical diagram show the stability regions of the system on the solid lines D ¼ 0 and on the dotted lines BC � D ¼ 0. In each figure for the values
hich are left to the solid line D > 0 and D < 0 for the values {R; Ta} which are left to the dotted line and BC � D < 0 for the values {R; Ta} which are
the dotted line.



Table 2
The values of Tact ;Ract at different Prandtl number Pr.

Pr Tact Rct Pr Tact Rct

0 766.174 1461.14 0.55 3624.21 3124.72
0.1 911.189 1576.97 0.6 4779.04 3630.42
0.2 1119.61 1732.1 0.63 5782.01 4033.51
0.4 1944.76 2261.63 0.65 6647.93 4361.03
0.5 2860.95 2756.75 0.6766 8080.86 4870.31

(a) (b)

(d)(c)

Fig. 6. In above figures solid lines are plotted for the curve Tasc (stationary convection) and dotted lines are plotted for the curve Taoc (oscillatory
convection) at different values of Pr. When Pr ! 0 then the intersection point appear at Rct ¼ 2

M Rrb and Tact ¼ 2M
�3
2 ð2

1
2 �M

1
2ÞRrb , whereas for Pr !

Prc ;Rct !1 and Tact !1.
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From Eq. (3.33), for Pr < 1, we get two positive roots which are correspond to two Takens–Bogdanov bifurcation points and
for Pr > 1, we do not get positive roots. This implies that we do not get oscillatory convection for Pr > 1.

4. Derivation of nonlinear two-dimensional Landau–Ginzburg equation near the onset of stationary convection

In this Section the evolution of a general pattern is developed by means of a multiple scale analysis used by Newell and
Whitehead [16]. A small amplitude convection cell is imposed on the basic flow. If this amplitude is of the size Oð�Þ then the
interaction of the cell with itself forces a second harmonic and mean state correction of size Oð�2Þ and then in turn drives an
Oð�3Þ correction to the fundamental component of the imposed roll. A solvability criteria for this correction yields the two-
dimensional nonlinear Landau–Ginzburg equation of the complex valued amplitude AðX;Y; TÞ of the imposed disturbance
with real coefficients. To simplify the problem we assume the formulation of cylindrical rolls with axis parallel to y-axis,
so that y-dependence disappears from Eq. (2.14). The z-dependence is contained entirely in the sine and cosine functions,
which ensures that stress-free boundary conditions are satisfied. We use the expansion parameter � as
�2 ¼ R� Rsc

Rsc
ð4:1Þ
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for the values of R close to threshold value Rsc i.e., �� 1, the structure of the slow length scales will be insensitive to �, but a
slow modulation in space and time is possible by making use of the band of the unstable solutions and linear growth rate is
likely to saturate due to nonlinear effects. This behavior can be analyzed by writing solutions of Eqs. (2.7)–(2.9) in power
series � as
f ¼ �f0 þ �2f1 þ �3f2 þ � � � ; ð4:2Þ
where f ¼ f ðu;v ;w; hÞ with the first approximation is given by the eigenvector of the linearized problem:
u0 ¼
ip
qsc

AðX;Y; TÞeiqsc x cospz� c � c�

 �

;

v0 ¼
�ipTa

1
2

/r1qsc
A X;Y; Tð Þeiqsc x cospz� c � c�

 �

;

w0 ¼ AðX;Y ; TÞeiqscx sin pzþ c � c�;

h0 ¼
1

Md2
sc

AðX;Y; TÞeiqscx sin pzþ c � c�

 �

; ð4:3Þ
where d2
sc ¼ ðp2 þ q2

scÞ. Here c � c� stands for complex conjugate, eiqsc sinpz is the critical mode for the linear problem at R ¼ Rsc

and q ¼ qsc. The complex amplitude AðX; Y; TÞ depends on the slow variables. The independent variables x; y; z; t are scaled by
introducing multiple scales
X ¼ �x; Y ¼ �1
2y; Z ¼ z and T ¼ �2t ð4:4Þ
and these formally separate the fast and slow dependent variables in f. It should be noted that difference in scaling in the two
directions reflects the inherent symmetry breaking of instability which was chosen here with wave vector in x-direction. The
differential operators can be expressed as
@

@x
! @

@x
þ � @

@X
;

@

@y
! �1

2
@

@Y
;

@

@z
! @

@Z
;

@

@t
! �2 @

@T
; ð4:5Þ
with the assumption (4.5), the operators (2.15) and (2.16) are transformed into a set of linear inhomogeneous equations. The
solvability conditions for the latter yields the amplitude equation using Eq. (4.3) the linear operator (2.15) can be written as
L ¼ L0 þ �L1 þ �2L2 . . . ; ð4:6Þ
where
L0 ¼ �r2
3r4 � Tar2 @

2

@z2 �
Rsc

M
r2

hr3; ð4:7Þ

L1 ¼ � 2
@2

@x@X
þ @2

@Y2

 !
2r2

3r2 � 2
K
M

r3r4 þ Ta

/2

@2

@z2 �
RscK

M2 r
2
h þ

Rsc

M
r3

" #
; ð4:8Þ
L2 ¼
@

@T
� 2

M2/Pr

r3r4 þ r2
3r2 þ Ta

/2

@2

@z2 �
Rsc

M3/Pr
r2

h

" #

� @2

@X2 2r2
3r2 � 2

K
M

r3r4 þ Ta

/2

@2

@z2 �
RscK

M2 r
2
h þ

Rsc

M
r3

" #

þ 2
@2

@x@X
þ @2

@Y2

 !2

4
K
M

r3r2 � r2
3 �

K2

M2r
4 þ RscK

M2

" #
� Rsc

M
r2

hr3 ð4:9Þ
and r3 ¼ 1
MDa
� K

Mr
2

� �
. Similarly nonlinear term N is given by
N ¼ �2N 0 þ �3N 1 þ � � � ð4:10Þ
substituting Eqs. (4.6), (4.10) and (4.2) into Eq. (2.14), we get by equating the coefficients of �; �2; �3,
L0w0 ¼ 0; ð4:11Þ
L0w1 þ L1w0 ¼ N 0; ð4:12Þ
L0w2 þ L1w1 þ L2w0 ¼ N 1: ð4:13Þ
Eq. (4.7) gives the critical Rayleigh number for the onset of stationary convection
Rs ¼
M
q2

s

d4
s

1
MDa
þ K

M d2
s

� �2
þ Ta

/2 p2d2
s

1
MDa
þ K

M d2
s

� �
264

375:
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In Eq. (4.12), N 0 ¼ 0; L1w0 ¼ 0 and hence w1 ¼ 0. From equation of continuity we find that u1 ¼ 0. The relevant equations
for h1 and v1 are
@

@t
�r2

� �
h1 ¼

w1

M
� 1

M
u0
@h0

@x
þw0

@h0

@z

� 	
; ð4:14Þ

DPr
@v1

@x
¼ Ta

1
2

/
@w1

@z
� 1

M2/Pr

@

@x
u0
@v0

@x
þw0

@v0

@z

� 	
: ð4:15Þ
Substituting zeroth order approximations from Eq. (4.3) into Eqs. (4.14) and using w1 ¼ 0, we get
h1 ¼
�1

2M2pd2
sc

jAj2 sin 2pz;

v1 ¼
�ip2Ta

1
2

M2/2Prqscr1r4
A2e2iqscx � c � c�
h i

ð4:16Þ
and r4 ¼ 1
MDa
þ 4 K

M q2
sc

� �
. Substituting zeroth order and first order solutions in (4.9) and equating coefficients of sinpz in

N 1 � L2w0 to zero, we get
k0
@A
@T
� k1

@

@X
� i

2qsc

@2

@Y2

 !2

A� k2Aþ k3jAj2A ¼ 0; ð4:17Þ
where
k0 ¼
2r1

M2/Pr
d4

sc þ r2
1d

2
sc þ

Ta

/2 p2 � Rsc

M3/Pr
q2

sc;

k1 ¼ 4q2
sc

K2

M2 d4
sc þ 4

K
M

r1d
2
sc þ r2

1 �
RscK

M2

" #
;

k2 ¼
Rscr1

M
q2

sc;

k3 ¼
Rscq2

scr1

2M3d2
sc

� 2p4Tad2
sc

M4/5Pr2r1r4
: ð4:18Þ
Eq. (4.17) is two-dimensional, nonlinear, time dependent Landau–Ginzburg equation describing the effect of rotating field in
a sparsely packed porous medium near the onset of stationary convection at supercritical pitchfork bifurcation. Here k0 is
always positive for Pr < 1

/ and for any Ta but if Pr > 1
/ then k0 is positive only if Ta < Tac . Thus for supercritical pitchfork bifur-

cation k0 is always positive. For Pr > 1
/ ; k0 decreases as Ta increases and becomes zero at Ta ¼ Tac . k1 and k2 are always po-

sitive. k3 is positive only if
Ta <
MRscq2

scr2
1r4/

5Pr2

4p4d4
sc

; ð4:19Þ
the pitchfork bifurcation is supercritical if k3 > 0 and subcritical if k3 < 0. At k3 ¼ 0, we get tricritical bifurcation point (see
Fig. 7). Dropping the time-dependent term from Eq. (4.17), we get
d2A

dX2 þ
k2

k1
1� k3

k2
jAj2

� �
A ¼ 0; ð4:20Þ
since k1 > 0, the solution of Eq. (4.20) is given by
AðXÞ ¼ A0 tanhðX=K1Þ; ð4:21Þ
where
A0 ¼ ðk2=k3Þ
1
2 and K1 ¼ ð2k1=k2Þ

1
2: ð4:22Þ
4.1. Long wave-length instabilities (secondary instabilities)

The two-dimensional Landau–Ginzburg equation (4.17), can be written in fast variables x; y; t and AðX;Y; TÞ ¼ Aðx; y; tÞ=�,
as
k0
@A
@t
� k1

@

@x
� i

2qsc

@2

@y2

 !2

A� �2k2Aþ k3jAj2A ¼ 0; ð4:23Þ



Fig. 7. Above figure is plotted for Da ¼ 1500; K ¼ 0:85; / ¼ 0:9; M ¼ 0:9 and Pr ¼ 0:5. k3 is the nonlinear coefficient of Landau–Ginzburg equation at the
onset of stationary convection. The pitchfork bifurcation is supercritical if k3 > 0, subcritical if k3 < 0 and k3 ¼ 0 on the curve.
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In order to study the properties of a structure with a given phase winding number dk, we substitute
A x; y; tð Þ ¼ A1 x; y; tð Þeidkx; ð4:24Þ
into the Eq. (4.23) and we obtain
k0
@A1

@t
¼ �2k2 � k1ðdkÞ2
� �

A1 þ 2ik1dk
@

@x
� i

2qsc

@2

@y2

 !
A1 þ k1

@

@x
� i

2qsc

@2

@y2

 !2

A1 � k3jA1j2A1 ¼ 0: ð4:25Þ
The steady state uniform solution of Eq. (4.25) is
A1 ¼ A1o ¼ �2k2 � k1ðdkÞ2
� �

k�1
3

h i1
2
: ð4:26Þ
Let ~uðx; y; tÞ þ i~vðx; y; tÞ be an infinitesimal perturbation from a uniform steady state solution A1o given by Eq. (4.26). Now
substituting
A1 ¼ A1o ¼ �2k2 � k1ðdkÞ2
� �

k�1
3

h i1
2 þ ~uþ i~v ;
into Eq. (4.25) and equating real and imaginary parts, we obtain
k0
@~u
@t
¼ �2 �2k2 � k1ðdkÞ

� �2 þ k1
@2

@x2 þ
dk
qsc

@2

@y2 �
1

4q2
sc

@4

@y4

 !" #
~u� 2k1dk� k1

qsc

@2

@y2

 !
@~v
@x

; ð4:27aÞ

k0
@~v
@t
¼ 2k1dk� k1

qsc

@2

@y2

 !
@~u
@x
þ k1

@2

@x2 þ
dk
qsc

@2

@y2 �
1

4q2
sc

@4

@y4

 !
~v: ð4:27bÞ
We analyze Eqs. (4.27a) and (4.27b) by using normal modes of the form
~u ¼ UeSt cos qxxð Þ cos qyy
� �

and ~v ¼ VeSt sin qxxð Þ cos qyy
� �

: ð4:28Þ
Putting Eq. (4.28) in Eqs. (4.27a) and (4.27b) we get,
k0Sþ 2 �2k2 � k1ðdkÞ2
� �

þ v1

h i
U þ k1qxv2V ¼ 0; ð4:29aÞ

k1qxv2U þ k0Sþ v1

� �
V ¼ 0: ð4:29bÞ
Here v1 ¼ k1½q2
x þ ðq2

ydkÞ=qsc þ q4
y=4q2

sc�; v2 ¼ ð2dkþ q2
y=qscÞ. On solving Eq. (4.29a) and Eq. (4.29b) we get,
k2
0S2 þ 2S 2k0 �2k2 � k1ðdkÞ2

� �
þ k0v1

h i
þ 2 �2k2 � k1ðdkÞ2

� �
þ v1

h i
w1 � q2

xk1v2 ¼ 0;
whose roots ðS�Þ are real. Here ðS�Þ is defined as
ðS�Þ ¼ � 1
k2

0

2k0 �2k2 � k1ðdkÞ2
� �

þ k0v1

� �
� 2k0 �2k2 � k1ðdkÞ2

� �2
þ k2

1q2
xv2

2

� �1
2

( )
: ð4:30Þ
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Solution Sð�Þ is clearly negative, thus the corresponding mode is stable and if SðþÞ is positive then rolls can be unstable.
Symmetry considerations help us to restrict the study of SðþÞ to a domain qx P 0; qy P 0.

4.1.1. Longitudinal perturbations and Eckhaus instability
Inserting qy ¼ 0 into Eq. (4.30), we get
Fig. 8.
plane f
k2
0S2 þ 2S 2k0 �2k2 � k1ðdkÞ2

� �
þ k0k1q2

x

h i
þ k1q2

x 2 �2k2 � 3k1ðdkÞ2
� �

þ q2
x

h i
¼ 0;
since the roots are real and their sum always negative, the pattern is stable as long as both roots are negative, i.e., their prod-
uct is positive. The cell pattern becomes unstable when the product is negative, i.e., when
q2
x 6 2 3k1dk2 � �2k2

� �

for this requires jdkjP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2k2=3k1Þ

p
, this condition defines the domain of Eckhaus instability. The above condition implies

that the most unstable wave vector tends to zero, when jdkj !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2k2=3k1Þ

p
.

4.1.2. Transverse perturbations and Zigzag Instability
Let us consider qx ¼ 0 into Eq. (4.30), we get
k2
0S2 þ 2S 2k0 �2k2 � k1ðdkÞ2

� �
þ k0vy

1

h i
þ 2 �2k2 � k1ðdkÞ2

� �
þ vy

1

h i
vy

1 ¼ 0;
where vy
1 ¼ k1 q2

ydk=qsc þ q4
y=4q2

sc

� �
. The two eigenmodes are uncoupled and we have Sð�Þ,
Sð�Þ ¼ �2 �2k2 � k1ðdkÞ2
� �

� k1

qsc
dkq2

y �
k1

4q2
sc

q2
y < 0
for one of them. The other is amplified when
SðþÞ ¼ �k1q2
y dkþ

q2
y

4qsc

 !
> 0:
This implies that dk < 0, the above condition defines the domain of the Zigzag Instability. When dk! 0 from below the wave
vector qy of the instability also tends to zero, while the growth rate varies as q2

y . We have studied the effect of rotating on long
wave length instabilities. We have observed that Eckhaus instability and Zigzag Instability regions increases when Ta in-
creases (see Fig. 8).

4.1.3. Heat transport by convection
The maximum of steady amplitude A is denoted by jAmaxj which is given as
jAmaxj ¼
�2k2

k3

� �1
2

; ð4:31Þ
Numerically computed secondary instability regions of Eckhaus instability (E), Zigzag Instability (Z) and stable regions (S) are plotted in ðk2=k1; dqsÞ-
or Ta ¼ 2000; Da ¼ 1500; K ¼ 0:85; / ¼ 0:9; M ¼ 0:9; and Pr ¼ 0:5. As jdqsj increases then the secondary instability regions increases.
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Eq. (4.31) is obtained from Eq. (4.21) with tanhðX=K1Þ ¼ 1. We use jAmaxj to calculate Nusselt number Nu. To discuss the heat
transfer near the neutral region, we express it through the Nusselt number is defined as Nu ¼ ðHd=jDTÞ, which is the ratio of
the heat transported across any layer to the heat which would be transported by conduction alone. Here H is the rate of heat
transfer per unit area and is defined as
Fig. 9.
ðNu;R=R
H ¼ � @Ttotal

@z0

� �
z0¼0

; ð4:32Þ
In Eq. (4.32), angular brackets correspond to a horizontal average. The Nusselt number can be calculated in terms of ampli-
tude A and is given as
Nu ¼ 1þ �
2

d2
sc

jAmaxj2: ð4:33Þ
From Eq. (4.33), we get conduction for R 6 Rsc and convection for R > Rsc. Since the amplitude equation is valid for k3 > 0,
which is possible for R > Rsc (supercritical pitchfork bifurcation), Thus we get Nu > 1 for R > Rsc . We get convection for
Nu > 1 and conduction for Nu 6 1. In stationary convection Nu increases implies that heat conducted by steady mode in-
creases. In the problem of double diffusive convection in porous medium with rotating field, Nu depends on Pr;K;M;/;Da

and Ta. We have computed Nu for different values of Ta, for some fixed values of other parameters and observed that Nu
increases as Ta decreases (see Fig. 9). This implies that rotation inhibits the heat transport. The parameters Pr;K;M;/ and
Da show the same result as Ta shows on Nu.

5. Oscillatory convection at the supercritical Hopf bifurcation

The existence of a threshold (critical value of Rayleigh number for the onset of oscillatory convection R ¼ Roc) and a cel-
lular structure (critical wave number q ¼ qoc) are main characteristics of the oscillatory convection. In this Section, we treat
region near the onset of oscillatory convection. Here the axis of cylindrical rolls is taken as y-axis, so that y-dependence dis-
appears from equation Lw ¼ N . The z-dependence contained entirely in sine and cosine functions which ensure that the free-
free boundary conditions are satisfied. The purpose of this section is to derive coupled one dimensional nonlinear time
dependent Landau–Ginzburg type equations near the onset of oscillatory convection at supercritical Hopf bifurcation. We
introduce � as
�2 ¼ R� Roc

Roc
� 1: ð5:1Þ
We assume that
w0 ¼ A1LeiðqocxþxoctÞ þ A1Reiðqocx�xoctÞ þ c � c:

 �

sin pz
is a solution to linearized equation Lw ¼ 0, which satisfies free–free boundary conditions. Here A1L denotes the amplitude of
left travelling wave of the roll and A1R denotes the amplitude of right travelling wave of the roll, which depends on slow
space and time variables [12]
X ¼ �x; s ¼ �t; T ¼ �2t ð5:2Þ
(a) (b)

Graph (a) is plotted for Ta ¼ 106 and graph (b) is plotted for Ta ¼ 107 for the fixed values of Da ¼ 1500; K ¼ 0:85; / ¼ 0:9; Pr ¼ 0:5 and M ¼ 0:9. in
scÞ-plane. In graphs (a) and (b), as R=Rsc increases then Nu increases.
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and assume that A1L ¼ A1LðX; s; TÞ and A1R ¼ A1RðX; s; TÞ. The differential operators can be expressed as
@

@x
! @

@x
þ � @

@X
;

@

@t
! @

@t
þ � @

@s
þ �2 @

@T
: ð5:3Þ
The solution of basic equations can be sought as power series in �,
f ¼ �f0 þ �2f1 þ �3f2 þ � � � ; ð5:4Þ
where f ¼ f ðu;v ;w; hÞ with the first approximation is given by eigenvector of the linearized problem:
u0 ¼
ip
qoc

A1Leiðqoc xþxoc tÞ þ A1Reiðqocx�xoctÞ � c � c:

 �

cospz;

v0 ¼
�ipTa

1
2

/qoc

A1L

e2
ei qocxþxoctð Þ þ A1R

e	2
ei qocx�xoctð Þ � c � c�;

� 	
cospz;

h0 ¼
1
M

1
e1

A1LeiðqocxþxoctÞ þ 1
e	1

A1Reiðqoc x�xoctÞ þ c � c:
� 	

sinpz; ð5:5Þ
where d2
oc ¼ ðp2 þ q2

ocÞ; e1 ¼ ðd2
oc þ ixocÞ; e2 ¼ 1

MDa
þ K

M d2
oc

� �
þ ixoc

M2/Pr

h i
here e	1 and e	2 are complex conjugate of e1 and e2,

respectively.
We expand the linear operator L and nonlinear term N as the following power series
L ¼ L0 þ �L1 þ �2L2 � � � ; ð5:6Þ

N ¼ �2N 0 þ �3N 1 þ � � � ð5:7Þ
substituting Eqs. (5.3) and (5.4) into Lw ¼ N , for each order of �, we get
L0w0 ¼ 0; ð5:8Þ
L0w1 þ L1w0 ¼ N 0; ð5:9Þ
L0w2 þ L1w1 þ L2w0 ¼ N 1: ð5:10Þ
Here
L0 ¼ DDPrr2 þD Ta

/2

@2

@z2 �DPr
Roc

M
r2

h;

L1 ¼
@F 1

@s
þ 2

@2F 2

@x@X
;

L2 ¼
@F 1

@T
þ 4

@4

@x2X2 D
K2

M2r
2 � 2DPr

K
M

@

@t
� 2r2

� �
�D2

Pr þ
RocK

M2

" #

þ 2
@

@s
@2

@xX
�D 2K

M3/Pr
r2 �DPr

2
M2/Pr

r2 � 2DPr
K
M
r2 þD2

Pr þDDPr
2

M2/Pr
� Roc

M3/Pr

� 	

þ @

@s2 D
1

M4/2Pr2r
2 þDPr

2
M2/Pr

� 	
þ @F 2

@X2 �DPr
Roc

M
r2

h; ð5:11Þ
where
F 1 ¼ DDPr
2

M2/Pr
r2 þD2

Prr2 þ Ta

/2

@2

@z2 �
Roc

M3/Pr
r2

h

and
F 2 ¼ �2DDPr
K
M
r2 þD2

Pr
@

@t
� 2r2

� �
� Ta

/2

@2

@z2 þ
RocK

M2 r
2
h �DPr

Roc

M
:

Eq. (5.8) is linear problem. We get critical Rayleigh number for the onset of oscillatory convection by using the zeroth order
solution w0 in Eq. (5.8). At Oð�2Þ;N 0 ¼ 0 and L1w0 ¼ 0 gives
@A1L

@s
� vg

@A1L

@X
¼ 0 and

@A1R

@s
þ vg

@A1R

@X
¼ 0; ð5:12Þ
where vg ¼ ð@x=@qÞq¼qoc
is the group velocity and is real. Hence from Eq. (5.9), we get w1 ¼ 0. From equation of continuity

we find that u1 ¼ 0. Substituting the zeroth order and first order approximation into Eqs. (4.14) and (4.15) we get
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h1 ¼
�p
M2 jA1Lj2 þ jA1Rj2

� �
t1 þ

2
e1t2

J1 þ
2

e	1t	2
J	1

� 	
sin 2pz;

v1 ¼
�ip2Ta

1
2

M2/3Prqoc

A2
1L

e2e3
e2i qocxþxoctð Þ þ A2

1R

e	2e	3
e2i qoc x�xoc tð Þ þ 1

e2
þ 1

e	2

� �
1

MDa
þ 4

K
M

q2
oc

� ��1

A1LA1Re2iqocx � c � c�
" #

; ð5:13Þ
where J1 ¼ A1LA	1Re2ixoc t ; t1 ¼ 1
4p2

1
e1
þ 1

e	1

� �
; t2 ¼ ð4p2 þ 2ixocÞ, and e3 ¼ 1

MDa
þ 4 K

M q2
oc

� �
þ 2ixoc

M2/Pr

h i
, here e3 and J1 are complex

conjugates of e	3 and J	1, respectively.
The Eq. (5.10) is solvable when L0w0 ¼ 0, one requires that its right hand side be orthogonal to w0, which is ensured that if

the coefficients of sinpz in N 1 � L2w0 are equal to zero. This implies that
K0
@A1L

@T
þK1

@

@s� vg
@

@X

� �
A2L �K2

@2A1L

@X2 �K3A1L þK4jA1Lj2A1L þK5jA1Rj2A1L ¼ 0; ð5:14Þ

K0
@A1R

@T
þK1

@

@s
� vg

@

@X

� �
A2R �K2

@2A1R

@X2 �K3A1R þK4jA1Rj2A1R þK5jA1Lj2A1R ¼ 0; ð5:15Þ
where
K0 ¼
2d2

oc

M2/Pr
e1e2 þ e2

2d
2
oc þ

Ta

/2 p2 � Rocq2
oc

M2/Pr
;

K1 ¼
d2

oc

M4/2Pr2 e1 þ
2d2

oc

M2/Pr
e2;

K2 ¼ 4q2 K2

M2 d2
oce1 þ 2

K
M

d2
oce2 � 2

K
M

e1e2 þ
RocK

M2 � e2
2

" #
;

K3 ¼
Rocq2

oc

M
e2;

K4 ¼
Rocq2

ocp2

M3 e2t1 �
2p4Ta

M4/6Pr2 �
e1

e2e3
;

K5 ¼
Rocq2

ocp2

M3

2
e1t2
þ t1

� �
e2 �

2p4e2Ta

M4/6Pr2

1
e2
þ 1

e	2

� �
1

MDa
þ 4

K
M

q2
oc

� ��1

: ð5:16Þ
It should be noted that A1L and A1R are of order � and A2L and A2R are of order �2. If xoc ¼ 0 in K0;K2;K3 and K4 then these
expressions match with the coefficients k0; k1; k2 and k3 of Landau-Ginzburg equation at the onset of stationary convection.

From Eq. (5.12), we get A1Lðn0; TÞ and A1Rðg0; TÞ, where n0 ¼ vgsþ X;g0 ¼ vgs� X. Eqs. (5.14) and (5.15) can be written as
2vgK1
@A2L

@g0
¼ �K0

@A1L

@T
þK2

@A1L

@X2 þ k3A1L � K4jA1Lj2 þK5jA1Rj2
� �

A1L; ð5:17Þ

2vgK1
@A2R

@g0
¼ �K0

@A1R

@T
þK2

@A1R

@X2 þ k3A1R � K4jA1Rj2 þK5jA1Lj2
� �

A1R: ð5:18Þ
Let n0�½0; l1�;g0�½0; l2� where l1 and l2 are periods of A1L and A1R, respectively. Expansion (5.4) remains asymptotic for times
t ¼ O ��2

� �
only if an appropriate solvability condition holds. This condition obtained integrating Eq. (5.17) over g0 and Eq.

(5.18) over n0, we get
K0
@A1L

@T
¼ K2

@A1L

@X2 þ k3A1L � K4jA1Lj2 þK5jA1Rj2
� �

A1L; ð5:19Þ

K0
@A1R

@T
¼ K2

@A1R

@X2 þ k3A1R � K4jA1Rj2 þK5jA1Lj2
� �

A1R: ð5:20Þ
5.1. Travelling wave and standing wave convection

To study the stability regions of travelling waves and standing waves we proceed as follows:
On dropping slow variable X from Eqs. (5.19) and (5.20), we get a pair of first ODE’s
dA1L

dT
¼ K3

K0
A1L �

K4

K0
A1LjA1Lj2 �

K5

K0
A1LjA1Rj2; ð5:21Þ

dA1R

dT
¼ K3

K0
A1R �

K4

K0
A1RjA1Rj2 �

K5

K0
A1RjA1Lj2 ð5:22Þ
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put
b0 ¼ K3

K0
; c0 ¼ �K4

K0
and d0 ¼ �K5

K0
:

Then Eqs. (5.21) and (5.22) take the following form
dA1L

dT
¼ b0A1L þ c0A1LjA1Lj2 þ d0A1LjA1Rj2; ð5:23Þ

dA1R

dT
¼ b0A1R þ c0A1RjA1Rj2 þ d0A1RjA1Lj2: ð5:24Þ
Consider A1L ¼ aLei/L and A1R ¼ aLei/R (we can write a complex number in the amplitude and phase form), where
aL ¼ jA1Lj; /L ¼ argðA1LÞ ¼ tan�1 ImðA1LÞ=ReðA1LÞð Þ and aR ¼ jA1Rj; /R ¼ argðA1RÞ ¼ tan�1 ImðA1RÞ=ReðA1RÞð Þ, here aL; aR;/L and
/R are functions of time T, since A1L and A1R are functions of T. Thus aL and aR are positive functions.

Substituting the definitions of A1L;A1R and b0 ¼ b1 þ ib2; c0 ¼ c1 þ ic2; d0 ¼ d1 þ id2 into Eqs. (5.23) and (5.24) we get,
daL

dT
¼ b1aL þ c1aLjaLj2 þ d1aLjaRj2; ð5:25Þ

d/L

dT
¼ b2 þ c2jaLj2 þ d2jaRj2; ð5:26Þ

daR

dT
¼ b1aR þ c1aRjaRj2 þ d1aRjaLj2; ð5:27Þ

d/R

dT
¼ b2 þ c2jaRj2 þ d2jaLj2: ð5:28Þ
Eqs. (5.25) and (5.27) not contain phase term, so we take these two equations for the future discussions. We have Eqs. (5.25)
and (5.27) as
daL

dT
¼ b1aL þ c1a3

L þ d1a2
R;

daR

dT
¼ b1aR þ c1a3

R þ d1a2
L

since aL and aR are positive functions. Put
daL

dT
¼ F1ðaL; aRÞ;

daR

dT
¼ F2ðaL; aRÞ: ð5:29Þ
Now we discuss the stability of equilibrium points of above Eq. (5.29). We get four equilibrium points like ðaL; aRÞ ¼ ð0;0Þ
[conduction state], ðaL; aRÞ ¼ ðaL;0Þ [aL = amplitude of left travelling waves, here we get F2 ¼ 0, and we get one condition
from F1 ¼ 0 i.e., a2

L ¼ �b1=c1ð¼ jA1Lj2Þ], ðaL; aRÞ ¼ ð0; aRÞ [aR = amplitude of right travelling waves, here we get F1 ¼ 0, and
we get one condition from F2 ¼ 0 i.e., a2

R ¼ �b1=c1ð¼ jA1Rj2Þ], and for aL – 0 and aR – 0 we get ðaL; aRÞ ¼ �b1=ðc1þð
d1Þ;�b1=ðc1 þ d1ÞÞ [this gives condition for standing waves. At standing waves we have AL ¼ AR, so aL ¼ aR]. For the pair of
Eqs. (5.21) and (5.22), we do not get aL – aR – 0 [modulated waves]. now the Jacobian of F1 and F2 is given by
@F1=@aL @F1=@aR

@F2=@aL @F2=@aR

� �
;

If real parts of all eigenvalues of the Jacobian are negative at an equilibrium point, then that point is a stable equilibrium
[Lyapounov’s theorem or principle of linearized stability]. Some valuable conditions for travelling waves and standing waves
are: Travelling waves are stable if b1 > 0; c1 < 0 and d1 < c1 < 0. Standing waves are stable if b1 > 0; c1 < 0 and (i) if d1 > 0,
then �c1 > d1 > 0, (ii) if d1 < 0, then �c1 > �d1 > 0.

The stability regions of travelling waves and standing waves are summarized in Fig. 10. Here E is total amplitude and de-
fined as E ¼ a2

L þ a2
R. We do not distinguish between left travelling waves and right travelling waves. For rest state (steady

state) E ¼ 0, for travelling waves E ¼ �b1=c1, for standing waves E ¼ �2b1=ðc1 þ 11Þ. Travelling waves are supercritical if
c1 < 0 and standing waves are supercritical if c1 þ 11 < 0. Fig. 10a is drawn for stable travelling wave conditions and
Fig. 10b is drawn for stable standing wave conditions in ðb1; EÞ-plane. The symbols ð�;�Þ and ðþ;þÞ in Fig. 10a and b indicate
that both roots of Jacobian are negative and at least one root is positive between two roots.

In Fig. 10a and b, travelling wave solution and standing wave solution bifurcate simultaneously from the steady state
solution (b1 P 0 at this bifurcation point). In these Fig. 10a and b, steady state solution is stable for b1 < 0 and unstable
b1 > 0. These figures show that for b1 > 0 both travelling waves and standing waves are supercritical. When travelling waves
and standing waves bifurcate supercritically then at most one solution among travelling waves and standing waves will be
stable. Thus, for b1 > 0 (Fig. 10a) travelling waves are stable and (Fig. 10b) standing waves are stable. In more detail we
reproduce results of the stability analysis of equilibrium solutions in Fig. 10c, which is plotted in ðc1; 11Þ-plane. From this
figure we can observe that travelling waves are subcritical for c1 > 0 and standing waves are subcritical for c1 þ 11 > 0. In



(a) (b)

(c)

Fig. 10. (a), (b) and (c) are typical diagrams showing the stability of equilibrium solutions SS (steady state), SW (standing waves) and TW (travelling waves).
On solid lines equilibrium solutions are stable and on dotted lines they are unstable.
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Fig. 11, we have shown the stability regions for both travelling and standing waves for Pr � 1; Pr ¼ 0:5 there is an intersec-
tion between standing waves and travelling waves.

5.2. Long wave-length instabilities for the onset of travelling wave convection (Benjamin–Feir instability)

For right travelling wave ARðX; TÞ ¼ AðX; TÞ and ALðX; TÞ ¼ 0, for left travelling wave ARðX; TÞ ¼ 0 and ALðX; TÞ ¼ AðX; TÞ.
Thus for travelling waves we get a single amplitude equation from Eqs. (5.19) and (5.20), given as
K0
@A
@T
�K2

@2A

@X2 �K3AþK4jAj2A ¼ 0: ð5:30Þ
For standing waves A1LðX; TÞ ¼ A1RðX; TÞ ¼ AðX; TÞ and we get a single amplitude equation from Eqs. (5.19) and (5.20), given
as
K0
@A
@T
�K2

@2

@X2 A�K3Aþ K4 þK5ð ÞjAj2A ¼ 0; ð5:31Þ
The above Eq. (5.31) possesses a family of planar wave solutions and solutions containing phase singular points. We study
the Benjamin–Feir instability of travelling waves (which is similar to Eckhaus instability for onset of stationary convection)
from complex Landau–Ginzburg equation (5.30). Eq. (5.30) can be written as



Fig. 11. Fig. 11 is plotted for Pr = 0.5. Stability regions of steady state (SS), travelling waves (TW) and standing waves (SW) are plotted ðQ ; PrÞ-plane.
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@A
@T
¼ n

@2A

@X2 þ bAþ cjAj2A; ð5:32Þ
where n ¼ n1 þ in2; b ¼ b1 þ ib2; c ¼ c1 þ ic2. The phase winding solutions are obtained by substituting A ¼ ~AoeiðdqoX�dxTÞ,
into Eq. (5.32) and equating real and imaginary parts we get
j ~Aoj2 ¼
n1dq2

o � b1

c1
;

dx ¼ n2dq2
o � b2 þ

c2 b1 � n1dq2
o

� �
c1

:

Here ~Ao is constant and dqo ¼ qX � qoc. We consider a modulated solution in the form: AðX; TÞ ¼ eAðX; TÞeiðdqoX�dxTÞ. Substitut-
ing the modulated into Eq. (5.32) which gives
@eA
@T
¼ c1 þ ic2ð Þ b1 � dq2

on1

c1

� �
þ jeAj2� 	eA þ c1 þ ic2ð Þ @2

@X2 þ 2idqo
@

@X

 !eA: ð5:33Þ
It is possible to conduct a general investigation of the linear stability of AðX; TÞ, but this is very difficult task, and therefore
our primary concern here is to treat the stability of the uniformly oscillating solution ~Ao. Inserting eA ¼ ~Ao þ ~uþ i~v into Eq.
(5.33) and equating real and imaginary parts we get
@~u
@T
¼ �2 b1 � dq2

on1

� �
~uþ n1

@2~u

@X2 � 2dqo
@~v
@X

 !
� n2 2dqo

@~u
@X
þ @

2~u

@X2

 !
; ð5:34Þ

@~v
@T
¼
�2c2 b1 � dq2

on1

� �
c1

~uþ n1 2dqo
@~u
@X
þ @

2~u

@X2

 !
þ n2

@2~u

@X2 � 2dqo
@~v
@X

 !
: ð5:35Þ
Consider ð~u; ~vÞ ¼ ðU;VÞeST cos qXX and S in the growth rate of disturbances. Using solutions of ~u; ~v and dqo ¼ 0 into Eq. (5.34)
and (5.35) we get
Sþ 2b1 þ n1q2
X

� �
U � q2

Xn2V ¼ 0; ð5:36Þ

Sþ q2
Xn1

� �
V þ 2b1c2

c1
þ q2

Xn2

� �
U ¼ 0: ð5:37Þ
Solving Eqs. (5.36) and (5.37), we get
S2 þ 2S b1 þ n1q2
X

� �
þ q2

Xn1 2b1 þ n1q2
X

� �
þ q2

Xn2
2b1c2

c1
þ q2

Xn2

� �
: ð5:38Þ
There will be an instability only when a root of Eq. (5.38) is positive i.e.,
2b1 n1 þ
c2n2

c1

� �
þ q2

X n2
1 þ n2

12

� �
< 0; ð5:39Þ
b1 > 0 when travelling waves or standing waves are stable. The instability of waves against long wavelength longitudinal
modes is often called the Benjamin–Feir instability. Thus we get Benjamin–Feir instability for travelling waves when
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n1 þ c2n2=c1 < 0. Similarly by considering Eq. (5.32) instead of Eq. (5.31) and proceeding in the same way as above we get
Benjamin-Feir instability for standing waves when n1 þ c2 þ d2ð Þn2= c1 þ d1ð Þ < 0.

6. Conclusions

In this paper we have considered both linear and weakly nonlinear analysis of rotating convection in a sparsely packed
porous medium in Earth’s outer core by using free-free (stress-free) boundary conditions. Even though free-free boundary
conditions can not be achieved in laboratory, one can use it in geophysical fluid dynamic applications to Earth’s outer core
since they allow simple trigonometric eigenfunctions. Our goal is to identify the region of parameter values, for which roll
emerge at the onset of convection.

Following Chandrasekhar [6], we have described the stationary convection and oscillatory convection as curves RsðqÞ and
Ro q; Prð Þ vs wave numbers. The critical wave numbers for stationary convection and oscillatory convection are
qsc ¼ qoc ¼ p=

ffiffiffi
2
p

. For the problem of rotating convection in a sparsely packed porous medium, we get Takens–Bogdanov
bifurcation point (TBBP) and codimension-two bifurcation point. In the case of linear theory both marginal and overstable
motions are discussed. In the Figs. 1 and 2 is shown that the effect of Taylor number and porous parameters is to make
the system more stable. By drawing stability boundaries in the Rayleigh number plan it is shown that the effect of rotating
field and porous parameter is to decrease the region of stabilities. In the non-linear Eq. (4.17), k0 ¼ 0 gives the TBBP at
qs ¼ qsc and when k0 ¼ 0 Eq. (4.17) is not valid. The pitchfork bifurcation is supercritical if k3 > 0, subcritical if k3 < 0, and
we get tricritical point if k3 ¼ 0. We have obtained from Eq. (4.17), long wave length instabilities viz., Eckhaus and Zigzag
Instabilities. From Eq. (4.17) which is valid only for k3 > 0, we have calculated Nusselt number Nu and studied heat transport
by rotating convection. We have also derived two one-dimensional nonlinear coupled Landau–Ginzburg type equations viz.,
(5.14) and (5.15) at the onset of oscillatory convection at supercritical Hopf bifurcation. Weakly nonlinear theory must be
used to resolve which of the standing and travelling waves will occur at the onset of convection. The coefficients in Eqs.
(5.21) and (5.22) are complicated functions of the parameters Ta; Pr;K;/;M and Da, so it is not possible to give a simple cri-
terion for the stability of the standing and travelling waves. We have computed stability regions of SW and TW at both Hopf
bifurcation. The conditions for SW and TW are AL ¼ AR and AL ¼ 0 or AR ¼ 0, respectively. TW exist if jALj2 ¼ �b1=c1 > 0 and
they are supercritical if c1 < 0. SW exist if jALj2 ¼ jARj2 ¼ �b1=c1 þ d1 > 0 and SW are supercritical if c1 þ d1 < 0. When both
SW and TW are supercritical then at most one equilibrium solution is stable. At Takens–Bogdanov bifurcation point we get
both TW and SW. By deriving one-dimensional Landau-Ginzburg equations with complex coefficients viz. Eqs. (5.30) and
(5.31), we have shown the existence of Benjamin–Feir type of instability for both TW and SW. Near the Takens–Bogdanov
bifurcation point the conducting state becomes unstable against both stationary and oscillatory mode, i.e., the real parts
of two eigenvalues pass through zero simultaneously. This violates the assumption made for deriving amplitude equations
(4.17), (5.14) and (5.15). Instead a new equation, which is second order in time, has to be used near the TBBP.
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