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co-dimension two bifurcation points by plotting graphs of neutral curves corresponding to
stationary and oscillatory convection for different values of physical parameters relevant to
rotating convection in a sparsely packed porous medium near a supercritical pitchfork
bifurcation. We derive a nonlinear two-dimensional Landau-Ginzburg equation with real

Ié?r'l V::Crfif):n coefficients by using Newell-Whitehead method [16]. We investigate the effect of param-
Bifurcation points eter values on the stability mode and show the occurrence of secondary instabilities viz.,
Landau-Ginzburg type equations Eckhaus and Zigzag Instabilities. We study Nusselt number contribution at the onset of sta-
Nusselt number tionary convection. We derive two nonlinear one-dimensional coupled Landau-Ginzburg
Secondary instabilities type equations with complex coefficients near the onset of oscillatory convection at a
Stability regions of standing and travelling supercritical Hopf bifurcation and discuss the stability regions of standing and travelling
waves waves.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear rotating convection in a porous medium uniformly heated from below is of considerable interest in geophysical
fluid dynamics, as this phenomena may occur within the Earth’s outer core. Earth’s outer core consists of molten Iron and
lighter alloying element, sulphur in its molten form. This lighter alloying element present in the liquid phase is released
as the new iron freezes due to supercooling onto the solid Inner core. Hence we get a mushy layer near the inner core bound-
ary, where the problem becomes convective instability in a porous medium [19]. The mushy layer is a region of coexisting
liquid and solid phases, forming as a consequence of constitutional supercooling, when a binary alloy solidifies directionally
[25]. The effect of rotating field on the convective instability is of interest in geophysics, particular in the study of Earth’s
interior where the molten liquid Iron is electrically conducting, which can become convectively unstable as a result of dif-
ferential diffusion.

Rotating convection in an electrically conducting fluid in a nonporous medium has been studied extensively
[6,3-5,26,22-24,9,8]. But its counterpart in a porous medium has not been given much attention inspite of its geophysical
applications. The multiplicity of control parameters makes this system an interesting one for the study of hydrodynamic sta-
bility, bifurcation and turbulence [11]. Palm et al. [18] investigated Rayleigh-Benard convection problem in a porous med-
ium. Brand and Steinberg [1] investigated convecting instabilities in binary liquid in a porous medium. However, Palm et al.
[18], Brand and Steinberg [2] and Steinberg and Brand [21] have made use of Darcy’s law (—vV?V is replaced by KV where K
is the permeability of a porous medium. For nonporous medium K is infinity). They have also not considered usual convective
nonlinearity. It is well known that Darcy’s law breaks down in situations where in other effects like viscous shear and inertia
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come into play. In fact Darcy’s law is applicable to densely packed porous medium. An alternative to Darcy’s equation is
Brinkman equation and is of the form

v/p/ _ plg _ _%V/ + ’uev/ZVr7

where p is the fluid viscosity and p, is the effective fluid viscosity, Brinkman model is valid for a sparsely packed porous
medium wherein there is more window fluid to flow so that the distortion of velocity give rise to the usual shear force. Lap-
wood [14] was the first to suggest the inclusion of convective term (V'.V')V’ in the momentum equation and study the Ray-
leigh-Benard convection in a sparsely packed porous medium. Recently, Tagare and Benerji Babu [22] have investigated the
problem of nonlinear convection in a sparsely packed porous medium due to thermal and compositional buoyancy.

In this paper, we investigate the problem of rotating convection in a sparsely packed porous medium. Rudraiah and Sri-
mani [20] have studied linear stability analysis in the case of thermal convection in a rotating fluid saturated porous medium
using Brinkman model but they have taken effective viscosity y, same as fluid viscosity p, However, experiments show that
the ratio of effective viscosity p, takes the value ranging from 0.5 to 10.9 [7]. In Section 2, we write basic dimensionless equa-
tions in Boussinesq approximation for rotating convection a in a sparsely packed medium by using for a momentum equa-
tion Darcy-Lapwood-Brinkman model with effective viscosity different from fluid viscosity. In Section 3, we study linear
stability analysis. In Section 4, by using multiple-scale analysis of Newell and Whitehead [16], we derive two dimensional
nonlinear Landau-Ginzburg equation in complex amplitude A(X, Y, T) with real coefficients near the supercritical pitchfork
bifurcation, where X,Y and T are slow space and time variables. In Section 4.1, we show the occurrence of secondary insta-
bilities such as Eckhaus and Zigzag Instabilities and also we study the Nusselt number contribution at the onset of stationary
convection from Landau-Ginzburg equation. In Section 5, we derive two nonlinear one-dimensional time-dependent cou-
pled Landau-Ginzburg type equations with complex coefficients near the onset of oscillatory convection at supercritical
Hopf bifurcation, here Ax(X,Y,T) and A, (X,Y,T) stands for amplitudes of right-hand and left-hand travelling waves.
In Section 5.1, following Matthews and Rucklidge [15], we neglect the slow space dependence and obtain two ordinary dif-
ferential equations in A;z(T) and A;;(T) with complex coefficients and discuss the stability regions of travelling and standing
waves. In Section 5.2, we also discuss Benjamin-Feir instability and occurrence of tri-critical points. In Section 6, we write
conclusions of the paper.

2. Basic equations

Consider a horizontal, infinitely extended layer of fluid in a porous medium of depth d which is kept rotating at a constant
angular velocity Q about z-axis, this layer is heated from below. The upper and lower bounding surfaces of the layer are as-
sumed to be stress-free. Physical properties of the fluid are assumed constant, except density in the buoyancy term, so that
the Boussinesq approximation is valid. The porous medium is considered homogeneous and isotropic. The onset of convec-
tion is such a layer is governed by the following equations [17]

vV .V =0, (2.1)
/ 187 1 74 "N L O D o 7 2 = \/ _ o P v 2y,
i EW*?(V VW +Qx (er)+$(ng)} =-VP +pg—pV - pV°V, (2.2)
Mgf, +(V'.VT = ki V2T (2.3)
and
p' = po[1 — (T = Ty)]. (2.4)

Here Q = Qe, is angular velocity about z-axis, 7’ is a position vector of a fluid particle, o« = —pj! (9p’/8T’) is thermal expan-
sion coefficient, P’ is pressure, V' is mean flow velocity, g is an acceleration due to gravity, K is permeability of porous med-
ium, u is fluid velocity and p, is coefficient of effective fluid viscosity. Eq. (2.2) is known as Darcy-Lapwood-Brinkman
equation and is valid for 0.8 < ¢ < 1. Givler and Altobelli [7] shown that the range of 4 = (u,/u) varies from 0.5 to 10.9.
M is dimensionless heat capacity and is defined as the ratio of the effective heat capacity of the porous medium to the heat
capacity (p'Cp), of the fluid. In a nonporous medium, 4 = M = ¢ = 1 and K — oo and Eq. (2.2) reduces to Navier-Stokes equa-
tion. In this paper, for sparsely packed porous medium, we consider M = 0.9 and ¢ = 0.9. The conduction state is character-
ized by

V.=0,T, =T, — (AT'/d)Z (2.5)
and we take the temperature perturbation as ¢ = T' — T,. We use the scaling
ot O o Y we W H*L/
_MdZ/KT’ _K:T/I\./Id7 _K'[/I\/Id7 _KT/MCV TAT

x=x/d, y=y/d, z=2Z/d, t

P/
PoM*K2d
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Here Md? /iy is thermal diffusion time in a porous medium. Using Eqgs. (2.4) and (2.6), we can write basic dimensionless
equations of rotating fluid in a porous medium as

V.V=0, (2.7)
1 v 1o o] P _TaPr . > 1 o Ta . . Ay o

Vg §+$(v : V)V} = ’V<Mpr 8M¢2\ L X T ) fMDuV+?(V>< &) + 1, V'V + Roe., (2.8)

90 1 w 5

StV V0 =g+ VR0 (2.9)

The dimensionless numbers required for the description of the motion are Rayleigh number: R = gaATd® /v, Prandtl number
Pr = v/kr, Darcy number D, = K/d2 and Taylor number Ta = 4!)2d4/v2. The Curl of Eq. (2.8) gives

1 0 1 A, . Ta . 1 B -
<M2¢_Pr&+M—Da_MV )w—RV x (0e;) —?V x (Vxe) = _M—2¢2Pr[v x (V- V)V, (2.10)

where vorticity ® = V x V and V x [V.V)V] = [V - V)® — (» - V)V]. The Curl of Eq. (2.10) in turn gives, after use of Eq.
(2.10).

10, 1 A\ plorge o] Teow 1 o
<M2¢Pr 0t+MDa MV )V % R{V (0é;) Vaz} b oz 7M2</>2Pr [VxVx (V.V)V]. (2.11)
The z-component of Egs. (2.10) and (2.11) are
1 3 1 2 Ta? dw 1
<M2¢Pr at " MD, Mv ) T oz M2¢ prez [V (V- V)V, (2.12)
1 9 1 A 2\ o2 Tad 6(1)27 1 o
<M2¢Pra+MDu —MV )V w—RVh(H-? oz M2¢ Pr 2 [V x V x (V V)V, (2.13)

where @, and w are the z-components of vorticity and velocity respectively and V2 = (9°/9x2 + 9°/822) is a horizontal Lapla-
cian operator. Eliminating 0 and w, from the linear part of Egs. (2.9), (2.12) and (2.13), we get

Lw=N, (2.14)
where

Ta &
L =DDEV? + D?@—Dpr v,,, (2.15)
Tad o 5

e as V> (V- V)V] + DDy,

N:—Dp,%v (V.V)0+D—ys— &, [VxVx(V-V)V, (2.16)

1
M2¢*Pr

here D = (% - Vz) and Dp, = (ﬁ/)l’r 2+

fﬁvz) and V2 = 2.,

ax2
2.1. Boundary conditions

We assume that fluid is confined between z = 0 and z = 1 corresponds to a mantle boundary. For perfectly conducting
boundary with temperature, we have
=0 on z=0, z=1 forall xy.
Also the normal component of the velocity would vanishonz=0, z=1,
ie, w=0 on z=0,z=1 forall x,y.

However, there are two more conditions to be imposed on velocity depending on the nature of the surface. In this paper we
consider free-free boundary conditions, i.e., on surfaces the tangential stresses vanish, which is equivalent to

ou  ow oV ow
P = “(aﬁ&)‘o’ P"Z_#(aer@) 0

where u = yp, is dynamic viscosity. Since w vanishes for x,y onz = 0, z = 1, it follows that u/dz = dv/9z = 0 on a free sur-
face z=0, z = 1. Hence from equation of continuity we have 9*w/dz2 =0 on z =0, z =1 for all x,y. In this paper we have
considered only the idealized stress-free conditions on the surface and vanishing of temperature fluctuations. Thus
w = D*w =D*w=0atz=0,1. w and its even derivatives vanish at z=0 and z = 1.
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3. Linear stability analysis

We perform a linear stability analysis of the problem by substituting
w = W(z)e®+Ht, (3.1)

into linearized version of Eq. (2.14) viz., Lw = 0, and obtain an equation

2 2 p 1 A 5 2 Ta 2
{(D ~q¢)(p-D +q2){M2¢Pr+MDa—M(D —qz)} t DD
Re[ p 1 4 o _
[ .~ )wao, 32)

where D = (d/dz). We consider stress-free boundary conditions, then W = D°W =00onz =0, z=1 for all x,y.
3.1. Determination of marginal stability when Rayleigh number R is a dependent variable

Substituting W(z) = sintz and p = iw into (3.2), we get

M .
R= e [A1 + i0(Ay0* + As)], (3.3)
where
[ . w?5: Ta 202 02 w? w2 Ta 2458
A1 = 02|01 0304 — — =+ 28, — 30 p +— 0305 — — s+ T+ ———qy 3|, (3.4)
i M*¢“Prc ¢ M*¢Pr M*¢Pr M*¢“Prc ¢ M*¢Pr
[ 54 0152
Ay =0y |—=5— | 35
LT MR T MR gy 3:3)
[ T 252 1 T
A3 = 063|014 6352 +—‘21n2 + 2‘)“ O1p—— {o—fag‘c +§n25§6} : (3.6)
¢ M= ¢pPr M= ¢Pr ¢
- -1
here 62 = (1% + %), 01 = (Mi,)a+ﬁ&§c) and g, = (o—% +#22pr2> , from Eq. (3.5), A; > 0.
3.1.1. Stationary convection (w = 0)
Substituting w = 0 in Eq. (3.3), we get
2
ot (i +402) +Lan2s?
R, M |9 (MDa M s) o s 7 (3.7)

A (m%a+653>

where 62 = (12 + g2). Here R; is the value of the Rayleigh number for stationary convection. The minimum value of R; is ob-
tained for g, = q,., where

2(%)6+3<%)4:1+%</%>2. (358)

Threshold for the onset of stationary convection is given by Eq. (3.7) with g, = q,,

o2 + 252
R M { 01 + 35 } (3.9)

a2
sc 01

where 62 = (72 + ¢2.). For Ta/m* > 1 (for large Taylor number), The required root of Eq. (3.8) becomes
1
(&) N TaM? \°
n/ T \2miAte? )
The corresponding asymptotic values of g,. and R,. are

1
n2TaM?\®
qsc = <2A2(/)2 ) ’ (3108)

2
2 3
M?Ta ) (3.10b)

~ 4
Rsc ~ 3AT (2/12(]527'54
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In the free-free boundary conditions, for large Taylor number, we have

Re o Tdd and g, o Tab. (3.11)
This is also true for rigid-rigid and rigid-free boundary conditions.
3.1.2. Oscillatory convection (¢«»? > 0)

For the oscillatory convection (w # 0) and from Eq. (3.3), R will be complex. But the physical meaning of R requires it to be
real. The condition that R is real implies that imaginary part of Eq. (3.3) is zero, i.e.,
Ay? +A; =0, (3.12)
where A, and As are given by Egs. (3.5) and (3.6). For oscillatory convection w? = (—As/A;) > 0 i.e,,
2,2
w? = ZL [Tanzlvﬂ(l — MPrAg) — 88 A242(1 + MPrAgb)], (3.13)
05(1 4+ MPraA¢)

where 62 = 7% + ¢2. Substituting @? from Eq. (3.13) into the real part of Eq. (3.3), we get

24(1 + MPrA M*m?Pr*Ta
R, = 20T MPrAY) |56 5| (3.14)
Mgq; (1+MPrAg)
A necessary condition for w? > 0 is Pr < 1. However, this is not sufficient condition and one must have in addition
2,256
Ta > (1 —zs—MPrAgb)A ¢ 60.
M*m2(1 — MPrA¢)
(1 + MPrA$) A2 255
Ta =Ta. = q=q. (3.15)

M?72(1 — MPrA¢)

is a solution of A;(Ta.) = 0 and corresponds to a Takens—-Bogdanov bifurcation point. At Takens-Bogdanov bifurcation point
d, = q; = q. and As(q.) = 0. We note that from Eq. (3.13), if w? > 0 then R,(q,) will be less than R(q,) and not R(q;) given by
Eq. (3.7), which corresponds to stationary convection. However, at Takens-Bogdanov bifurcation point

Ro(qo) = Rs(qs) = RC(qc)> o =4qs = 4.

and @? = 0is a double zero at Ta = Ta.(q,). The Takens-Bogdanov bifurcation point occurs where neutral curves for Hopf and
pitchfork bifurcation meet and only a single wave number is present viz., q, = g, = q.. If q. > g, then for all q < g, the first
instability to set in is an oscillatory instability.

The asymptotic value q. is obtained from Eq. (3.15) and is given by

ol

[m2M?Ta(1 — MPrAg)]
| (1+MPrag)A*¢* |~

. —

Thus for large Taylor number (Ta — oo), we have

- -1
mM?Ta(1 — MPrAg)|°
| (1+MPrA¢)A*¢* |

(3.16)

4c —

2A2¢2

1
<7rzTaM2>6
and ¢, — | =———

from Eq. (3.16), q. « Tas and Qs < Tas for Ta — oo. The critical wave number corresponding to the onset of oscillatory con-
vection for given parameters Pr and Ta is obtained for q = q,. from the following equation

6 4 2 p g4
2(Le)” 4 3 (%) SR L — (3.17)
m m (1 + MPrAg)

For large Taylor number, the required root of Eq. (3.17) becomes
1
(h) N TaPr*M* ®
m/ o \2m(1+ MPrag)* )

The corresponding asymptotic behavior of q,. and R, for large Taylor number are [6]

1
TaPr*M*m?  \°
Qoo [T ) (3.183)
21+ MPrAg)
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2
3

4 20 14
Roe ~ 254 (1 4 MPrag) |2 _ TaPrMT_ 1 (3.18b)
M 2m4(1 + MPrA¢)
From Egs. (3.10b) and (3.18b), R,c — R as Ta — oo implies that for large Taylor number
84
2M3Pr3 Y (3.19)
(1+MPrAg):

Root of Eq. (3.19) is (Chandhrasekhar [6]) Pr = Pr. = 0.783813. Thus R,(q,.) — Rsc(qs) at Pr = Pr.. From the monotonic
dependence of q,. and g,. on Ta, we may conclude that for Pr > Pr,R,. > R, for all Ta. Hence for 1 > Pr > Pr,, instability will
always manifest itself, first as stationary convection. For Pr < Pr., there exist a Ta(Pr) such that for Ta < Ta(Pr) the onset
instability will be stationary convection at pitchfork bifurcation while for Ta > Ta(Pr) it will be oscillatory convection at Hopf
bifurcation. Ta(Pr) is a function of Prandtl number Pr and for Ta = Ta(Pr),

ROC(qoc) = RSC(qsc) but Goc 7 Gsc- (320)

This condition (3.20) gives codimension two bifurcation point where critical Rayleigh numbers of stationary convection and
oscillatory convection coincide at distinct critical wave numbers. Thus Takens-Bogdanov bifurcation point and codimension
two bifurcation point are different. There is no simple formula to give Ta(Pr) as a function of Pr. In the next subsection we
obtain Ta as a function of Pr at the codimension two bifurcation point by assuming R as an independent variable. Such kind of
interesting relation is not available in [6].

In Fig. 1(a-d), solid line represents stationary convection (pitchfork bifurcation) and dotted line denotes oscillatory con-
vection (Hopf bifurcation) which are plotted in (g,R)-plane. On solid line w? = 0 and dotted line w? > 0. the value of ®w? de-
creases on dotted line when g increases and ? takes zero value at the intersection of solid and dotted line.

In Fig. 1(a-d) we have shown the effect of Taylor number Ta, over the onset of both stationary and oscillatory convection.
From these figures we can say that when Ta increases, then the onset of both stationary and oscillatory convection will in-
crease. This implies that rotation rate inhibits the onset of convection. This result is true for other parameter Pr also. In
Fig. 1(a-d), we can see three types of bifurcations like pitchfork bifurcation, Hopf bifurcation, Takens-Bogdanov bifurcation

(a) (b)

R} ol
: 1.6x10°
2.4x10°t! a
x10 R
1.8x10°} | 1.2x10°} |
1.2x10°) | .
i 8.0x10%
6.0x10%
‘ ‘ ‘ ‘ 4.0x10°%t ‘ ‘
5 10 15 20 q 25 80 160 240 q
(c) (d)
8.0x10""| | 15x10% |
R| | R
6.0x10"} ;
1.0x10"} ¢
40x10"
5.0x10"t
2.0x10""t
0.0 ‘ ‘ ‘ ‘ 0.0 ‘ ‘ ‘
300 600 900 4 1200 0 2000 4000 6000 9 8000

Fig. 1. Numerically calculated marginal stability curves are plotted in (R, q)-plane for Pr = 0.5, D, = 1500, A = 0.85, ¢ = 0.9, and M = 0.9, (a) Ta = 10°,
(b) Ta = 10'?, (c) Ta = 10'%, (d) Ta = 10%, then the onset of stationary convection and the onset of oscillatory convection increases (stationary convection
stands for solid lines and oscillatory convection stands dotted lines).
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(a) (b)

R R
3600 r 3600 |
3000 f 3000 r
2400 2400 f
0 2 4 6 9 8 2 4 6 4 8
C
© .
3600 F
3000 r
2400 |

2 4 6 9 8

Fig. 2. Neutral curves for the stationary bifurcation (solid lines) and for the Hopf bifurcation (dashed lines) near the codimension two point for
Ta = 2000, D, = 1500, 4 =0.85, $ =0.9 and M = 0.9, (a) Pr = 0.5, (b) Pr = 0.557, (c) Pr = 0.6. x-axis wave number, y-Rayleigh numbers R;, R,.

point, (the intersection point of solid and dotted line). In Fig. 2, when Pr;, increases then the onset of oscillatory convection
decreases. In Fig. 2b, we can observe the appearance of both primary bifurcations (pitchfork bifurcation, Hopf bifurcation)
and secondary bifurcations (Takens-Bosgdanov bifurcation point, co-dimension two bifurcation point).

Eq. (3.9) shows the stabilizing or inhibiting effect of rotation at the onset of stationary convection. The increase of Ry. and R,
with the Taylor number Ta implies that disturbances in the fluid will not move upward or downward easily due to the presence
of Coriolis force. We have neglected the effect of centrifugal force. For inviscid fluid the Taylor number Ta is infinite and con-
sequently the critical Rayleigh number Ry, for the onset of stationary convection in a rotating fluid. Inviscid fluid with rotation
is stable for all vertical temperature gradients. This is a consequence of the Taylor-Proudman theorem. The patterns of con-
vection in the presence of rotation depend on both horizontal co-ordinates and Taylor number. An infinite number of patterns
are theoretically possible at same critical Rayleigh number. The patterns can be rolls, square cells, rectangular cells of all side
ratios and hexagonal cells. Chandrasekhar [6] calculated the velocity fields for these various patterns. Kiippers and Lortz [13]
showed that with rotation and under slightly supercritical conditions all three-dimensional convective flows are unstable.

3.2. Determination of marginal stability when Rayleigh number R is an independent variable

Putting W = sin ntz, into Eq. (3.2) we get a third degree polynomial equation in p of the following form:
PP +Bp* +Cp+D=0, (3.21)

where

B =%+ 2MPr¢ (/152 + Dl) (3.22a)

Pr

C = 6* AMPro(2 + AMPr) + M(;—z (Tan2MPr — Re?) + MPr¢

Da

<2A62 + 2AMPr s + M[I)an) , (3.22b)
a

2 2 2 2
D = M*pr? (Tan2M2 + %A% % — Rq2A¢2> + Mg)ﬂ (254/1 + g— - R5i2> . (3.22¢)
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Table 1
Classifications of stability modes.
D<0 D>0 D=0
BC-D<O0 Unstable Unstable Unstable
BC-D>0 Unstable Stable p=0, Re(p) <0, Re(p) <0
BC-D=0 Unstable p=-dy, p=iw, p=—iw p=0,p=0,p<0

From Eq. (3.22a), B is always positive. The system will be stable when three roots of cubic Eq. (3.21) have Re(p) < 0. If
Re(p) > 0O for at least one root of the cubic equation then the system will be unstable. With each root of the cubic equation
there is an associated combination of a flow field and temperature distribution. The instability can set in as stationary con-
vection if one root of the Eq. (3.21) is zero or oscillatory convection if two roots are purely imaginary. The classification of
stability modes of the system are given Table 1 [10] from the roots of Eq. (3.21).

In Table 1, ‘unstable’ means there exists at least one root of Eq. (3.21) with Re(p) > 0, ‘stable’ means all roots of Eq. (3.21)
with Re(p) < 0. We get pitchfork bifurcation when D=0 and BC—D > 0. When D >0 and BC - D =0, we get Hopf
bifurcation.

3.2.1. Stationary convection (« = 0)
The stability of the system is determined by the sign of D and BC — D. Eq. (3.22c) shows that D < 0 when, for given q and
Ta,R is large enough. D > 0 for small enough R and D = 0 when p = 0. Equation D = 0 gives
5 Tam®M* Rr

(r+m*)° + ey -5=0 where 1 =¢°. (3.23)

For a fixed Ta, Eq. (3.23) determines a curve

/12
F (r+m?)° +

M

R=—

(3.24)

m’Ta
e
in Rr-plane (critical Rayleigh number for the onset of stationary convection) there are two positive values of r say ry, 15, be-
tween which D < 0 and R < Ry, D > O for all r (see Fig. 3). The system is stable for D > 0 and unstable D < 0.

On differentiating Eq. (3.24) with respect r we get Eq. (3.8), from which we find critical wave number for a given Taylor

number for the onset of stationary convection. Geometrically, there is another way is to find the critical Rayleigh number and
critical wave number for a given Taylor number under the condition that the straight line Rr is tangent to the curve

[AZM’Z(r + m2)® + Tan?$ 2| as shown in Fig. 4a. The straight line Rr becomes tangent to the curve only if R = R,. At the tan-

gent say r = r’, then the critical wave number q = q,. obtained as q,, = 2. Above discussions are done under the assumption
that R as a dependent variable and calculated critical Rayleigh number and critical wave number at a fixed Taylor number for
the onset of stationary convection. Similarly, by assuming Rayleigh number as an independent variable we can compute crit-
ical Taylor number and critical wave number for the onset of stationary convection. The analytical expressions for critical
Taylor number and critical wave number can be computed as follow.

D=0 Unstable Region
D<0

Stable Region

Fig. 3. A typical diagram showing the stability regions of the system for stationary convection.



5050 A. Benerji Babu et al./Commun Nonlinear Sci Numer Simulat 17 (2012) 5042-5063

(a) (b) T2
18000 | 18000 |
D>0

12000 + 12000 | Stable Region

A(r+n’) +Tar’y”
6000 D<0

6000 Unstable Region
0F
s 1 L L 0 1 1 1
2000 4000r 6000 T 8000 0 R, 2000 4000 6000 R 8000

Fig. 4. At the intersection point of the curve and straight line in figure (a) we get the critical wave number q,, = r* corresponding to the critical Rayleigh
number at a given Taylor number. In figure (b) the system (stationary convection) is stable in D > 0 region, unstable D < 0 region and D = 0 on the curve
Ta.

The derivative of Eq. (3.23) with respect to r gives

R=3A(r+m)> (3.25)
On substituting Eq. (3.25) into Eq. (3.23), we get
B Ta ( M\?
Eq. (3.26) is nothing but Eq. (3.8) at r = ¢* and q = q,.. We can write Eq. (3.25) in terms of r as
1
_(RY_ >
=) - 52

From Eq. (3.27) we consider only positive values of r, since r = g(> 0). Substituting Eq. (3.27) into Eq. (3.23), we get critical
Taylor number Ta = Tas(R), where

A ( R >% A¢?
M? \Rp M?

Here R, is the critical Rayleigh number for the onset of stationary convection of Rayleigh-Benard convection without rota-
tion. Fig. 4b is plotted in (R, Ta)-plane for the curve (3.28). In this figure Ta,. = 0 on R-axis. From R-axis the curve (3.28) start-
ing from R = Ry. In (R, Ta)-plane we check the sign of D in a range of R with g = q,.(R) at a fixed Ta = Ta,. For the values
{R,Ta} which are left to the curve (3.28). D > 0 and D < 0 for the values {R, Ta} which are right to the curve (3.28) and

D = 0 on the curve (3.28).

27t

Ta =Ta, =R 2

where R, =

(3.28)

3.2.2. Oscillatory convection (w? > 0)

For oscillatory convection, substituting p = iw into Eq. (3.21) and equating real and imaginary parts to zero we get
@? =D/B and w? = C. »? is positive only if D > 0 or C > 0. From these two equations we get BC — D = 0. From Table 1,
the condition D > 0 is not enough to discuss the stability of the system. So we have to also check the sign of D for the stability
of the system. Thus BC — D = 0 gives

Tam?Pr*M* MRr

2,3 _
(r+7) +(] +MPrag)*  24(1+MPrag)

-0, (3.29)

or
24(1+MPrAg) | - Tan2Pr*M*
Mq? * " (1+MPra¢)
where R, is the Rayleigh number for oscillatory convection. The frequency for the oscillations is given by w? = C. Using Eq.
(3.14) into C we get w? as
) M*Pr?

__ v 20201 6 12,2
@ = T MPAD) [Tan M2(1 — MPrAg) — 8 A2¢2(1 +MPrA¢)].

R, =

We follow similar procedure to compute analytical expressions of critical Taylor number Ta,. and critical wave number g,
for the oscillatory convection as we have obtained Ta,. and g, for the stationary convection. Here we compute the analytical
expressions Ta,. and q,. directly by comparing the Eqs. (3.23) and (3.29). Substituting
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_ TaPr*M* A ¢ and R MR
(1 + MPrAg)> (1+MPrag)’

into Eq. (3.28), we get

and
MR 3 :
q = qoc(R,Pr, A, ¢, M) = (W) - 77:2} . (3.31)

As we have checked the sign of D in stationary convection, similarly we have to check the signs of D and BC — D for the sta-
bility region of oscillatory convection. Here we can use Ta = Tas. or Ta = Ta,, to identify the signs of D, BC — D. In the (R, Ta)-
plane, on the R-axis Ta =0 and the curve corresponds to (3.30) always starts from R =R = 2(1 + Pr)R,. In the plane
BC — D > 0 for the values R, Ta which are right to the curve (3.30) (see Fig. 5). From Table 1, when BC—D >0 and D >0
we get one damped mode and two oscillatory modes. Thus the system is stable in BC —D > 0 and D > 0 region. The
coefficient

((1 + Mpm¢))%
2°prM° A3

of R in Eq. (3.30) is equal to unity at Pr = Pr. = 0.783813 and it is less than unity for Pr > Pr.. When Pr < Pr.. Eq. (3.28) inter-
sect with (3.30) at

A g?
R=Ri=(1+Y)Ry, Tay= W“ +7 — A1+ Y)?Ry,

T= 2}(1 + MPrA¢) — (M(1 + MPrAg))?
(M(1 + MPrA¢))? — 22PP A2 6*M>

The suffix ct in Eq. (3.32) stands for parameter at codimension two bifurcation point. The Rayleigh number R = R is obtained
by equating Egs. (3.28) and (3.30). By substituting R = R.; either into Eq. (3.28) or into Eq. (3.30), we get Ta = Ta,. At
Ta, Tas = Tao and qg. # q,.. At Pr = Pr.,Ta,. approaches to Tas,. asymptotically as R — oo i.e., the intersection between
Eqgs. (3.28) and (3.30) appears at infinity. In Table 2, we have given the values of Ta.(Pr) and R.(Pr) for some values of Pr
computed from Eq. (3.32). Fig. 6(a-d), show that with decreasing Pr < Pr., Ta,, and R decreases. Thus at Pr = 0, we get codi-
mension two bifurcation point at R, = 2M~ 'R, and Ta, = ZM%}(Z% — M%)R,,,. When Ta < Ta. we get stationary convection as
a first instability while for Ta > Ta,, the first instability will be oscillatory convection. By eliminating Ta from equations C = 0
and D = 0, we get

(3.32)

R(MPrA¢ — 1)

@5 +3¢*m? + |37t + 51 ¢ +7n°=0. (3.33)
(@) Ta (b) Ta ;
Pr=Pr_and Pr>Pr_ 18000 D>0, BC-D<0-—
15000 1 D>0, BC-D>0 Unstable ¢
Stable
K Pr<Pr_ oc
10000 | Ar 120004 >0, Bc-D>0
A Stable
/' D<0, BC-D<0
; Unstable
5000 D<0.BCD0 7 h o Bep<o 6000 |
Untable " Unstable
D<0, BC-D>0
0 0 B Unstable
0 2000 4000 6000 R 8000 0 2000 4000 6000 R 8000

Fig. 5. The typical diagram show the stability regions of the system on the solid lines D = 0 and on the dotted lines BC — D = 0. In each figure for the values
{R, Ta} which are left to the solid line D > 0 and D < 0 for the values {R, Ta} which are left to the dotted line and BC — D < O for the values {R, Ta} which are
right to the dotted line.
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Table 2
The values of Ta, Ra, at different Prandtl number Pr.
Pr Tag Ret pr Tae R
0 766.174 1461.14 0.55 3624.21 3124.72
0.1 911.189 1576.97 0.6 4779.04 3630.42
0.2 1119.61 17321 0.63 5782.01 4033.51
0.4 1944.76 2261.63 0.65 6647.93 4361.03
0.5 2860.95 2756.75 0.6766 8080.86 4870.31
a b
(@) Ta (b) Ta
Pr=0.6
18000+ 24000+
12000+ 16000+
6000+ 8000+
0 L—"/l’ ! ! 0
0 2000 4000 6000 R 8000 0 00
(c) @ .,
Ta
54000+
32000 Pr=0.4
TaOC/
16000 P
18000} S Ta
8000
0 2000 4000 6000 R 8000 0 2000 4000 6000 R 8000

Fig. 6. In above figures solid lines are plotted for the curve Ta, (stationary convection) and dotted lines are plotted for the curve Ta, (oscillatory
convection) at different values of Pr. When Pr — 0 then the intersection point appear at R :ﬁR,b and Ta, = ZM%B(Z% —M%)R,b, whereas for Pr —
Pre,Ry — oo and Tag — oo.

From Eq. (3.33), for Pr < 1, we get two positive roots which are correspond to two Takens-Bogdanov bifurcation points and
for Pr > 1, we do not get positive roots. This implies that we do not get oscillatory convection for Pr > 1.

4. Derivation of nonlinear two-dimensional Landau-Ginzburg equation near the onset of stationary convection

In this Section the evolution of a general pattern is developed by means of a multiple scale analysis used by Newell and
Whitehead [16]. A small amplitude convection cell is imposed on the basic flow. If this amplitude is of the size O(¢) then the
interaction of the cell with itself forces a second harmonic and mean state correction of size O(e?) and then in turn drives an
O(€3) correction to the fundamental component of the imposed roll. A solvability criteria for this correction yields the two-
dimensional nonlinear Landau-Ginzburg equation of the complex valued amplitude A(X,Y,T) of the imposed disturbance
with real coefficients. To simplify the problem we assume the formulation of cylindrical rolls with axis parallel to y-axis,
so that y-dependence disappears from Eq. (2.14). The z-dependence is contained entirely in the sine and cosine functions,
which ensures that stress-free boundary conditions are satisfied. We use the expansion parameter € as

R-R
62 _ sC
Rsc

(4.1)
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for the values of R close to threshold value Ry i.e., € < 1, the structure of the slow length scales will be insensitive to €, but a
slow modulation in space and time is possible by making use of the band of the unstable solutions and linear growth rate is
likely to saturate due to nonlinear effects. This behavior can be analyzed by writing solutions of Eqs. (2.7)-(2.9) in power
series € as

f=efo+efitefo+---, (4.2)
where f = f(u, v,w, 0) with the first approximation is given by the eigenvector of the linearized problem:

Uy = i [AKX,Y,T)e%* cosmz —c-c],
sc

—inTa? ;
= AX,Y,T)e"%*cosmz—c-c|,
0 ¢01 qsc [ ( ) ]
wo =A(X,Y, T)e%*sinnz + ¢ - ¢,
1 ; .
0o =—— [AX,Y,T)e'"*sinnz+c-c], (4.3)
Mo,

where 6% = (12 + ¢2.). Here c - ¢- stands for complex conjugate, ei%5i"72 is the critical mode for the linear problem at R = Ry,
and q = q,.. The complex amplitude A(X, Y, T) depends on the slow variables. The independent variables x,y, z, t are scaled by
introducing multiple scales

X=ex, Y=6y, Z=z and T=¢t (4.4)

and these formally separate the fast and slow dependent variables in f. It should be noted that difference in scaling in the two
directions reflects the inherent symmetry breaking of instability which was chosen here with wave vector in x-direction. The
differential operators can be expressed as

0 0 0 0 10 0 0 0 , 0

wx X % m ez o€ o (4-5)

with the assumption (4.5), the operators (2.15) and (2.16) are transformed into a set of linear inhomogeneous equations. The
solvability conditions for the latter yields the amplitude equation using Eq. (4.3) the linear operator (2.15) can be written as

L=1Lo+ €L +€ELy. .., (4.6)
where

RSC

2
Lo=—-02V* — Tavz% U

Vio3, (4.7)

> yes A 4 Ta @ Red_, Ry
E]_<28X8X+W) 205V —2M03V +?@— VP vh-‘rMO'g, , (4.8)
N, 2 4 202 Ta &  Re o
£2m|:—M2¢PrO'3V +03V +EE_M3¢P]‘V}‘
82 2772 4 Ta 62 RSCA 2 Rsc
_W|:20'3V - 2—03V +F£—W h+MO'3
? A\ [ 4 Ay Redl Res
I T = ) s¢ _se
+ (2 TxOX + 8Y2> [4MO'3V 03 I V*+ v M V; 03 (4.9)
and o3 = (ﬁ - %vz). Similarly nonlinear term A is given by
N:€2No+€3N1+"' (4]0)
substituting Egs. (4.6), (4.10) and (4.2) into Eq. (2.14), we get by equating the coefficients of €, €2, €3,
LoWy = O7 (411)
Lowq +£]W0:N0, (412)
LoWy + L1Wy + Lowg = N1 (413)

Eq. (4.7) gives the critical Rayleigh number for the onset of stationary convection

a1 a2\ 122
M OS(M—Dﬁmbs) + T
Rs:_Z .

2
L G
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In Eq. (4.12), Np =0, L£1w, = 0 and hence w; = 0. From equation of continuity we find that u; = 0. The relevant equations
for 0, and v; are

0 2 _ wq 1 890 600

(a*v)ﬁl—ﬁw o T W0z | @14
vy Ta* ow, 1 0 0w 0vg
Priox =% oz mPgprox|Mox "z (413)
Substituting zeroth order approximations from Eq. (4.3) into Egs. (4.14) and using w; = 0, we get
-1 2 .

01 = ———|A|" sin2mnz,

' oMol A

) 1 )
L [aen —c.c] (4.16)
M*¢°Prq, 0104

and g4 = M%a + 4%q§c). Substituting zeroth order and first order solutions in (4.9) and equating coefficients of sinnz in
N1 — Lywg to zero, we get

. 2

AO%f/l] (&é;;) A—izA+islAPA =0, (4.17)
where

Jo = 1\/122:51Pr 5+ 0202 + %nz - Mf(sijr 2,

) =4q2 L/\:;é;‘[ + 4%01551 +0% - IZS;ZA ;

lo = R“A/(;-l o

Iy = ReeqZ01 27*Tasz, (4.18)

T 2MPE MPreias
Eq. (4.17) is two-dimensional, nonlinear, time dependent Landau-Ginzburg equation describing the effect of rotating field in
a sparsely packed porous medium near the onset of stationary convection at supercritical pitchfork bifurcation. Here /%, is
always positive for Pr < i and for any Ta but if Pr > ithen Jo is positive only if Ta < Ta.. Thus for supercritical pitchfork bifur-
cation 4y is always positive. For Pr > }—b,io decreases as Ta increases and becomes zero at Ta = Ta.. A; and /, are always po-

sitive. /3 is positive only if

- MRy.q%0204¢°Pr?

Ta o
44,

(4.19)

)

the pitchfork bifurcation is supercritical if /3 > 0 and subcritical if /3 < 0. At /3 = 0, we get tricritical bifurcation point (see
Fig. 7). Dropping the time-dependent term from Eq. (4.17), we get

d’A Iy 3,0

R (1 — A )Afo, (4.20)
since 4; > 0, the solution of Eq. (4.20) is given by

A(X) = Aptanh(X/4,), (4.21)
where

Ao = (J2/73)! and Ay = (201 /)2 (4.22)

4.1. Long wave-length instabilities (secondary instabilities)

The two-dimensional Landau-Ginzburg equation (4.17), can be written in fast variables x,y,t and A(X,Y,T) = A(x,y,t) /€,
as

Ao

oA (a i o

2
ot~ \ax 200 W)A €2irA + J3|APA =0, (4.23)
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Pr
16

12 +

400000 Ta 800000

Fig. 7. Above figure is plotted for D, = 1500, A4 = 0.85, ¢ =0.9, M = 0.9 and Pr = 0.5. /5 is the nonlinear coefficient of Landau-Ginzburg equation at the
onset of stationary convection. The pitchfork bifurcation is supercritical if /3 > 0, subcritical if /3 < 0 and 23 = 0 on the curve.

In order to study the properties of a structure with a given phase winding number 5k, we substitute
A(x,y,t) = Ai(x,y, t)e™, (4.24)
into the Eq. (4.23) and we obtain

2
0A . o i & o i ¥ ,
/loa—t1 = (6222 — M (5’()2)/‘\1 + 2i2,0k (a ~ 20 8—}/2>A] + 4 (a " 2q. 6—y2> A — J3|A1PAr = 0. (4.25)
The steady state uniform solution of Eq. (4.25) is
1
Ay = A = [(e% - Al(ék)z)ﬂgl]z. (4.26)

Let u(x,y,t) +iv(x,y,t) be an infinitesimal perturbation from a uniform steady state solution A;, given by Eq. (4.26). Now
substituting

Ay = Ao = [(ezxz - /11(5k)2>23’1]% i+,

into Eq. (4.25) and equating real and imaginary parts, we obtain

AO% - {—z(e% — 21 (5k)* + <68—:2 + % 88—;2 - %35 aa—;:ﬂ - (Mék - ;‘—; 88—;2> %» (4.27a)

/10%(2/116k—;—;66—;>%—i—il(;—;—k%;—;—é;—;)b (4.27b)
We analyze Egs. (4.27a) and (4.27b) by using normal modes of the form

i = Ue* cos (q,x) cos (q,y) and = Ve sin (q,x) cos (q,y). (4.28)
Putting Eq. (4.28) in Eqgs. (4.27a) and (4.27b) we get,

[zos + 2(62/12 — I (5k)2) + X]] U+ g,V =0, (4.29a)

1GuU + (A0S + 1)V = 0. (4.29b)

Here y, = Z1(q; + (q30k)/qs + 4, /492, % = (20k + 4} /q,.). On solving Eq. (4.29a) and Eq. (4.29b) we get,
738 +28[270 (€402 = 11 (00 ) + doja] + [2(€222 = (oK) + 7|1 = Bty = O,

whose roots (S=+) are real. Here (S+) is defined as

(S+) = —;—2 { (210(6212 - ;vl((sk)z) + xm) + <uo(e% - ),1(5k)2>2 + 2 Xg)i}. (4.30)
0
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Solution S(-) is clearly negative, thus the corresponding mode is stable and if S(+) is positive then rolls can be unstable.

s
Symmetry considerations help us to restrict the study of S(+) to a domain g, > 0,q, > 0.

4.1.1. Longitudinal perturbations and Eckhaus instability
Inserting g, = 0 into Eq. (4.30), we get

738 + 28 (200 (€22 = 1 (k) ) + Z0/n 2] + mq2[2(€22 — 37 (0k)?) + @] = O,

since the roots are real and their sum always negative, the pattern is stable as long as both roots are negative, i.e., their prod-
uct is positive. The cell pattern becomes unstable when the product is negative, i.e., when

q < 2(3/115k2 - 62)@)

for this requires |ok| > \/(€%/2/341), this condition defines the domain of Eckhaus instability. The above condition implies
that the most unstable wave vector tends to zero, when |5k| — \/(€222/341).

4.1.2. Transverse perturbations and Zigzag Instability
Let us consider g, = 0 into Eq. (4.30), we get

738 +28[ 270 (€02 = 11 (00 ) + Aol ] + [2(€222 = (oK) + 2| 2 = O,

where 3} = 4 (qﬁék/qsc +q; /4q§c>. The two eigenmodes are uncoupled and we have S(-),

)
okq? — 21
G T 4g

for one of them. The other is amplified when

o a4
S(+) = —q| sk+-2) > 0.
+) ﬂy( 4qsc>

S(=) = =2(€222 = m(3k)*) - 4 <0

This implies that 6k < 0, the above condition defines the domain of the Zigzag Instability. When 6k — 0 from below the wave
vector g, of the instability also tends to zero, while the growth rate varies as qﬁ. We have studied the effect of rotating on long
wave length instabilities. We have observed that Eckhaus instability and Zigzag Instability regions increases when Ta in-
creases (see Fig. 8).

4.1.3. Heat transport by convection
The maximum of steady amplitude A is denoted by |A;4| which is given as

1
€2 A2

JAmax| = (T3>2 (4.31)

48 o

Fig. 8. Numerically computed secondary instability regions of Eckhaus instability (E), Zigzag Instability (Z) and stable regions (S) are plotted in (1 /41, dq;)-
plane for Ta = 2000, D, = 1500, A =0.85, ¢ =0.9, M = 0.9, and Pr = 0.5. As |5q,| increases then the secondary instability regions increases.
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Eq. (4.31) is obtained from Eq. (4.21) with tanh(X/A4;) = 1. We use |Anq| to calculate Nusselt number Nu. To discuss the heat
transfer near the neutral region, we express it through the Nusselt number is defined as Nu = (Hd/xAT), which is the ratio of
the heat transported across any layer to the heat which would be transported by conduction alone. Here H is the rate of heat
transfer per unit area and is defined as

_ T total
He () (432)

In Eq. (4.32), angular brackets correspond to a horizontal average. The Nusselt number can be calculated in terms of ampli-
tude A and is given as

2
Nu =1+ Anal. (4.33)
(SSC
From Eq. (4.33), we get conduction for R < Ry and convection for R > R,. Since the amplitude equation is valid for i3 > 0,
which is possible for R > R, (supercritical pitchfork bifurcation), Thus we get Nu > 1 for R > R,.. We get convection for
Nu > 1 and conduction for Nu < 1. In stationary convection Nu increases implies that heat conducted by steady mode in-
creases. In the problem of double diffusive convection in porous medium with rotating field, Nu depends on Pr, A, M, ¢, D,
and Ta. We have computed Nu for different values of Ta, for some fixed values of other parameters and observed that Nu
increases as Ta decreases (see Fig. 9). This implies that rotation inhibits the heat transport. The parameters Pr, A, M, ¢ and
D, show the same result as Ta shows on Nu.

5. Oscillatory convection at the supercritical Hopf bifurcation

The existence of a threshold (critical value of Rayleigh number for the onset of oscillatory convection R = R,.) and a cel-
lular structure (critical wave number q = q,.) are main characteristics of the oscillatory convection. In this Section, we treat
region near the onset of oscillatory convection. Here the axis of cylindrical rolls is taken as y-axis, so that y-dependence dis-
appears from equation Lw = N. The z-dependence contained entirely in sine and cosine functions which ensure that the free-
free boundary conditions are satisfied. The purpose of this section is to derive coupled one dimensional nonlinear time
dependent Landau-Ginzburg type equations near the onset of oscillatory convection at supercritical Hopf bifurcation. We
introduce € as

2 R—Ro

€ = < 1. 5.1
Roc (5.1

We assume that

Wo = [Aq el t@oct) 1 Apel@ocX=oct) 4 ¢ ¢ ] sinmz

is a solution to linearized equation £Lw = 0, which satisfies free-free boundary conditions. Here A, denotes the amplitude of
left travelling wave of the roll and A,z denotes the amplitude of right travelling wave of the roll, which depends on slow
space and time variables [12]

X=ex, tT=c¢t, T=¢€t (5.2)

(a) (b)

Nu 60
Nu
24+
40 |
16}
20 ¢
08 1 n 1 n 1 n 1 n O 1 n 1 n 1 n
1.2 1.4 1.6 1.8 RIR 2.4 3.0 3.6 RIR,

Fig. 9. Graph (a) is plotted for Ta = 10° and graph (b) is plotted for Ta = 10 for the fixed values of D, = 1500, A4 = 0.85, ¢ = 0.9, Pr=0.5 and M = 0.9. in
(Nu, R/Rs)-plane. In graphs (a) and (b), as R/R;. increases then Nu increases.
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and assume that A;; = Ay (X, 7,T) and A = Air(X, 7, T). The differential operators can be expressed as

0 0,0 0 0,0, 00 (5.3)
ax oxToXT ot ot ot oT’ '

The solution of basic equations can be sought as power series in ¢,
f=eho+Ef+eHhr+ -, (5.4)

where f = f(u, v,w, 6) with the first approximation is given by eigenvector of the linearized problem:

in ; .
Uy =— [AlLel(roX+U’act) +A1Rel(%cx*“)oc[) —C- C.] cos 1z,
oc

. 1
v = *;ZTGZ [,% fldack+oct) Jﬁ%e’“’w**wmf> —c-c,|cosmz,
oc 2 2
1 ] X+, f 1 X—(), [ 1
o =le A L @1(Goc+Coc + —Ajgellecx=0t) 1 ¢ ¢ | sinniz, (5.5)
1

<2 2 . 2 iWoc " * :
where o = (7I2 +q2), e1= (85 + i), e = [(M#er,ﬁaﬂc) +N’,‘2“(/‘PJ here e; and e; are complex conjugate of e; and e,
respectively.

We expand the linear operator £ and nonlinear term N as the following power series

L=Lo+€EL+€ Ly, (5.6)
N=€ENg+ENy+-- (5.7)

substituting Eqgs. (5.3) and (5.4) into £Lw = N/, for each order of €, we get

LoWg = O, (58)
Low: + LWy :No, (59)
LoWy + LiWq + Lowy = N7, (510)
Here
Ta & R
Lo =DDp'V* + D? pr % Vh
LOF | 0T,
Lr="30 "2 oxax

4 2
=149 {DI\/:IZVZ _2pp (372v2> 7D§r+R“A

oT INX? M \ot M?
o & 24, 2 Ay Roc
+2—— |- Vi-D V2 - 2Dp =V + D2 + DDpy——— —
ot axx{ M’ ¢Pr " M?gPr "M T MR Pr MPgPr
0 1 2 2 8-7:2 Roc 2
7 i P igm] T >y
where
Ta & R
— DD 2 DZ 2 M~y oc 2
]:1 Perd)Prv + PrV +¢2 822 M3¢Pr h
and
B ) ) )\ Ta @ Reed_, Roc
= ZDDPr Vv +D <8t 2V> ¢2 622+ V2 Vi DP’M'

Eq. (5.8) is linear problem. We get critical Rayleigh number for the onset of oscillatory convection by using the zeroth order
solution wy in Eq. (5.8). At O(€?), Ny = 0 and L£;w, = 0 gives

0A1; 0AL O0A1r O0A1r
Tt Vegx 0 and G vy

where vg = (0w/8q),_, . is the group velocity and is real. Hence from Eq. (5.9), we get w; = 0. From equation of continuity
we find that u; = 0. Substltutmg the zeroth order and first order approximation into Eqs. (4.14) and (4.15) we get

=0, (5.12)
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-7 2 5 2 2 ..
0 = — (A A )t — ——Ji | sin2mz,
1 > | A1l + |A] 1+elt2]]+e§t§h} :
) 1 2 2 -1
v = 7_2”[3 T A”— eZi(‘Ich+‘/)ocf) + A*IR* e2i(%c’<*woct) + (l + lx> <_1 + 4£qgc> AlLA1Re2iqoc" —-Cc-c, (513)
M?$*Prq,, | €263 e5e; e e)\MD, M

where J; = Ay Aot t =, (% + é) bty = (4m? + 2iw,c), and e3 = Kﬁ + 4%q§c> + ,@';‘;PJ

here e; and J, are complex
conjugates of e; and Jj, respectively.
The Eq. (5.10) is solvable when Lowq = 0, one requires that its right hand side be orthogonal to wy, which is ensured that if

the coefficients of sin 7z in Ny — LWy are equal to zero. This implies that

oA d 0 A
Aoa—ru + 4 (5 — U 6—X>A2L — A3 aT;L — AsAip + Ag|Arr)*Av + As|Aig[*Ai = 0, (5.14)
0A d d oA
Aoa—%R + 4 <% — Vg B—X>A2R — Az W;R — A3Aig + AglAg|*Arg + As|Ar[PAig = 0, (5.15)
where
<2 2
0= —a%—ere; + €307 +T—‘j 2 ——R‘;Cq"f ,
M- ¢Pr ¢ M- ¢Pr
o2 262
M= Sose + e,
M"¢“Pr M~ ¢pPr
A? A A RoeA
Ay = 4¢P [Mzégcel +2M0§c92 - ZMelez + I&z —e2|,
2
A3 = LIC\ZOC €,
Rocq? 12 2mTa e
Ag = eyt — —
UM MR el
RocG272 [ 2 2mte,Ta (1 1\ [/ 1 A LN\
A = oc _ o 4= . 1
= et T2 vigep e Tey) \Mp, T A e (5.16)

It should be noted that A;; and A;; are of order € and A,; and Ay are of order €2. If Wy = 0 in Ao, A3, A3 and A4 then these
expressions match with the coefficients 2y, 41, 4, and /3 of Landau-Ginzburg equation at the onset of stationary convection.
From Eq. (5.12), we get A, (&, T) and Ag(1', T), where & = v,7 + X, 1’ = 5T — X. Eqs. (5.14) and (5.15) can be written as

oA 0A 0A

20,4 6};} - —Aoa—;f s aTlZL + JsAu — (A4\A1L|2 + As \A1R|2>A1L, (5.17)
9A oA oA

20,44 8;72/'* = Ao S+ 2 aTlZR + 23AR — (A4|A1R|2 n A5|A1L\2>A1R. (5.18)

Let ¢'€[0,4],17'€[0, ] where I; and I, are periods of Ay, and Ay, respectively. Expansion (5.4) remains asymptotic for times
t = 0(e?) only if an appropriate solvability condition holds. This condition obtained integrating Eq. (5.17) over #’ and Eq.
(5.18) over &, we get

410 9Tu—112 },121- A3A1L ( 4|A1L‘2 5| 1R|2> 1Ls (519)
110 9_T]R = 112 —E)XIZR +A3A1R - (114|‘ ‘1R|2 115|‘ ‘1L‘2>“1R- (520)

5.1. Travelling wave and standing wave convection

To study the stability regions of travelling waves and standing waves we proceed as follows:
On dropping slow variable X from Eqgs. (5.19) and (5.20), we get a pair of first ODE’s

dA A A A
d—T“=A—ZAu *A—;AlL\A1L|2 *A—2A1L|A1R|2> (5.21)
dAsg .

A A A
T = A g Al = 2 Al (522)
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put
A3 Ay A5
ﬁ_AO, Y = A and ¢ = e
Then Egs. (5.21) and (5.22) take the following form
dAlL / / 2 / 2
ar — FAL+ Y AL|AL + O AlAr|, (5.23)
dA / / U
d—%R = fA + Y ArlAr[* + 0 ArrlAnl. (5.24)

Consider Aj, = aiet and A = aer (we can write a complex number in the amplitude and phase form), where
a; = Ay, ¢, = arg(Ayr) = tan~' (Im(A1)/Re(A1L)) and ag = |A1r|, ¢r = arg(Ar) = tan~! (Im(Ag)/Re(Ar)), here a;, ag, ¢; and
¢ are functions of time T, since A;; and Ay are functions of T. Thus a; and ag are positive functions.

Substituting the definitions of Ay;,Ag and g’ = By +iB,, V' =y, +1i),, & = 1 + 15, into Egs. (5.23) and (5.24) we get,

0 pra+ padaf + ool (5.25)
O o+ ol + ool (526)
9 — Byax + naalael + or0eja (5.27)
N e (5.28)

Egs. (5.25) and (5.27) not contain phase term, so we take these two equations for the future discussions. We have Egs. (5.25)
and (5.27) as

da .
d—le Bray + 7,a + 6,az,
da

d_; = BiGg + 103 + 6107

since a; and ag are positive functions. Put

daL . daR _
H—Fl(aLvaR% ar =

Now we discuss the stability of equilibrium points of above Eq. (5.29). We get four equilibrium points like (a;, az) = (0,0)
[conduction state], (a;,ar) = (a;,0) [a; = amplitude of left travelling waves, here we get F, = 0, and we get one condition
from F; = 0 i.e, a2 = —B, /7, (= |Ai|®)], (a, ar) = (0,az) [az = amplitude of right travelling waves, here we get F; = 0, and
we get one condition from F, =0 i.e., a2 = —f,/7,(= |Ar|*)], and for a, # 0 and az # 0 we get (a;,ag) = (—B;/(y;+
d1), — P/ (y; + 1)) [this gives condition for standing waves. At standing waves we have A, = Ag, so a; = ag]. For the pair of
Egs. (5.21) and (5.22), we do not get a; # ag # 0 [modulated waves]. now the Jacobian of F; and F, is given by

<8F]/8al_ 8F1/8aR>
an/aal_ 6F2/8aR ’

F(ay, ag). (5.29)

If real parts of all eigenvalues of the Jacobian are negative at an equilibrium point, then that point is a stable equilibrium
[Lyapounov’s theorem or principle of linearized stability]. Some valuable conditions for travelling waves and standing waves
are: Travelling waves are stable if §; > 0, 7; < 0and é; < y; < 0. Standing waves are stable if §; > 0,7, < 0and (i) if 6; > O,
then —y; > 6; > 0, (ii) if &y <0, then —y; > —é; > 0.

The stability regions of travelling waves and standing waves are summarized in Fig. 10. Here E is total amplitude and de-
fined as E = a? + a3. We do not distinguish between left travelling waves and right travelling waves. For rest state (steady
state) E = 0, for travelling waves E = —B, /y,, for standing waves E = —2§,/(y, + G;). Travelling waves are supercritical if
7; < 0 and standing waves are supercritical if y; + ¢; < 0. Fig. 10a is drawn for stable travelling wave conditions and
Fig. 10b is drawn for stable standing wave conditions in (8;, E)-plane. The symbols (—, —) and (+, +) in Fig. 10a and b indicate
that both roots of Jacobian are negative and at least one root is positive between two roots.

In Fig. 10a and b, travelling wave solution and standing wave solution bifurcate simultaneously from the steady state
solution (B, > 0 at this bifurcation point). In these Fig. 10a and b, steady state solution is stable for §; < 0 and unstable
B1 > 0. These figures show that for 8, > 0 both travelling waves and standing waves are supercritical. When travelling waves
and standing waves bifurcate supercritically then at most one solution among travelling waves and standing waves will be
stable. Thus, for g, > 0 (Fig. 10a) travelling waves are stable and (Fig. 10b) standing waves are stable. In more detail we
reproduce results of the stability analysis of equilibrium solutions in Fig. 10c, which is plotted in (y,,¢;)-plane. From this
figure we can observe that travelling waves are subcritical for y; > 0 and standing waves are subcritical for y; +¢; > 0. In
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Fig. 10. (a), (b) and (c) are typical diagrams showing the stability of equilibrium solutions SS (steady state), SW (standing waves) and TW (travelling waves).
On solid lines equilibrium solutions are stable and on dotted lines they are unstable.

Fig. 11, we have shown the stability regions for both travelling and standing waves for Pr < 1, Pr = 0.5 there is an intersec-
tion between standing waves and travelling waves.

5.2. Long wave-length instabilities for the onset of travelling wave convection (Benjamin-Feir instability)
For right travelling wave Ag(X,T) = A(X,T) and A, (X,T) = 0, for left travelling wave Ag(X,T) =0 and A, (X,T) = AX,T).
Thus for travelling waves we get a single amplitude equation from Eqgs. (5.19) and (5.20), given as

oA A
Aoy — Ay — —
09T ~ 2 ox?
For standing waves Ay (X, T) = Air(X,T) = A(X,T) and we get a single amplitude equation from Eqgs. (5.19) and (5.20), given
as

AsA + A4)APA = 0. (5.30)

A%—A a—zA—AA—i—(A +A)|A|2A—O (5.31)
05T 2 X 3 4 5 =Y .
The above Eq. (5.31) possesses a family of planar wave solutions and solutions containing phase singular points. We study
the Benjamin-Feir instability of travelling waves (which is similar to Eckhaus instability for onset of stationary convection)
from complex Landau-Ginzburg equation (5.30). Eq. (5.30) can be written as
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Fig. 11. Fig. 11 is plotted for Pr=0.5. Stability regions of steady state (SS), travelling waves (TW) and standing waves (SW) are plotted (Q, Pr)-plane.

oA _O’A )
57— 8X2+ﬁA+y\A|A (5.32)

where ¢ = & +ié&, B =p; +iBy, ¥ =7, +iy,. The phase winding solutions are obtained by substituting A = A,e/0%X-00T),
into Eq. (5.32) and equating real and imaginary parts we get

515% B4
T /

S = &G — Py +

Ao = ==L

72 (ﬂl - & 551%)
1

Here A, is constant and 3q, = gX — q,.. We consider a modulated solution in the form: A(X, T) = A(X, T)ei®%X-3T)_Substitut-
ing the modulated into Eq. (5.32) which gives

A [(B—0EY ﬂ & o\ 5
o1 = O+ i) | (0 ) AR |A 4 i) 5 + 2i0g, ) (533)

It is possible to conduct a general investigation of the linear stability of A(X, T), but this is very difficult task, and therefore
our primary concern here is to treat the stability of the uniformly oscillating solution A,. Inserting A = A, + il + i# into Eq.
(5.33) and equating real and imaginary parts we get

il S &, B T o o

T *2(ﬁ1 - 5Q§€1)U + <1 (8)(2 —20q, (‘9)() - & (26%8)( +8X2)7 (5.34)
v —29,(By — 6q2&) il 82 o’n oV

7= Tu +& | 26q, = X ax2 + £ o 25‘1037 . (5.35)

Consider (&1, 7) = (U, V)e’T cos gyX and S in the growth rate of disturbances. Using solutions of i, # and dq, = 0 into Eq. (5.34)
and (5.35) we get

(S+2p1 + &g U — qi&,V =0, (5.36)
(S+az&a)V ( ﬁ; /2+qx@)u:0. (5.37)
1

Solving Eqgs. (5.36) and (5.37), we get

2
S* 4 25(By + E1%) + Gér (281 + 61R) + Gl ( ﬁvﬁz
1

+ qiéz). (5.38)

There will be an instability only when a root of Eq. (5.38) is positive i.e.,

Zﬁl( “fz) FRE+E) <0, (5.39)

B1 > 0 when travelling waves or standing waves are stable. The instability of waves against long wavelength longitudinal
modes is often called the Benjamin-Feir instability. Thus we get Benjamin-Feir instability for travelling waves when
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&1+ 7,8/, < 0. Similarly by considering Eq. (5.32) instead of Eq. (5.31) and proceeding in the same way as above we get
Benjamin-Feir instability for standing waves when ¢&; + (y, + 62)&/(y; + 1) < 0.

6. Conclusions

In this paper we have considered both linear and weakly nonlinear analysis of rotating convection in a sparsely packed
porous medium in Earth’s outer core by using free-free (stress-free) boundary conditions. Even though free-free boundary
conditions can not be achieved in laboratory, one can use it in geophysical fluid dynamic applications to Earth’s outer core
since they allow simple trigonometric eigenfunctions. Our goal is to identify the region of parameter values, for which roll
emerge at the onset of convection.

Following Chandrasekhar [6], we have described the stationary convection and oscillatory convection as curves Rs(q) and
Ro(q,Pr) vs wave numbers. The critical wave numbers for stationary convection and oscillatory convection are
dsc = 4oc = t/V/2. For the problem of rotating convection in a sparsely packed porous medium, we get Takens-Bogdanov
bifurcation point (TBBP) and codimension-two bifurcation point. In the case of linear theory both marginal and overstable
motions are discussed. In the Figs. 1 and 2 is shown that the effect of Taylor number and porous parameters is to make
the system more stable. By drawing stability boundaries in the Rayleigh number plan it is shown that the effect of rotating
field and porous parameter is to decrease the region of stabilities. In the non-linear Eq. (4.17), 4o = O gives the TBBP at
qs = q,. and when %o = 0 Eq. (4.17) is not valid. The pitchfork bifurcation is supercritical if 43 > 0, subcritical if 23 < 0, and
we get tricritical point if 23 = 0. We have obtained from Eq. (4.17), long wave length instabilities viz., Eckhaus and Zigzag
Instabilities. From Eq. (4.17) which is valid only for 43 > 0, we have calculated Nusselt number Nu and studied heat transport
by rotating convection. We have also derived two one-dimensional nonlinear coupled Landau-Ginzburg type equations viz.,
(5.14) and (5.15) at the onset of oscillatory convection at supercritical Hopf bifurcation. Weakly nonlinear theory must be
used to resolve which of the standing and travelling waves will occur at the onset of convection. The coefficients in Egs.
(5.21) and (5.22) are complicated functions of the parameters Ta, Pr, A, ¢, M and D,, so it is not possible to give a simple cri-
terion for the stability of the standing and travelling waves. We have computed stability regions of SW and TW at both Hopf
bifurcation. The conditions for SW and TW are A; = Ag and A, = 0 or Ag = 0, respectively. TW exist if \AL|2 =—p;/y, > 0and
they are supercritical if y, < 0. SW exist if |A|* = |Ag|* = —B; /7, + 61 > 0 and SW are supercritical if 7, + &, < 0. When both
SW and TW are supercritical then at most one equilibrium solution is stable. At Takens-Bogdanov bifurcation point we get
both TW and SW. By deriving one-dimensional Landau-Ginzburg equations with complex coefficients viz. Eqs. (5.30) and
(5.31), we have shown the existence of Benjamin-Feir type of instability for both TW and SW. Near the Takens-Bogdanov
bifurcation point the conducting state becomes unstable against both stationary and oscillatory mode, i.e., the real parts
of two eigenvalues pass through zero simultaneously. This violates the assumption made for deriving amplitude equations
(4.17), (5.14) and (5.15). Instead a new equation, which is second order in time, has to be used near the TBBP.
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