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Abstract This paper analyzes the steady, mixed con-

vection heat and mass transfer along a semi-infinite vertical

plate with variable heat and mass fluxes embedded in a

doubly stratified micropolar fluid. A uniform magnetic field

of magnitude B0 is applied normal to the plate. The gov-

erning nonlinear partial differential equations are trans-

formed into a system of coupled nonlinear ordinary

differential equations using similarity transformations and

then solved numerically using the Keller-box method. The

numerical results are compared and found to be in good

agreement with previously published results as special

cases of the present investigation. The study shows that

increase in magnetic, thermal stratification and solutal

stratification parameters increases the velocity and micro-

rotation and decreases the temperature and concentration

while the trend is reversed in case of coupling number. The

micropolar fluids display more reduction in skin friction

coefficient as well as wall couple stress than that exhibited

by Newtonian fluids.

Keywords Micropolar fluid � Double stratification �
MHD � Mixed convection � Heat and mass transfer

1 Introduction

Mixed convection flows are of great interest because

of their various engineering, scientific and industrial

applications in heat and mass transfer. Mixed convection of

heat and mass transfer occurs simultaneously in the fields

of design of chemical processing equipment, formation and

dispersion of fog, distributions of temperature, moisture

over agricultural fields, groves of fruit trees and damage of

crops due to freezing and pollution of the environment ([1–

3]). Extensive studies of mixed convection heat and mass

transfer of a non-isothermal vertical surface under bound-

ary layer approximation have been undertaken by several

authors. The majority of these studies dealt with the tra-

ditional Newtonian fluids. It is well known that most fluids

which are encountered in chemical and allied processing

applications do not satisfy the classical Newton’s law and

are accordingly known as non-Newtonian fluids. Due to the

important applications of non-Newtonian fluids in biology,

physiology, technology and industry, considerable efforts

have been directed toward the analysis and understanding

of such fluids. A number of mathematical models have

been proposed to explain the rheological behavior of non-

Newtonian fluids. Among these, the fluid model introduced

by Eringen [4] exhibits some microscopic effects arising

from the local structure and micro motion of the fluid

elements. Further, they can sustain couple stresses and

include classical Newtonian fluid as a special case. The

model of micropolar fluid represents fluids consisting of

rigid, randomly oriented (or spherical) particles suspended

in a viscous medium where the deformation of the particles

is ignored. Micropolar fluids have been shown to accu-

rately simulate the flow characteristics of polymeric addi-

tives, geomorphologic sediments, colloidal suspensions,

haematological suspensions, liquid crystals, lubricants etc.

The heat and mass transfer in micropolar fluids is also

important in the context of chemical engineering, aero-

space engineering and also industrial manufacturing pro-

cesses. The problem of mixed convection heat and mass
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transfer in the boundary layer flow along a vertical surface

submerged in a micropolar fluid has been studied by a

number of investigators.

The analysis of mixed convection in a doubly stratified

(stratification of medium with respect to thermal and con-

centration fields) medium is a fundamentally interesting

and important problem because of its broad range of

engineering applications. These applications include heat

rejection into the environment such as lakes, rivers, and

seas; thermal energy storage systems such as solar ponds;

and heat transfer from thermal sources such as the con-

densers of power plants. Although the effect of stratifica-

tion of the medium on the heat removal process in a

micropolar fluid is important, very little work has been

reported in the literature. Cheng and Lee [5] analyzed the

free convection on a vertical plate with uniform and con-

stant heat flux in a thermally stratified micropolar fluid.

Kumari and Nath [6] have solved the equations governing

the unsteady mixed convection flow of an incompressible

laminar electrically conducting fluid over an impulsively

stretched permeable vertical surface in an unbounded qui-

escent fluid in the presence of a transverse magnetic field

analytically using the homotopy analysis method as well as

numerically by an implicit finite-difference scheme.

Recently, Srinivasacharya and Ram Reddy [7] investigated

the effect of doubly stratification on mixed convection in a

micropolar fluid-saturated non-Darcy porous medium.

In recent years, several simple boundary layer flow

problems have received new attention within the more

general context of magnetohydrodynamics (MHD). The

study of magneto-hydrodynamic flow for an electrically

conducting fluid past a heated surface has important

applications in many engineering problems such as plasma

studies, petroleum industries, MHD power generators,

cooling of nuclear reactors, the boundary layer control in

aerodynamics and crystal growth. In addition, there has

been a renewed interest in studying MHD flow and heat

transfer in porous media due to the effect of magnetic fields

on flow control and on the performance of many systems

using electrically conducting fluids. The problem of MHD

mixed convection heat and mass transfer in the boundary

layer flow along a vertical surface submerged in a micro-

polar fluid has been studied by several investigators. Sed-

deek [8] investigated the analytical solution for the effect

of radiation on flow of a magneto-micropolar fluid past a

continuously moving plate with suction and blowing.

Tzirtzilakis et.al [9] studied the action of a localized

magnetic field on forced and free convective boundary

layer flow of a magnetic fluid over a semi-infinite vertical

plate. Mahmoud [10] analyzed the effects of slip and heat

generation/absorption on MHD mixed convection flow of a

micropolar fluid over a heated stretching surface. Hayat

[11] studied the effects of heat and mass transfer on the

mixed convection flow of a MHD micropolar fluid bounded

by a stretching surface using homotopy analysis method.

Das [12] considered the effects of partial slip on steady

boundary layer stagnation point flow of an electrically

conducting micropolar fluid impinging normally toward a

shrinking sheet in the presence of a uniform transverse

magnetic field.

From the literature survey, it seems that the similarity

solutions for the effects of transverse magnetic field,

thermal and solutal stratification on the laminar mixed

convection heat and mass transfer along a vertical plate

embedded in a micropolar fluid has not been reported so

far. In view of this, the authors, in the present investiga-

tions, aim to study the mixed convection on a vertical plate

with variable heat and mass fluxes embedded in a micro-

polar fluid in the presence of magnetic, thermal and solutal

stratification effects. The novelty of this paper is the use of

similarity transformations to find the solution of the prob-

lem. Most of the similar studies reported in the literature

used local similarity transformations to solve the problems.

It is established that similarity solutions are possible only

when the variation in the temperature of the plate and the

difference in the concentration are linear functions of the

distance from the leading edge measured along the plate.

Under these thermal and solutal boundary conditions, the

governing system of partial differential equations is trans-

formed into a system of nonlinear ordinary differential

equations. The Keller-box method given in Cebeci and

Bradshaw [13] is employed to solve the nonlinear system

of this particular problem. The effects of various material

parameters involved in the problem on the velocity, mi-

crorotation, temperature and concentration, heat and mass

transfer rates are presented in the form of graphs.

2 Mathematical formulation

Consider a steady, laminar, incompressible, two-dimen-

sional mixed convective heat and mass transfer along a

semi-infinite vertical flat plate embedded in a free stream

of doubly stratified, electrically conducting micropolar

fluid with velocity UðxÞ. Choose the coordinate system

such that x -axis is along the vertical plate and y -axis

normal to the plate. The physical model and coordinate

system are shown in Fig. 1. The plate is taken with variable

surface heat flux qwðxÞ and mass flux qmðxÞ. The tem-

perature and the mass concentration of the ambient med-

ium are assumed to be linearly stratified in the form

T1ðxÞ ¼ T1;0þA1x and C1ðxÞ ¼ C1;0þB1x, respec-

tively, and increase linearly with respect to x, where A1 and

B1 are constants and are given by A1 and B1 be the slopes

of the ambient temperature profile and ambient concen-

tration profile, respectively, with vertical distance and
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varied to alter the intensity of stratification in the medium.

T1;0 and C1;0 are the ambient temperature and concen-

tration at x ¼ 0, respectively. A uniform magnetic field of

magnitude B0 is applied normal to the plate. The magnetic

Reynolds number is assumed to be small so that the induced

magnetic field can be neglected in comparison with the

applied magnetic field. The Boussinesq approximation is

invoked for the fluid properties to relate density changes,

and to couple in this way the temperature and concentration

fields, q ¼ q1 ð1� bT ðT � T1Þ � bC ðC � C1ÞÞ to the

flow field.

For steady two-dimensional incompressible flow of a

micropolar fluid with boundary layer and boussinesq

approximations in the absence of the body couple, the

governing equations for the micropolar fluid are given by

[4, 14–16]:

ou

ox
þ ov

oy
¼ 0 ð1Þ

u
ou

ox
þ v

ou

oy
¼ UðxÞdUðxÞ

dx
þ lþ j

q

� �
o2u

oy2
þ j

q
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oy
þ
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0
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ðUðxÞ � uÞ

9>>>=
>>>;
ð2Þ
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ð4Þ
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¼ D

o2C
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ð5Þ

where u and v are the components of velocity along x and y

directions, respectively, x is the component of microrota-

tion whose direction of rotation normal to the xy-plane, g�

is the gravitational acceleration, T is the temperature, C is

the concentration, bT is the coefficient of thermal expan-

sions, bc is the coefficient of solutal expansions, B0 is the

coefficient of the magnetic field, l is the dynamic coeffi-

cient of viscosity of the fluid, j is the vortex viscosity, j is

the micro-inertia density, c is the spin-gradient viscosity, r
is the magnetic permeability of the fluid, m is the kinematic

viscosity, a is the thermal diffusivity, D is the molecular

diffusivity, r is the magnetic permeability of the fluid, a is

the thermal diffusivity and D is the molecular diffusivity.

Equations (1)–(3) represent the conservation of mass,

conservation of momentum and conservation of angular

momentum, respectively [4]. The last terms on the right-

hand side of Eq. (2) stand for the Lorentz force term. The

term rB2
0=q

� �
UðxÞ

� �
represents the imposed pressure force

in the inviscid region of the conducting fluid and

rB2
0=q

� �
u

� �
represents the Lorentz force imposed by a

transverse magnetic field to an electrically conducting

fluid. Equations (4) and (5) denote energy conservation law

and conservation of species concentration, respectively.

The boundary conditions for the velocity, microrotation,

temperature and concentration distributions for the present

problem can be considered as:

u ¼ 0; v ¼ 0; x ¼ 0; �k
oT

oy
¼ qwðxÞ; �D

oC

oy
¼ qmðxÞ at y ¼ 0

u! UðxÞ;x! 0;T ! T1ðxÞ;C ! C1ðxÞ as y!1

9=
;
ð6Þ

where the subscripts w and 1 indicate the conditions at

wall and at the outer edge of the boundary layer, respec-

tively. The boundary condition x ¼ 0 at wall i.e., at y ¼ 0

in Eq. (6), represents the case of concentrated particle flows

in which the microelements close to the wall are not able to

rotate, due to the no-slip condition.

3 Method of solution

The continuity Eq. (1) is satisfied by introducing the stream

function w such that

u ¼ ow
oy
; v ¼ � ow

ox
ð7Þ

To explore the possibility for the existence of similarity,

we assume

Fig. 1 Physical model and coordinate system
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w ¼ A x a f ðgÞ; g ¼ B yxb; x ¼ E xe gðgÞ

T ¼ T1;0 þ
qwðxÞ

Bk
hðgÞ; qwðxÞ

k
¼ M1 B xm

C ¼ C1;0 þ
qmðxÞ
BD

/ðgÞ; qmðxÞ
D
¼ N1 B xn

9>>>>=
>>>>;

ð8Þ

where A;B;E;M1;N1; a; b; e;m and n are constants. We

define UðxÞ ¼ A B xd. Substituting (7) and (8) in (2), (3),

(4) and (5), it is found that similarity exists only if

a ¼ 1; b ¼ 0; c ¼ d ¼ m ¼ n ¼ 1:

Hence, appropriate similarity transformations are

w ¼ A x f ðgÞ; g ¼ B y; x ¼ E x gðgÞ

T ¼ T1;0þ
qwðxÞ

B k
hðgÞ; qwðxÞ

k
¼ M1 Bx

C ¼ C1;0þ
qmðxÞ
B D

/ðgÞ; qmðxÞ
D
¼ N1 Bx

9>>>>=
>>>>;

ð9Þ

Making use of the dimensional analysis, the constants

A;B;E;M1 and N1 have, respectively, the dimensions of

velocity, reciprocal of length, the reciprocal of the product

of length and time, the ratio of (temperature/length) and the

ratio of (concentration/length).

Substituting (9) in view of (8) into Eqs.(2), (3), (4) and

(5), we obtain

1

1� N

� �
f 000 þ f f 00 � ðf 0Þ 2 þ N

1� N

� �
g0 þ Riðhþ L /Þþ

ð1�MÞ f 0 þ 1 ¼ 0

9=
;

ð10Þ

k g00 þ f g0 � f 0 g� N

1� N

� �
J 2gþ f 00ð Þ ¼ 0 ð11Þ

1

Pr
h00 þ f h0 � f 0 h � e1 f 0 ¼ 0 ð12Þ

1

Sc
/00 þ f /0 � f 0 / � e2 f 0 ¼ 0 ð13Þ

where primes denote differentiation with respect to simi-

larity variable g, N ¼ j
lþj, 0�N\1ð Þ is the Coupling

number, Ri ¼ Gr
Re2 is the mixed convection parameter, Gr ¼

g� bT M1

m2 B4 is the thermal Grashof number, Re ¼ A
m B

is the

Reynolds number, Pr ¼ m
a is the Prandtl number, Sc ¼ m

D
is

the Schmidth number, J ¼ 1=ðjB2Þ is the micro-inertia

density, k ¼ c
jqm is the spin-gradient viscosity, L ¼ bc M1

bT N1
is

the buoyancy parameter, M ¼ r B2
0

lB2 is the magnetic field

parameter, e1 ¼ 1
M1

d
dx

T1ðxÞ½ � is the thermal stratification

parameter and e2 ¼ 1
N1

d
dx

C1ðxÞ½ � is the solutal stratification

parameter.

The boundary conditions (6) in terms of f ; g; h and /
become

g ¼ 0 : f ¼ 0; f 0 ¼ 0; g ¼ 0; h0 ¼ �1; /0 ¼ �1

as g!1 : f 0 ! 1; g! 0; h! 0; /! 0

�

ð14Þ

The wall shear stress and the wall couple stress are

sw ¼ ðlþ jÞ ou

oy
þ jx

� �
y¼0

and mw ¼ c
ox
oy

� �
y¼0

ð15Þ

The non-dimensional skin friction Cf ¼ 2sw
qA2 and wall cou-

ple stress Mw ¼ B
qA2 mw, where A is the characteristic

velocity, are given by

Cf ¼
2

1� N

� �
f 00ð0Þx; and Mw ¼ k

J g0ð0Þx ð16Þ

where x = B x.

4 Results and discussion

The nonlinear nonhomogeneous differential Eqs. (10) to

(13) are solved numerically using an implicit finite-differ-

ence method known as the Keller-box scheme [13]. This

method has four main steps. The first step is converting the

Eqs. (10–13) into a system of first-order equations. The

second step is replacing partial derivatives by central finite-

difference approximation. The third step is linearizing the

nonlinear algebraic equations by Newton’s method and

then casting as the matrix vector form. The last step is

solving linearized system of equations using the block-

tridiagonal-elimination technique. Here, the initial values

for velocity temperature and concentration are arbitrarily

chosen so that they satisfy the boundary conditions. The

independence of the results at least up to 4th decimal place

on the mesh density was examined. A convergence crite-

rion based on the relative difference between the current

and previous iterations was used. When this difference

reached 10�5, the solutions were assumed to have con-

verged and the iterative process was terminated. This

method has been proven to be adequate and give accurate

results for boundary layer equations. In the present study,

the boundary conditions for g at 1 are replaced by suffi-

ciently large value of g, where the velocity approaches to 1,

microrotation temperature and concentration profiles

approach to zero. After some trials, we have taken g1 ¼ 6.

To see the effects of step size (Dg ), we calculated

f 0ð0Þ, gð0Þ, hð0Þ and /ð0Þ for three different mesh sizes

Dg ¼ 0:001, Dg ¼ 0:01 and Dg ¼ 0:05 and the results

are presented in Table 1. From the Table 1 it is found that

there is a very good agreement between them on different
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profiles. To study the effects of the coupling number N,

magnetic field parameter M, thermal stratification param-

eter e1 and solutal stratification parameter e2 on the phys-

ical quantities of the flow, the remaining parameters are

fixed as L ¼ 1, k ¼ 1 and J ¼ 0:1. The values of micro-

polar parameters k and J are chosen so as to satisfy the

thermodynamic restrictions on the material parameters

given by [4].

In the absence of coupling number N, magnetic

parameter M , thermal stratification parameter e1, solutal

stratification parameter e2 and buoyancy number L with

Ri ¼ 1:0, k! 0, J ¼ 0 and Sc ¼ 0:24 the results have

been compared with the Ramachandran et al. [15] for

various values of Pr and found that they are in good

agreement, as shown in Table 2.

The variation of the non-dimensional velocity, micro-

rotation, temperature and concentration profiles with g for

different values of magnetic parameter M is illustrated in

Table 1 The Convergence Analysis of f 0ð0Þ, gð0Þ, hð0Þ and /ð0Þ for

different mesh sizes (Dg)

Dg f 00ð0Þ �g0ð0Þ hð0Þ /ð0Þ

0.001 1.461034032 2.575746828 1.245967091 1.896104369

0.01 1.461034029 2.575746726 1.245967093 1.896104364

0.05 1.461034026 2.575746721 1.245967087 1.896104359

Table 2 Comparison of results for a vertical plate in viscous fluids

without stratification case Ramachandran et al. [15] for Ri ¼ 1:0

Pr f 00ð0Þ 1=hð0Þ

[15] Present [15] Present

0.7 1.8339 1.833886666 0.7776 0.777614531

7.0 1.4037 1.403649652 1.6912 1.691206973

0 1 2 3 4 5 6
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Fig. 2 Effect of Magnetic parameter M on a velocity b microrotation c temperature and d concentration
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Fig. 2. It is observed from Fig. 2a that momentum

boundary layer thickness decreases i.e., velocity increase as

the magnetic parameter (M) increases. From Eq. 2 when

UðxÞ [ u (i.e., imposed pressure term dominates Lorentz

force imposed by a transverse magnetic field normal to the

flow direction), the effect of the magnetic interaction

parameter will increase the velocity. Similarly, when

UðxÞ\u,(when the Lorentz force dominates over the

imposed pressure force), the effect of the magnetic inter-

action parameter will decrease the velocity. From Fig. 2b,

it is observed that the microrotation component increases

near the plate and decreases far away from the plate for

increasing values of M. The reason is that the microrotation

field in this region is dominated by a small number of

particle spins that are generated by collisions with the

boundary. It is noticed from Fig. 2c and d that the tem-

perature and concentration decrease with increasing values

of magnetic parameter. The magnetic field gives rise to a

motive force to an electrically conducting fluid, this force

makes the fluid experience an acceleration by decreasing

the friction between its layers and thus decreases its tem-

perature and concentration.

Figure 3 depicts the variation of velocity, microrotation,

temperature and concentration with coupling number (N).

The coupling number N characterizes the coupling of linear

and rotational motion arising from the micromotion of the

fluid molecules. Hence, N signifies the coupling between the

Newtonian and rotational viscosities. As N ! 1, the effect of

microstructure becomes significant, whereas with a small

value of N the individuality of the substructure is much less

pronounced. As j! 0 i.e., N ! 0, the micropolarity is lost

and the fluid behaves as nonpolar fluid. Hence, N ! 0 cor-

responds to a viscous fluid. It is observed from Fig. 3a that the

velocity decreases with the increase of N. The maximum of

velocity decreases in amplitude and the location of the

maximum velocity moves farther away from the wall with an

0 1 2 3 4 5 6
0.000

0.216
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0.648
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1.080

ε
1
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2
 = 0.2

M = 1.0; R
i
 = 0.5; Pr = 0.7; Sc = 0.2

f'

ηηηη
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(c) (d)

Fig. 3 Effect of Coupling number N on a velocity b microrotation c temperature and d concentration
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increase of N. The velocity in case of micropolar fluid is less

than that in the viscous fluid case. It is seen from Fig. 2b that

the microrotation component decreases near the vertical

plate and increases far away from the plate with increasing

coupling number N. The microrotation tends to zero as N !
0 as is expected. It is noticed from Fig. 3c that the tempera-

ture increases with increasing values of coupling number. It

is clear from Fig. 3d that the non-dimensional concentration

increases with increasing values of N.

Figure 4 explains the effect of mixed convection

parameter Ri on the non-dimensional velocity, microrota-

tion, temperature and concentration profiles. Figure 4a

shows that the dimensionless velocity rises as Ri increases.

The higher value of Ri leads to the greater buoyancy effect

in mixed convection flow, hence it accelerates the flow. It

is seen from Fig. 4b, that within the boundary layer the

microrotation is completely negative. Also, it is clear that

the magnitude of the microrotation decreases with an

increase in mixed convection parameter Ri. From Fig. 4c it

is detected that the non-dimensional temperature of the

fluid flow is decreasing from pure forced convection case

(Ri ! 0) to the pure free convection case (Ri [ 1). It is

clear from Fig. 4d that the non-dimensional concentration

decreases as Ri increases. As velocity is increasing with

increase of Ri, as a consequence effect the concentration of

the fluid decreases.

The effect of thermal stratification parameter e1 on the

non-dimensional velocity, microrotation, temperature and

concentration is shown in Fig. 5. It is observed from Fig. 5a

that the velocity decreases with the increase of thermal

stratification e1. This is because thermal stratification

reduces the effective convective potential between the

heated plate and the ambient fluid in the medium. Hence,

the thermal stratification effect reduces the velocity in the

boundary layer. From Fig. 5b, it is noticed that the values of

microrotation change sign from negative to positive within

the boundary layer. Also, it is clear that the magnitude of the

microrotation increases with an increase in thermal
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stratification parameter. It is depicted from Fig. 5c that the

non-dimensional temperature of the fluid decreases with the

increase of thermal stratification parameter. When the

thermal stratification effect is taken into consideration, the

effective temperature difference between the plate and the

ambient fluid will decrease; therefore, the thermal boundary

layer is thickened and the temperature is reduced. Figure 5d

demonstrates that the concentration of the fluid increases

with the increase of thermal stratification parameter. It is

noticed that the effect of the stratification on temperature is

the formation of a region with a temperature deficit (i.e., a

negative dimensionless temperature). This is in tune with

the observation made in references ( Prandtl [17], Jaluria

and Himasekhar [18], Gebhart et al. [19], Murthy et al. [20],

Lakshmi Narayana and Murthy [21]).

The dimensionless velocity, microrotation, tempera-

ture and concentration for different values of solutal

stratification parameter e2 are depicted in Fig. 6. From Fig.

6a it is observed that the velocity of the fluid decreases with

the increase of solutal stratification parameter. From Fig.

6b it is depicted that the microrotation values change sign

from negative to positive at the critical point g ¼ 1:16

within the boundary layer. Also, it is clear that the mag-

nitude of the microrotation increases with an increase in

solutal stratification parameter. It is noticed from Fig. 6c

the temperature of the fluid increases with the increase of

solutal stratification parameter. It is clear from Fig. 6d that

the non-dimensional concentration of the fluid decreases

with the increase of thermal stratification parameter.

Table 3 shows the effects of the coupling number N,

Prandtl number Pr, Schmidt number Sc, the magnetic

parameter M, Mixed convection parameter Ri, thermal

stratification parameter e1 and solutal stratification param-

eter e2 on the dimensionless skin friction Cf and wall couple

stress Mw. It is seen from this table that the skin friction,

wall couple stress decrease with increasing coupling
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number N. For increasing values of N, the effect of

microstructure becomes significant, hence the wall couple

stress decreases. The skin friction coefficient decreases and

the wall couple stress increases with increasing Prandtl

number. The skin friction coefficient decreases and the wall

couple stress increases with Schmidt number. The effect of

magnetic parameter is to decrease the skin friction coeffi-

cient whereas increase the wall couple stress. From this

table we observe that the increasing values of mixed con-

vection parameter Ri increases the skin friction and

decreases the wall couple stress. It demonstrates that the

skin friction parameter, Nusselt number and Sherwood

number decrease and the wall couple stress increases as e1

increases. It is clear that the skin friction parameter, Nusselt

number and Sherwood number decrease and the wall couple

stress increases as e2 increases. Furthermore, the skin fric-

tion parameter is higher, and wall couple stress parameter is

lower for the unstratified fluid (i.e., e1 ¼ e2 ¼ 0) than for

the stratified fluid (i.e., e1 [ 0 and e2 6¼ 0).

5 Conclusions

In this paper, a boundary layer analysis for mixed con-

vection heat and mass transfer in an electrically con-

ducting micropolar fluid over a vertical plate in the

presence of a uniform magnetic field of magnitude

with thermal and solutal stratification effects is

considered;

• The fluid velocity decreases with increasing values of

coupling number, thermal stratification parameter and

solutal stratification parameters but increases with

magnetic and mixed convection parameters.

• The temperature enhances for increasing values of

coupling number and solutal stratification parameter

but reduces for magnetic parameter, mixed convection

and thermal stratification parameter.

• The concentration increases for increasing values of

coupling number and thermal stratification parameter
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but decreases for magnetic parameter, mixed convec-

tion and solutal stratification parameter.

• The skin friction coefficient as well as wall couple

stress in the micropolar fluid are lower compared to that

of the Newtonian fluid.

• The microrotation, skin friction increase and wall

couple stress decreases with increase in the magnetic

parameter.
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