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Abstract: In this paper, we have presented an exponentially fitted non symmetric numerical method for singularly
perturbed differential equations with layer behaviour. We have introduced a fitting factor in a non symmetric finite
difference scheme which takes care of the rapid changes occur that in the boundary layer. This fitting factor is
obtained from the theory of singular perturbations. The discrete invariant imbedding algorithm is used to solve the
tridiagonal system of the fitted method. This method controls the rapid changes that occur in the boundary layer
region and it gives good results in both cases i.e., h < € and € << h. The existence and uniqueness of the discrete
problem along with stability estimates are discussed. Also we have discussed the convergence of the method.
Maximum absolute errors in numerical results are presented to illustrate the proposed method for e << h.
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1 Introduction

During the last few years much progress has been
made in the theory and in the computer implemen-
tation of the numerical treatment of singular pertur-
bation problems. Typically, these problems arise very
frequently in fluid mechanics, fluid dynamics, elastic-
ity, aero dynamics, plasma dynamics, magneto hydro-
dynamics, rarefied gas dynamics, oceanography, and
other domains of the great world of fluid motion. A
few notable examples are boundary layer problems,
Wentzel, Kramers and Brillouin (WKB) problems, the
modelling of steady and unsteady viscous flow prob-
lems with large Reynolds numbers, convective heat
transport problems with large Peclet numbers, etc.
The numerical treatment of singular perturbation
problems has always been far from trivial, because of
the boundary layer behaviour of the solutions. How-
ever, the area of singular perturbations is a field of
increasing interest to applied mathematicians. Much
progress has been made recently in developing fi-
nite difference and finite element methods for solv-
ing singular perturbation problems. Several authors
Eckhaus [4], Natesan and Ramanujam [9], Valanarasu
and Ramanujam [13] have investigated solving singu-
lar perturbation problems by numerically construct-
ing asymptotic solutions. The general motivation is
to provide simpler efficient computational techniques
to solve singular perturbation problems. A wide verity
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of papers and books have been published in the recent
years, describing various methods for solving singu-
lar perturbation problems, among these, we mention
Bawa [1], Bellman [2], Bender [3], Hemker et.al. [5],
Kadalbajoo, Reddy [6], Kadalbajoo and Patidar [7],
Kevorkian and Cole [8], Nayfeh [10], O’Malley [11],
Ramos et.al. [12], Van Dyke [14] and Vigo-Aguiar,
Natesan [15].

The fitted technique is one such tool to reach these
goals in an optimum way. There are two possibili-
ties to obtain small truncation error inside the bound-
ary layer(s). The first is to choose a fine mesh there,
whereas the second one is to choose a difference for-
mula reflecting the behaviour of the solution(s) inside
the boundary layer(s). Present work deals with the
second approach.

In this paper, we have presented an exponentially
fitted non symmetric numerical method for singularly
perturbed differential equations with layer behaviour.
We have introduced a fitting factor in a non symmet-
ric finite difference scheme which takes care of the
rapid changes occur that in the boundary layer. This
fitting factor is obtained from the theory of singular
perturbations. The discrete invariant imbedding algo-
rithm is used to solve the tridiagonal system of the fit-
ted method. The existence and uniqueness of the dis-
crete problem along with stability estimates are dis-
cussed. Also we have discussed the convergence of

Issue 7, Volume 12, July 2013



WSEAS TRANSACTIONS on MATHEMATICS

the method. Maximum absolute errors in numerical
results are presented to illustrate the proposed method
fore << h.

2 Numerical Scheme

2.1 Left-end boundary layer problems

Consider a linearly singularly perturbed two point
boundary value problem of the form

ey (x) + @)y (z) + b(a)y(x) = f(x) @ € [0,1]
ey
with the boundary conditions
y(0)=a, y(1)=4 2)
wheree is a small positive parameter (0 < ¢ << 1)
and «, B are known constants.

We assume that a(x), b(x) and f(z) are suffi-
ciently continuously differentiable functions in [0, 1].
Further more, we assume that b(x) < 0, a(x) > M >
0 throughout the interval [0, 1], where M is some
positive constant. Under these assumptions, (1) has
a unique solution y(x) which in general, displays a
boundary layer of width O(¢) at « = 0 for small values
of e.

From the theory of singular perturbations it is
known that the solution of (1) - (2) is of the form
(O’Malley [11])

a - I(“(gh%)dx
y(z) = yo(2) +$<a—yo<o>>e {68

where yo(x) is the solution of

a(x)yo(x) + b(x)yo(x) = f(x),y(1) =6 4

By taking Taylor’s series expansion for a(x) and
b(x) about the point ‘0’ and restricting to their first
terms, (3) becomes,

_ (M kO,

y() = yo(2) + (o —yo(0))e V& @@/ + 0(8%

Q)

Now we divide the interval [0, 1] into N

equal parts with constant mesh length h. Let

0=z1, 2, ....xy=1 be the mesh points. Then we have
x; =th:4=0,1,2,...,N. From (5), we get

a(0)  b(0)

y(:) = yols) + (@ — yo(0))e~ (= ~a®)% 4 O(e)

e y(ih) = yo(ih)+(a—yo(0))e (= o)’
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Therefore,

_(a2(0)—£b(0))ip
lim y(ih) = yo(0) + (@ = yo(0))e 1
(6)

h

where p = 2.

From finite differences, we have

h2
Yio1—2Yi+yir1 = h? (ygl + 12%(4)) +O(h%) (7)

1" 1 1" 2. (4) h*
Yio1 — 2y Ty =0Ty + oY

(4)

i

Substituting h%y
(7), we get

from the above equation in

h2
Yio1 — 2yi + yir1 = B* (yg' + 1291(4)) +0(h®)

2

h
Yi1 — 2Yi + Yit1 = 1 (yi_1 + 10y +yiy1) 8

Now from the equation (1), we have

€Y1 = —ai+1y£+1* = biv1Yiv1 + fira ©)

ey = —aiy; — biyi + fi (10)

(1)

1 / *
€Yi1 = —ai1Yi—1 —bi1yi1+ fi1

where we approximate ¢, ;" and y;_, " using non
symmetric finite differences

«  Yi—1— 4y + 3yina

Yiy1 = o (12)
/ Yi+1 — Yi-1
A At 1
=31+ 4y — i
Yt = Yi—1 + 2Yi — Yi+1 (14)

2h
Substituting (12), (13) and (14) in (9), (10) and
(11) respectively, and simplifying, we get

- <yz‘—1 —2y; + yi+1>+ai—1

2 51k (=3yi—1 +4yi — Yiy1)

10a; ai+1
+ﬂf: (Yit1 — Yi—1) + 2247 (Yi—1 — 4yi + 3yiv1)
bi—1 100;  bit1 ~ (fica +10fi + fiv1)
+ 19 yz—1+ 12 yz+ 12 Yi+1 = 12
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Now introducing the fitting factor o(p)in the
above scheme, we have

a(p)e (ML#) + i (=3yim1 + 4yi — yiv1)

08 (Yir1 — vic1) + S5 (i1 — 4w + 3yi)

(fz 1+10f7,+fz+l)
12

5)
The fitting factor o(p) is to be determined in such
a way that the solution of difference scheme converges
uniformly to the solution of (1) - (2).
Multiplying (15) by h and taking the limit as h —
0, we get

+ 12 y’L ]__I_ 1](_]3 yl+ 12 y’L+1

() L_> (Yim1 — 2yi + yig1) +

2(4) th (—=3yi—1 +4y;i — yiy1) +

(16)
10a(0)
24 hgto

(yz’+1 - yzel)

a(O) Lt (yz 1 — 4yz + 3yz+1) 0

a2 (0)=<b(0)

Let B = a(0)

By using (6), we get

Lt (Yi—1 —2yi + Yiy1) =
h—0

(0= y0(0)) 7 (77 7% —2)

Lt (—3yi—1 +4y; — yiv1) =
h—0

(a0 — yo(0)) e~ Bir (—SeBp —eBr 4)

Lt (yi—1 — 4y + 3yiv1) =
h—0

(o= yo(0)) e~ (P 43752 — 4)

Lt (Yit1 — Yi-1) =

h—0

(a — y0(0)) e~ B (e_Bp — eBp)

By using the above equations in equation (16), we
get

O'(p) Bp _Bp\?2 CL(O) Bp —Bp

2 — 2 = — —_
0) (2 o) = 80 (oo o)
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Therefore,

o(p) = pa(20> ot ((a2<0> — &b(0)) p) an

2a(0)

which is a constant fitting factor. The tridiagonal
system of the equation (15) is given by

Eiyi1— Fyi+Giyiv1 = H;, 1=1,2,...,N—1
(18)
where
po_ 3ai—1  bi—1 10a; = a1
7 h? 24k 12 24h  24h
2e0 40,1‘_1 10[)2' 4ai+1
F=— — —
I p2 24h 12 T 24n
G - eo a1 | bip1 | 10a; | 3ai

h?  24h 12 24h 24h

1
H; = 12 (fi—1 +10f; + fit1)

where o(p) is given by (17). We solve this tridiagonal
system by the discrete invariant imbedding algorithm

[6].

2.2 Right-end boundary layer problems

Finally, we discuss our method for singularly per-
turbed two point boundary value problems with right-
end boundary layer of the underlying interval. We
consider the singular perturbation problem

y' (@) + a(@)y'(z) + b(x)y(z) = f(2),
with boundary conditions

y(0)=a, y(1)=p (20)

where ¢ is a small positive parameter (0< £ <<1) and
«, [ are known constants.

We assume that a(z), b(z) and f(z) are suffi-
ciently continuously differentiable functions in [0, 1].
Further more, we assume that a(x) < M < 0 through-
out the interval [0, 1], where M is some negative con-
stant. This assumption merely implies that the bound-
ary layer will be in the neighborhood of z=1.

From the theory of singular perturbations the so-
lution of (19)-(20) is of the form

z € [0,1]
(19)

(2 _bady g,
V() = nla) + 236 - ol el 47

2D
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where yo(z) is the solution of the reduced problem

a(x)yp(x) + b(x)yo(x) = f(2),y0(0) = (22)

By taking the Taylor’s series expansion for a(z)
and b(z) about the point ‘1’ and restricting to their
first terms, (21) becomes,

y(@) = yo(@)+ (B (1)) (T )1 +0(e)
(23)
Now we divide the interval [0, 1] into N equal
parts with constant mesh length h. Let 0 = zq, x1,.. .,
zy =1 be the mesh points. Then we have x; = ih,
i =0,1,...,N.
From (23), we get

y(ih) = yo(ih)+(B—yo(1)) (*F-21) A=) 1O(e).

Therefore,

lim (ih) = yo(0) +(5-yo(1)) o(*H5"2) (=)

(24)

where p = g

A a?(1)—eb(1)
Let B = —am

By using (24), we get

th (Yim1 — 2 + Yig1) =

—0
(8 = yo(1)) ePLe0) (eBr 4 o= —2)
hIi>t0 (_33/1'71 + 4y; — yi+1) —
(8= yo(1)) P —0) (—3eBP e Br g 4)
hgo (Yi—1 — 4y; + 3yit1) =
(o = yo(0)) P9 (ePe 4 3750 —4)
hljo (Yit1 — Yi—1) =

(o = yo(0)) P70 (e=Br — cBr)

By using the above equations in equation (16), we
get

Ui)p) <eézp - 6_?)2 _ () (eBp - e‘ép)
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Therefore, we get the fitting factor as

o p@ coth ((GQ(l) —eb(1)) p) (25)

2a(1)

which is a constant fitting factor. Here, we have the
same tridiagonal system of the (18), where ¢ is given
by (25). We solve this tridiagonal system by the dis-
crete invariant imbedding algorithm.

3 Stability and Convergence
Analysis

Theorem 1 Under the assumptionse > 0, a(z) >

M > 0 and b(x) < 0Nz € [0, 1], the solution to

the system of the difference equations (18), together

with the given boundary conditions exists, is unique
and satisfies

19l 00 < 2MH1Hlj 00 + ( lo] + 18] )

where |||}, o is the discrete lc — norm, given by

T = Imnax ZTi|g-
ol = mox | { foil

Proof: Let Ly(.) denote the difference operator on
left hand side of (10) and w; be any mesh function
satisfying Ly (w;) = f;. By rearranging the differ-
ence scheme (18) and using non-negativity of the co-
efficients F;, F; and GG;, we obtain

F; Jwi| < |Hi|+ E; |wi—1| + Gi |wit1]

(lwita| = 2 |wi] + Jwi-])
12

g &

LG (— (wit1] + 4 [wi] — 3|wz‘—1!>
12 2h

bi—1
12

10b; b;
[wi-a] + =5 lwil + % |wit|

+

10a; (Jwiy1| — |wi—1])
12 2h

a (3 (wit1| — 4 wi| + |wi-1|
12 2h

>+\Hz| >0

Now using the assumption € > 0 and a; > M,
the definition of /,,-norm and manipulating the above
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inequality, we get

ge

(witr|=2Jwil+|w;i—1]) 4+ M =|wit1|+4[wi]|=3wi—1]
2 12 oh

by : by
+ 221w g | + 200 ;| 4 2L a4 |

+10M(\wi+1|—\’wi—1|) + M ([ 3lwit1|—4|wi|+|wi_1]
12 2h 12 2h

+|H;| >0
(26)
To prove the uniqueness and existence, let

{u;}, {v;} be two sets of solution of the difference
equation (26) satisfying boundary conditions.

Then w; = u; — v; satisfies Ly (w;) = H; where
Hi =0 andwO:wN:O.

Summing (26) over:=1,2, ..., N-1, we get

Bluy_y| | 1 N
+llallhe “5in + 13 21 bi—1 |wi—1]
1=

105 1 LSS | 101
1o ‘Zl i [wi| + 12 Zl i1 [Wig1] 24h, |wi]
1= 1=

— L o] — 3wy | — 2wy

N—1
+ > |Hil >0
=1

27

Since, ¢ > 0, ||al|h00 > 0,b; < 0 and |w;| >
0,vi, i =1,2,..., N — 1, therefore for inequality (27)
to hold, we must have

w; =0 Vi, 1=1,2,.....N — 1.

This implies the uniqueness of the solution of the
tridiagonal system of difference equations (18). For
linear equations, the existence is implied by unique-
ness.

Now to establish the estimate, let w; = y; — I;,
where y; satisfies difference equations (18), the
boundary conditions and I; = (1 —ih)a + (ih) S,
then wg =wy =0,and w;, : =1,2,...N — 1.

Now let [wy| = [Jwll}, o = wil, i =0,1,...,; N.

Then summing (26) from ¢ = n to N—1 and us-
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ing the assumption on a(z), which gives

_JE(\wn|—h|;vn71\) _ UE‘w],fL'{ﬂ—i-

N—1

M [ —|wn_1|+4|wn|=3|wn_1 1

*12< e = I) + 15 2 bic1wia |+
=n

1o V=t | N=1
5 2 bilwil| + 15 X it |wit]+
=n 1=n

10M [ |wn—1|—|wn|—|wn_1]
12 2h

N—-1
— _1|=-3|lwn|—|wyn —
_'_%( |lwy_1] 2|;LU |—|w 1\) + l; |H;| >0

(28)
Inequality (28), together with the condition on
b(x) implies that

M N-1 N
o lwnl <h Y CIH <Y [hil < (1H]j o
i=n =0

i.e., we have

wn| < 2M 7 | Hl|p o (29)
Also, we have y; = w; + [;
0o = jmax { luil }
< [wllp,eo + 125,00 (30)
< wn| + 100 -

Now to complete the estimate, we have to find out
the bound on /;

max { |l;] }

100 =y max,

< max { |(1—ih)| |a|+|ik| |8}

T 0<i<N

< max { (1=ih) |o| +(ih) |B]},

i.e., we have

1] (€3]

hoo < la| + 8]
From Egs. (30) — (31), we get the estimate

9lln00 < 2M ™ Hllp o0 + (o] + 18]) -
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This theorem implies that the solution to the sys-
tem of the difference equations (18) are uniformly
bounded, independent of mesh size & and the pertur-
bation parameters. Thus the scheme is stable for all
step sizes.

Corollary 2 Under the conditions for theorem 1,
the error e; = y(x;) — y; between the solution
y(z) of the continues problem and the solution y; of

the discretized problem, with boundary conditions,
satisfies the estimate

HeHh,oo < 2M71 HTHh,oo ) where

oh?e?
(4)
Ii,1§x§$i+1 { 12 |y (CC)‘}

|7l < max
10ah?
(3)
+xi1§?§xi+1{ 72 v (x)|}

Proof: Truncation error 7; in the difference scheme
is given by

+1 — Yi T Yi-1
7'1':0'5{(%Jr g; s >—Z/z/‘,}

a1 (—3%—1 +4yi —yir1 )

12 2h Yi-1
10a; (yi+1 —Yi-1 ()
12 2h Yi
aiv1 (Yi-1 — i + 3y )
ST ( 2h Yit1

oh?e?
12

y ()|}

|7i] <  max {
Ti—1<T<Ti41

— max
T 1<T<Ti41

{52 @}

2
+  max {—107“2h
zi—1<r<Ti1

yPw)|}

+  max {% ‘y@) (z) ’}

z;—1<r<Ti41

oh2e?
i<, max  {—5— WY@l
(32)
10ah?

10anh” ' (3
'*x%4§§?éﬂ4{ = 1y ()]}

One can easily show that the error e;satisfies
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Ly (e(x;)) = Lp (y(2:)) — Ln (y:) = 73,
1=1,2,...., N—1land ey = ey = 0.
Then Theorem 1 implies that
lellco < 2M 17l 00 (33)

The estimate (33) establishes the convergence of
the difference scheme for the fixed values of the pa-
rameter €.

Theorem 3 Under the assumptions ¢ > 0, a(x) <
M < 0andb(x) <0, Vx € [0, 1], the solution to the
system of the difference equations (18), together with
the given boundary conditions exists, is unique and
satisfies

9llp00 < 2M ™ Hllp o0 + (] +18]) -

The proof of estimate can be done on similar lines
as we did in theorem 1.

4 Numerical Examples

To demonstrate the applicability of the method we
have applied it to three linear singular perturbation
problems with left-end boundary layer, two linear sin-
gular perturbation problems with right-end boundary
layer and two nonlinear singular perturbation prob-
lems. These examples have been chosen because they
have been widely discussed in literature and because
approximate solutions are available for comparison.
The numerical solutions are compared with the exact
solutions and maximum absolute errors with and with-
out fitting factor are presented to support the given
method.

Example 4 Consider the following homogeneous sin-
gular perturbation problem from Bender and Orszag
[3]

ey’(z) +y'(z) —y(z) =0; = €[0,1]
with y(0) = 1 and y(1) = 1.

Clearly this problem has a boundary layer at z =
0. i.e. at the left end of the underlying interval.
The exact solution is given by

[(€m2 _ 1)6777,133 + (1 _ eml)emgm}
e — o]

y(z) =

mi = (—1+ V1+4e)/(2)
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and
mg = (—1 — 1+ 4e)/(2¢)

The maximum absolute errors are presented in ta-
ble 1 for different values of € with and without fitting
factor.

Example S Now consider the following non-
homogeneous singular perturbation problem from
fluid dynamics for fluid of small viscosity

ey’(z) + 9 (z) =1+22; x€][0,1]
with y(0) = 0 and y(1) = 1.
The exact solution is given by
(2e = 1) (1 e72/2)
(=17

y(z) =x(x+1—2e)+

The maximum absolute errors are presented in ta-
ble 2 for different values of € with and without fitting
factor.

Example 6 Finally we consider the following vari-
able coefficient singular perturbation problem from
Kevorkian and Cole [8]

T 1

ey (@) + (1= 50/ () - 5u(x) = 0;

with y(0) = 0 and y(1) = 1.

z € [0,1]

We have chosen to use uniformly valid approx-
imation (which is obtained by the method given by
Nayfeh [10] as our ‘exact’ solution

1 1 @a?/aye
2—x 2

y(r) =

The maximum absolute errors are presented in table 3
for different values of € with and without fitting factor.

Example 7 Consider the following singular pertur-
bation problem

ey’ () —y'(x) = 0;
with y(0) = 1 and y(1) = 0.

x € [0,1]

Clearly, this problem has a boundary layer at z=1.
i.e., at the right end of the underlying interval.
The exact solution is given by

co=1/e _q
y(fE) = <(6_1/5 — 1))

The maximum absolute errors are presented in table 4
for different values of € with and without fitting factor.
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Example 8 Now we consider the following singular
perturbation problem

ey (@) =y (@) — L+ e)y(@) = 0; x€[0,1]
with y(0) = 1+exp(-(1+e)/e); and y(1) =1+1/e.
The exact solution is given by
y(x) = e1+E=D/z 4 v

The maximum absolute errors are presented in table 5
for different values of € with and without fitting factor.

Example 9 Now consider the following non singular
perturbation problem from Kevorkian and Cole [[§],
page 56, equation 2.5.1]
ey (@) + y(@)y (2) — y(z) = 0 € [0, 1]
with y(0)= -1 and y(1)=3.9995
The linear problem concerned to this example is
ey’ (z) + (x +2.9995)y (x) = x + 2.9995

We have chosen to use the Kivorkian and Cole’s
uniformly valid approximation [[8], pages 57 and 58;
equations (2.5.5), (2.5.11) and (2.5.14)] for compari-

son,
y(x) = x + ¢y tanh <(621> (z + cz>>

where ¢1 =2.9995 and co = (1/¢1)loge[(c1-1)/(c1+1)]
For this example also we have a boundary layer
of width O(e) at z = 0.
The maximum absolute errors are presented in ta-
ble 6 for different values of ¢ with and without fitting
factor.

Example 10 Finally we consider the following non
singular perturbation problem from O’ Malley [[11],
page 9; equation (1.10) case 2]:

ey’ (z) —y(a)y'(z) = 052 € [~1,1]
with y(-1) = 0 and y(1) = -1.
The linear problem concerned to this example is
ey (2) + 9/ (2) = 0

We have chosen to use O’ Malley’s approximate so-
lution [[11], pages 9 and 10; equations 1.13 and 1.14]
for comparison,

(1 _ 6—(m+1)/€)
y(a) = - (1+ e @+D/e)

For this example, we have a boundary layer of width
O(e) at x =-1.

The maximum absolute errors are presented in ta-
ble 7 for different values of ¢ with and without fitting
factor.
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5 Discussions and Conclusions

We have described an exponentially fitted non sym-
metric second order numerical method for singularly
perturbed problems. We have introduced a fitting fac-
tor in a non symmetric second order finite difference
scheme which takes care of the rapid changes occur
that in the boundary layer. This fitting factor is ob-
tained from the theory of singular perturbations.

The discrete invariant imbedding algorithm is
used to solve the tridiagonal system of the fitted
method. The existence and uniqueness of the discrete
problem along with stability estimates are discussed.
We have presented maximum absolute errors for the
standard examples chosen from the literature and also
presented maximum absolute errors for the some of
the examples with and without fitting factor to show
the efficiency of the method when ¢ << h.

The computational rate of convergence is also ob-
tained by using the double mesh principle defined be-
low.

Let

/2

Zh:ma’x‘y_?_y;l szoa]-a"'aN_]-a
J

where y? is the computed solution on the mesh
{z; }év at the nodal point z; where
rj=xj1+h,j=12,.., N

/2

and y;-l is the computed solution at the nodal point

xjon the mesh{ wj}gN where

zj=xj_1+h/2forj=1(1)2N

In the same way we can define Zj, /5 by replacing

h'by h/2 and N by 2N
i.e.,
Znjy = max |y? — gt j= 0,1, 2N — 1.
J

The computed order of convergence is defined as

log Zj, —log Zj, /2
log(2)

We have taken h = 273 for finding the computed
order of convergence and results are shown in Table 8.

Order =
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Table 1: The maximum absolute errors in solution of
example 4

e=10""°
with f.f  without f.f

h e=10"3
with f.f  without f.f

1/8 2.02e-002 7.82e-001 2.05e-002 8.82e-001
1716 1.06e-002 6.58e-001 1.09e-002 8.99e-001
1732 5.26e-003 5.48e-001 5.63e-003 8.99e-001
1/64 2.48e-003 4.83e-001 2.84e-003 8.65e-001

1/128 1.06e-003 3.72e-001 1.42e-003 7.62e-001

f.f.=fitting factor

Table 2: The maximum absolute errors in solution of
example 5

h e=10"3 e=107"°
with f.f  without f.f with f.f  without f.f
1/8 1.07e-001 1541  1.09e-001  1.56(+3)
1/16 5.67e-002 4.043  5.85e-002  390.49
1/32 2.83e-002 1.8208  3.02e-002  97.60
1/64 1.34e-002 1.5446  1.53e-002  24.434
1/128 6.17e-003 1.1839 7.73e-003  6.2991

Table 3: The maximum absolute errors in solution of
example 6

h e=1073 e=10"°
with ff  without f.f with f.f  without f.f
1/8 4.48e-002 1.0511 4.48e-002 1.8761
1/16 2.44e-002 6.01e-001 2.44e-002 1.8884
1732 1.28e-002 4.39e-001 1.28e-002 1.7658
1/64 6.62e-003 3.84e-001 6.62e-003 1.3177

17128 3.77e-003 2.94e-001 3.36e-003 0.7490
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Table 4: The maximum absolute errors in solution of
example 7

h e=10"3 e=10"°
with f.f  without f.f with f.f  without f.f
/8 0 7.71e+000 0 7.81e+002
1/16 0 2.02e+000 0 1.95e+002
1/32 1.11e-016 9.11e-001 0 4.88e+001
1/64 1.11e-016 7.73e-001 0  1.22e+0
1/128 2.78e-014 5.92e-001 0  3.14e+000

Table 5: The maximum absolute errors in solution of
example 8

e=10""
with f.f  without f.f

h e=10"3
with f.f  without f.f

1/8 2.02e-002 1.23e+000 2.06e-002 1.39e+000

1/16 1.06e-002 1.04e+000 1.10e-002 1.42e+000

1732 5.27e-003 8.67e-001 5.63e-003 1.42e+000

1/64 2.48e-003 7.61e-001 2.84e-003 1.36e+000

17128 1.06e-003 5.89e-001 1.42e-003 1.20e+000

Table 6: The maximum absolute errors in solution of
example 9

h e=10"3 e=10"°
with ff  without f.f with f.f  without f.f
1/8 5.30e-002 29.69 5.30e-002  41.39
1/16 2.71e-002 16.41 2.71e-002  40.89
1732 1.37e-002 6.46 1.37e-002  39.26
1/64 6.90e-003 3.71 6.90e-003  33.55
1/128 3.50e-003 3.36 3.50e-003  21.23
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Table 7: The maximum absolute errors in solution of
example 10

h e=10"3 e=107"
with f.f  without f.f with f.f  without f.f

178 0 3.91 0 390.56

1/16 0 1.22 0 97.162

1/32 2.67e-014 8.80e-001 0 24.41

1/64 1.63e-007 7.73e-001 0 6.14

17128 4.04e-004 5.93e-001 0 1.73

Table 8. Numerical order of convergence for exam-
ples 4- 10.

h h/2 Zy, Order of conv.

Example 1 6.49E-02

1.06E-02 2.6123

Example 2 1.62e-02

5.42e-003 1.5803

Example 3 1.05e-001

1.85e-002 2.5137

Example 4 1.11e-001

1.84e-002 2.5873

Example 5 1.04e-001

1.70e-002 2.6115

Example 6 4.55e-001

8.00e-002 2.5077

Example 7 1.11e-001

1.85e-002 2.5873
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