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The paper presents a generalized mathematical model describing the unsteady peri-
staltic flow of a viscous fluid in a two-dimensional curved channel. The flow is
investigated in a laboratory frame of reference and the unsteady flow nature is stud-
ied by the condition that prescribing volumetric flow rate is equivalent to prescrib-
ing normal velocity of the fluid particles at the wall. The momentum and energy
equations have been linearized by employing lubrication theory and the analysis
is restricted to negligible flow Reynolds number. The expressions for stream func-
tion, pressure distribution, shear stress, temperature, and coefficient of heat transfer
have been derived. The obtained expressions are utilized to discuss the influences
of various emerging parameters on flow phenomenon. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4821355]

. INTRODUCTION

Peristalsis is a mechanism of fluid transport induced by a progressive wave of contraction or
expansion propagating along the length of a flexible tube. It appears in the gastrointestinal tract, urine
transport from kidney to bladder, bile from the gall bladder into the duodenum, the movement of
spermatozoa in the ducts efferentes of the male reproductive tract, transport of lymph in the lymphatic
vessels, and in the vasomotion of small blood vessels such as arterioles, venules, and capillaries.
This process has quite useful applications in many biological systems and industry where it is found
necessary to avoid contact between the pumped medium and the mechanical parts of the pump, for
example, the blood pump in heart-lung machine and pumping of noxious fluid in nuclear industry.

The mathematical modeling of peristaltic transport has begun with the important works by Fung
and Yih! using laboratory frame of reference and Shapiro et al.? using wave frame of reference.
Many of the contributors to the area of peristaltic pumping have either followed Shapiro et al.”> or
Fung and Yih.! In the last two decades many investigations on peristaltic flow have been carried
out by different authors for analytic and numerical studies.'~'° Li and Brasseur’ derived expressions
of the non-steady pressure distribution and local wall shear stress for the axisymmetric case of a
finite length tube. Dodds et al.!! and Pal and Brasseur!'? investigated local longitudinal shortening
of esophageal wall and its mechanical advantage on peristaltic transport. All these studies have been
carried out in straight channel or tubes. In fact, the shape of most physiological ducts is curved in
nature. The corresponding study of the peristaltic flow in curved channel was carried out by Sato
et al."> Ali et al.'* discussed the peristaltic motion in a curved channel using wave frame. Later,
Ali et al."> extended the flow analysis by considering heat transfer effects. Non-Newtonian fluid
flow induced by peristaltic waves in a curved channel has been investigated by Ali et al.' Hayat
et al.'” have examined the peristaltic flow of viscous fluid in a curved channel with complaint walls.
Hayat et al.'® have extended to investigate the effect of an induced magnetic field on the peristaltic
flow of non-Newtonian fluid in a curved channel. Hina et al.'®?' have examined wall properties of
curved channels driven by peristalsis for different types of fluids. All these studies in curved channels
of peristaltic transport of Newtonian and/or non-Newtonian fluids have analyzed the problem by
neglecting the local dynamics such as spatial-temporal variations in the local pressure and stress.
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Many problems related to physiological flows are solved by employing lubrication theory. This
theory can be usefully applied when the gap between cell and vessel wall is small compared to the
vessel radius and axial length. Some examples are the flows of synovial fluid within joints in the
musculoskeletal system, physiological filtration of blood in the kidneys, fluid flows in ureter, and
fallopian tubes.?? The objective of this paper is to analyze the time dependent peristaltic transport in
a finite length curved channel. In order to study the time-dependent fluid pattern, lubrication theory
has been employed. Hence, the analysis in the present model is carried out, assuming zero Reynolds
number and that the ratio of the channel radius to the wavelength of the peristaltic wave is invariably
small. Further, the unsteady effects are observed under the condition that prescribing flow rate is
equivalent to prescribing normal velocity of the fluid at the wall. The expressions for the stream
function, temperature, pressure distribution, shear stress, and heat transfer coefficient are calculated.
The influences of various emerging parameters on peristalsis over time are discussed by plotting
graphs.

Il. MATHEMATICAL MODEL
A. Governing equations

We consider a two-dimensional flow of an incompressible viscous fluid in a curved channel
of unperturbed width 2a. The channel is coiled in a circle with center O and radius R. We choose
a curvilinear coordinate system (x, r) in such a way that the x-axis lies along the centerline of the
curved channel and the r-axis is normal to it and is measured from central line with scaling factors
hy = %, hy = 1, and h3 = 1. There is no component in the z direction as shown in Figure 1. The
fluid flow in the curved channel gives velocity vector in the form V = u(x, r, t)ex + v(x, r, t)e,.
The fluid motion within the channel is induced by two infinite trains of sinusoidal waves that are
propagated along the flexible channel walls described as

r=h(x,t)=a+ bcos[2n(§ - %)] (Upper wall), (1)
r=—h(x,t) = —a — bcos [27'[(;% — %)] (Lower wall). 2

In the above equations, a is the radius of the stationary curved channel, b is the wave amplitude,
A is the wavelength, ¢ is the time, T* is the wave period, and % is the radial displacement of the
wave from the centerline. The temperatures of the lower and upper walls are maintained at constant
temperatures Ty and T, respectively.

FIG. 1. Peristaltic wave in a curved channel.
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The conservation equations (mass and momentum) for the curved channel in the absence of
body force can be written as (Sato et al.'?)

ou 0
R—+ —{(r + Rv} =0, (3)
dx  or
Ty R__op [v2 “ | 2R av] )
— -V)u = - — +v|Vu-— —,
ot r+ R o(r +R) dx r+R? (4 R)?0x
v — u’ 1 ap v 2R du
ORI L S | B N
o TV e = Y Y T TR T iR ©)

g+ @)= TPl (g ) |

+<8u+ R 8_1)_ u )2] ©)

ar r+Rox r+R
where
V.ovy= e 2,0 @)
(r + R) 0x or
sz( R )28_2+Li+3_2 8)
r+R/ ax2 r+ R or?

Here, p, v, p, t, Cp, K, and T are the pressure, kinematic viscosity, fluid density, time, specific heat,
thermal conductivity, and temperature, respectively.
The fluid velocity satisfies the following conditions at the wall (r = +h(x, 1)):

1. The tangential fluid velocity is zero at the wall:
V. Ty =0. )
2. The normal velocity of fluid at the wall is given by
V- Ny = Vy, (10)
where TW and N w are the unit tangent and normal vectors at the wall, respectively,

-~ oh—~
o~ ey + =—-e,

Ty = —2 L (11)
J1+E?

and

dh~ ~
_gex + e,

‘/1+(%)2'

The definition of the stream function ¥, which satisfies continuity equation, can be written as

IV R 3y

ar’  r+Rox’

Ny = (12)

13)

B. Lubrication theory

The governing equations can be linearized by employing lubrication approximation. In the
present model there are three characteristic lengths a, b, and A. It is assumed that the wavelength is
large compared with the channel’s width A > a. In addition, we do not restrict the magnitude of the
wave amplitude b, except that it cannot exceed the channel radius that is b < a, which yields that
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the local slope of the channel wall is small. Under these assumptions, the model then has certain
similarities in scaling to the lubrication theory analysis.?? In order to describe the fluid flow pattern
in dimensionless form, the variables are scaled as follows:

h b R t L
xlzivr/zzvu/zzvvlzlshlz_7¢:_9K=_7l/=_7L/=_7
A a c éc a a a T* A
(14)
2 2

cad vC c T — T,

p=bP e YV p o p P g =0

JACA v ac ac K C,(Th —To) T, — Ty

in which Re is the Reynolds number, F is the volume flow rate, ¢ = Ti is the velocity of the wave,
S = % is the wave number, ¢ is the amplitude ratio or the occlusion parameter, « is the curvature
parameter, L is the length of the channel, P, is the Prandtl number, and E is the Eckert number. The
non-dimensional form of Egs. (3)—(6) with the help of Eq. (14) after dropping the primes takes the

form

Kk du dJv v
ou , 9v ~0. 15
r+/<8x+8r+r+/c (15)
R 5[a”+(V Vot | LB U p 2 g
es| — -Vu = - - u— —,
ot r+« (r + k) 0x (r +«)? (r +«)? 0x
v — 2 ap v 2 du
R 5[52 o wvovp) - ]:—— 52[v2 - - —], 17
¢ <8t+( )U) r+« 8r+ v r+r)2 (r+«)?ox a7

P.R 3[89 +V V)H] V20 + B [232{(30)2+( € du v )2}
r ke —_— . e r J— _
ot ar r+xdx r4+«

ou Kk dv u 2
M s & ] 18
+(8r+ r+ Kk 0x r—I—K) (18)

where
— ku 0 0
V.V)= — —, 19
( ) (r+/<)8x+v8r (19
2 92 1 0 92
V2 = §? X —_—t —— 4+ —, 20
(r+/<) 3x2+r+/<8r+8r2 (20)

where Br = PrE is the Brinkman number. In view of Egs. (9) and (10), the boundary conditions can
be represented as

oh
u+8—v=0, at r = +h, 1)
0x
ah L 0hN\2] 5
v—au—VWHI—i-S (ﬁ) ] ] at r = +h, 22)
6 =0, atr = —h(x,1t), 23)

and

0 =1, at r = h(x, t). (24)
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C. Rate of volume flux and boundary conditions

The dimensional volume flow rate in laboratory frame is defined as
h

O(x,t) = /u(x, r, t)dr. 25)
—h

The flow rate (25) in wave frame is defined as
Ox,t) =q(x)+ 2ch(x, 1), (26)

and the time averaged flow rate over a period 7, yielding

T
Or(x) = % / O(x,t)dt = q(x) + 2ac. 27)
0

It may be noted that for incompressible flow, prescribing volume flow rate is equivalent to prescribing
normal velocity (Vi) of the fluid at the wall. This is related via mass conservation equation (3),

—(x, 1)+ %(x,t) =0, (28)
ox ot
where A(x, £) is the cross sectional area. Integrating (28) with respect to x, we get
T 9A
Ox,1)=0Q(0,1) —/0 W(x, t)dx, 29)

where Q(0, 1) is the flow rate at x = 0. However, due to equation of continuity (3), Qr(x) = QOr,
for every x. Then the non-dimensional form of volumetric flux can be obtained by substituting g(x)
from (27) into (26) and scaled with ac as

Fx,1) = 0r +2(h(x, 1) — 1). (30)
The stream function v in Eq. (13) in dimensionless form can be defined as
] ]
L G1)
or r+kKk 0x
h
oy
Feon = [ Sldr =y - v (32)
—h

By the choice of ¥ (h) = g and Y (—h) = —g, Egs. (16)—(18) can be written under the assumptions
of lubrication theory and low Reynolds number flow approximation as

Vi =0, (33)
3%6 n 1 06 B (au u )2 0 (34)
27 Y =0,
or:  r+«or or r+«k
where
1 0 d
V2 = —{ —].
r+kor (r+K)8r
The dimensionless boundary conditions can be obtained by using Egs. (21)—(24), and (29) as follows:
Y
— =0, atr = +h(x,1), 35)
ar
1 [ oh
Vo= E[F(O’ H—2 ﬁ(s, t)ds], atr = h(x, 1), (36)

0
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X

" l[F(O 1 2/ oh t)d] t h(x. 1) (37)
=—= - —(s,t)ds |, atr = —h(x,1),
2 ’ o’
0
0 =0, atr =—h(x,t)and 6 = 1, atr = h(x, 1), (38)

where F(0, 7) is the volume flow rate at channel inlet.

lll. SOLUTION OF THE PROBLEM
The solutions of Egs. (33) and (34) with the boundary conditions Egs. (35)—(38) are in the form

¥ = Ci(x, 1) + Calx, Dlog(r + i) + C3(x, N + k) + Ca(x, D)(r + 1)*log(r + k),
F 2 + 1) + {Gog =8 + (oge — ) — Uoge + )| (h? — k)]

Ci(x,1) = :
1= 2[—4h2e + (h? — k2P (log 1)2]
o 1) F(h* — Icz)zlogﬂ (39)
xX,1) = —
2 4R + (B2 — Z)Z(IOth 2’
Ca. 1) F[—2hk 4 (h — k)*log(k — h) — (h + «)*log(h + )]
x? = :
’ 2[—4h22 + (12 — K2 (log Sy
Calx. 1) 2Fhk
X, = 5
4 —4h%k? + (h? — /(2)2(10g%)2
and

0 = Ay(x, 1)+ Ax(x, Dlog(r + k) — Br [C;(r + k)* 4+ C3(r + k) > — 4C2C4(log(r + «))*] .,

1 log(k —h) log(k +h)
A, 1) = = 2 [Brici I ) Gl + Y toglc ) = (e = Wlogle + )
—4C,C,y ((log(l{ T ) log(kc — h) — (log(k — h))log(x + h))} + log(k — h)], (40)
1 C3hx ) ) 5
Ay(x, 1) = ot [1 — 4Br [m C2hi + C2C4((log(K 1) — (log(ic — h)) )} .

Moreover, the expression of the axial pressure gradient can be obtained from Egs. (16), (31),
and (39) as

H(t)+ 16 [ 22D g
0

dap
3 = (41)
X (h2(x,)—K?)? K—h(x,1)
4ic*h(x, 1) — h(jc,t) (l (K+h(x ;)))
where H(t) = —8F(0, f). Integrating Eq. (41) between O and x yields the intraluminal pressure
distribution function in the form
] H(t) + 16[(‘”1(” 2)du
AP = p(x,1) = p(0,1) = sds. (42)

2 (h2(s,1)—«?2)? Kk—h(s,t)
o 4Kk*h(s,t) — oD (log(Hh(m)))
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The integrating constant function H(¢) is determined by evaluating (42) at x = L and is given by

L 16} M0 g
APt — [ 0 dx
0 actncen- 2522 1 (15 |
Hiy= —— 43)
i 1 ~dx
0

2 (h2(x,0—k2)2 k=h(x,0)
de2h(x, 1) = "0 log\ ‘Fhen

Here, AP.(t) = p(L, t) — p(0, ?) is the pressure difference across the channel ends.
From Eq. (27), the axial pressure gradient in terms of time-averaged flow can be presented in
the form

Ipx, ) —8(Qr(x) +2(h — 1)) 44)
P [aeh = S5 (1og )]
The local wall shear stress derived at the upper and lower walls is, respectively,
) ap(x, 1) 2ch(x, t) + (h(x, t) — K)Zlog(ilzgjg) 45)
T er (X, =
urp ox 4h(x, 1)
and
IR e 2h(x, 1)+ (hx, 1) + e Plog () o
ower (X, =
Low ax 4h(x, 1)
The heat transfer coefficient at the upper and lower walls is denoted by
oh 06
Z=— — . (47)
ax  Or lr=xh
The heat transfer coefficient at the upper wall is
oh [ A, _ log(h + )
Zypper = o [h e Br {2c§(h + k) = 2c35(h +Kk) 7 — 86‘2C4W . (48)
The heat transfer coefficient at the lower wall is
oh A _ log(—h + k)
ZLower = a |:—h j—l( — Br {26&(—}1 + K) - ch(_h + K) 3= 862C4T+K}i| . (49)

IV. NUMERICAL RESULTS AND DISCUSSION
A. Local pressure distribution

The investigation of time dependent pressure distribution of the peristaltic flow along the axial
distance of integral and non-integral multiple of wavelength is conducted for time instants ¢ from O
to 1. The following discussion pertains to the case of free pumping only (AP (f) = 0). In such a case,
the flow is due only to the traveling peristaltic waves when the pressures imposed at the two ends
of the channel are equal. We consider two wave trains propagating along the walls of the channel.
When the fluid enters the channel through its inlet, a bolus is created which moves with the wave.
This is possible only when the local pressure gradient is negative. In the case of integral number
of train wave propagation (say L = 2), Figure 2 is plotted between the pressure difference AP and
the axial distance x at different time points for various curvature parameters (x = 1.5, 2, 5, 00). It
is observed that the pressure is at its maximal peak near the tail of the bolus, and monotonically
decreases to zero at the middle point of the bolus, and further it declines to a trough from where it
finally rises sharply to meet the leading end of the bolus so as to transport it under huge control.
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Ay Ay
< 0.0 < -0.2
-0.14 -0.3 4
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- 044 -
0.1
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8 00 g 024
0.1
0.1
1 00
-0.24 \/
T T T 0.1 T T T
0.0 05 1.0 15 2.0 0.0 0.5 1.0 1.5 20
X X
(c) (d)
FIG. 2. Pressure distributions along the curved channel length at five time instants for different x values when APy, =0, L
=2, and ¢ = 0.4, in case a train of two waves propagates along the channel. (a) t = 0.0 and 1.0; (b) t = 0.25; (c) t = 0.5;
(d)t=0.75.

It must be noted that the process gets repeated after each cycle. The following information can be
observed from Figure 2.

The increase in the curvature parameter ¥ causes a decrease in the magnitude of pressure
difference AP. This means that the peristaltic flow pumping is lower in magnitude for straight
channel than for curved channel. It may therefore be concluded that peristalsis has to work
against greater pressure rise in curved channel as compared to flow in straight channel. In other
words, it requires more pressure to propel the fluids in curved channel than in the straight
channel.

The pressure difference is not symmetric about the line where it changes its sign for the
intermediate times t=0.25 and t=0.75. However, it is symmetric at t=0.0, t=0.5, and t=1.
The magnitude of pressure difference (AP) is much higher in narrow parts of the curved
channel for t=0.25 and 0.75 in comparison with the case for t=0.0, 0.5, and 1.

The pressure distributions at time instants t=0.0 and t=1 are same. This indicates that the
process is repeated periodically after each cycle due to periodic motion of the boundary.

The pressure distribution along the axis of non-integral multiple of wavelength is depicted in

Figure 3. The significant difference between the two cases is that the peaks of the pressure for the two
different types of boluses are not the same in magnitude in the non-integral case (i.e., the pressure
difference attains two different maximum or minimum values over the whole length of the channel).
For an integral case, the peak values of the pressure difference over the whole length of the channel

are equal. This has been reported for straight channel by Li and Brasseur.

7

£1'7€:50 G20z Aenuer zg



091903-9 Ramanamurthy, Prasad, and Narla Phys. Fluids 25, 091903 (2013)

0.2 T T T T 0.1 T T T T

-0.14
0.0 /\ 0

-0.2 o

o
3 oad g
03
02
b 0.4 b
K=15,2,5«
03
K=1.5,2,5 =
T T T T T T T T T -0.5 T T T T T T T T T
00 02 04 06 08 10 12 14 16 18 20 00 02 04 06 08 10 12 14 16 18 20
X X
(a) (b)
T T T T 04 T T T T
044 K=1.5,25« K=15,2,5«
| 03 |
0.3
02 i 0.2 i
e
N |
< 0.1+ 0.1
0.0
0.0
0.1
0.1
0.2 T T T T T T T T T T T T T T T T T T
00 02 04 06 08 10 12 14 16 18 20 00 02 04 06 08 10 12 14 16 18 20
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FIG. 3. Pressure distributions along the curved channel length at five time instants for different x values when APy, =0, L
= 1.8, and ¢ = 0.4, in case a train of two waves propagates along the channel. (a) = 0.0 and 1.0; (b) r = 0.25; (c) t = 0.5;
(d)r=0.75.

The dependency of axial pressure difference on the length of the channel is depicted in
Figure 4 for an adverse pressure AP; > 0 (opposing the flow direction) for integral and non-
integral multiple of wavelengths. As AP, increases, the pressure differences as well as maximal
pressure values increase, and the minimal pressure value decreases in both the cases. The effects
of occlusion parameter (amplitude ratio) ¢ on AP are shown in Figure 5. Pressure difference AP
increases with increase of ¢. The differences are observed for both the cases of integral and non-
integral multiple of wavelengths. AP varies periodically for integral case and the variation in AP
for the non-integral case is not periodic.

A relation between pressure difference over one wavelength AP, and time averaged flow rate
Qr is shown in Figure 6 for different values of curvature parameter «. This figure reveals that the
pressure difference AP; decreases as k — oo when the flow rate is below a critical value Qr < Q.
and if the flow rate is above this critical value Q7., AP; increases as the channel curvature is
decreased. An increase in the flow rate reduces the pressure difference; thus, maximum AP, is
obtained at zero flow rate and vice versa. This means that in free pumping or co-pumping the flow
rate is low and pressure difference is high for curved channel as compared to straight channel.

B. Shear stress distribution

The examination of shear stress in a flow field is a significant problem, because high shear
stress may cause damage to blood elements, when blood is employed as the working fluid. The same
reason holds in applications involving the transport of sensitive materials. In order to investigate the
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14 T T T T 20 T T T T
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FIG. 4. The dependency of the axial pressure for pressure difference between channel ends when ¢ = 0.6, t = 0.5, k = 2 for
(a) integral multiple of wavelength and (b) non-integral multiple of wavelength.

$=04,05,06,08 104
$=04,05,0.6,0.38

0.5

AP
AP

0.0

-0.5

- T T
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FIG. 5. The dependency of the axial pressure at different amplitude ratio ¢ = (g) values when k =2, AP, =0.0,t=0.5
for (a) integral multiple of wavelength and (b) non-integral multiple of wavelength.
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FIG. 6. Pressure difference across one wavelength against time-averaged flow rate for different values of curvature parameter
k with ¢ = 0.4.
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5] k=500, 10, 5, 1 5] K =500, 10, 5, 1
Q. Q. 14
Q14 Q
=] o]
[ 04 [ 0
14 -1 4
24 -2
3 -3 4
T T T T T T
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 20
X X

K =500, 10, 5, 1

K =500, 10, 5, 1

TUpper
TUpper

FIG. 7. Local shear stress at upper wall along the curved channel length at five time instants for different « values when
AP, =0, =04,and L =2. (a)t= 0.0 and 1.0; (b) r = 0.25; (c) t = 0.5; (d) t = 0.75.

magnitude of the shear stress for different curvature parameter values « in the flow region, we plot
shear stress t at upper and lower walls for different times (Figures 7 and 8). As peristaltic wave
moves in the axial direction, at time ¢t = 0.5 (where two boluses appear completely) for upper wall,
the shear stress declines eventually, reaches the lowest point from where it again rises until it reaches
the middle of the wave. It must be noted that the shear stress distribution gets repeated after each
cycle, and appears as the exact replica of the former cycle. It is further observed that at the leading
edge of expansion segment of the peristaltic wave shear stress decreases and at the tailing edge it
increases. The same is exactly opposite for contraction segment.

A significant quantitative difference is observed in the change of the shear stress at upper and
lower walls. The negative peaks at lower wall are larger and deeper than the positive peaks at upper
wall. It is further observed that the shear stress at the walls increases with an increasing channel
curvature. This conveys that shear stress is more for curved channels and is less for straight channels.

C. Stream lines and trapping
The dimensional form of the stream function in the wave frame is defined as
dyr = udr — vdx, (50

where v, x, r, u, and v are the stream function, the axial and transverse coordinates, and the axial and
transverse velocities, respectively. The transformations between wave frame and laboratory frame
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FIG. 8. Local shear stress at lower wall along the curved channel length at five time instants for different x« values when
AP =0, =04,and L =2. (a) t = 0.0 and 1.0; (b) t = 0.25; (¢) = 0.5; (d) t = 0.75.

are given by
X=x—-ct,Y=r,U=u—c,V=v,q=0—-ch,V =y —r, (&2))

where the parameters on the left side are in the wave frame and that on the right side are in the
laboratory frame (fixed frame). In the wave frame the stream lines in general have a shape similar
to the shape of the stationary walls. But under certain conditions some stream lines split (due to the
existence of a stagnation point) to enclose a bolus of fluid particles which is called trapping. The
fluid particles contained in the bolus advance at a mean speed exactly equal to the wave speed. The
remaining fluid has a smaller mean speed than the wave speed. In the fixed frame the bolus moves
as a whole with the wave speed as if it were trapped by the wave. This physical phenomena may
be responsible for thrombus formation in blood and the movement of food bolus in gastrointestinal
tract.

The criterion for central streamline trapping is the existence of stagnation points where both the
velocity components # and v vanish in the wave frame and they are located at the intersections of
the curve ¥ = 0 and the centerline. From this analysis one can obtain the stagnation points given by
the equation

BN (=24 2h + Q7)hN;

o =T T + K (h? — k) (log <t y?

=1, (52)
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where
Ny = 4i3logi — (h — k) (h + 2K)log(k — h) + (h + k)*(h — 2K)log(h + k).
This implies
4h2ic3 — i (h? — k) (log <t )2
0r =22+ ( ) (log' =)

h [—4K3log1< + (h — k)2(h + 2)log(k — h) — (h — 2c)(h + 2K)*log(k + h)] '
(53)
The stagnation points are real if the roots of Eq. (52) satisfy (Jaffrin?)
l-¢p<h=<1+¢.
One gets the central line trapping limits by analyzing Eq. (53)

0L < 0r < Qu,

where O; = Orli=14¢ and Qu = QOrln=1-¢-

The streamlines patterns in the wave frame with ¢ = 0.4 and Q7 = 1.5 for different values
of curvature parameter « are shown in Figure 9. It is important to observe that the trapped bolus
of fluid comprises two asymmetrical boluses. The trapped bolus near the upper wall increases but
the bolus at lower wall decreases and it disappears completely with an increasing channel curvature
(small values of «). That means for small values of x only one bolus is formed near to upper wall
that can be observed when k = 2. One can observe further that the sizes of the trapped bolus in the

FIG. 9. Streamlines in wave frame of reference for (a) x = 2, (b) k = 5, (¢) k = 10, and (d) x — oo.
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FIG. 10. Streamlines in laboratory frame of reference at five time instants for « =2 when Qr = 1.0 and ¢ = 0.5. (a) t = 0.0
and 1.0; (b) t =0.25; (¢) t =0.5; (d) t = 0.75.

streamline pattern concentrated near the crest of the peristaltic waves on the walls are different in
magnitudes for large values of «, small magnitude at lower wall, and large magnitude at upper wall.
However, this observation almost agrees well with the observation of Shapiro et al.,? Pozrikidis® for
straight channel (k — 00) as the bolus splits with nearly equal magnitudes and symmetrical about
r=0.

The effect of different curvature parameter x values in a fixed frame of reference is illus-
trated with Q7 = 1.0 and ¢ = 0.5 at different time points by Figures 10-12. It is observed that
the streamline patterns have different amplitudes and shapes when the value of « is small. The
results of straight channel case (x — 00) almost coincide with the streamline patterns shown by
Pozrikidis.®

D. Particle trajectory and reflux phenomenon

One of the important characteristics of peristaltic flow is the reflux phenomenon. Reflux can be
examined by tracking the trajectory of the massless particles in the Lagrangian frame of reference
during the time the peristaltic wave completes one full cycle (Shapiro et al.?). The trajectory of a
particle can be traced by integrating the simultaneous differential equations

dx dr

oy, —= 34

ar " ar Y >4)
successively from the initial location of the particle. The integration is carried out numerically by
the Runge-Kutta 4th order method. The trajectories for different channel curvatures with ¢ = 0.5
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FIG. 11. Streamlines in laboratory frame of reference at five time instants for «k =5 when Qr = 1.0 and ¢ = 0.5. (a) t = 0.0
and 1.0; (b) t =0.25; (¢) t =0.5; (d) t = 0.75.

and Qr = 0.3 are shown in Figure 13, in which the open circles indicate the initial locations and the
filled circles show the locations at the end of three wave periods. Although the individual massless
particles in the flow repeat the same trajectories periodically, they undergo net axial displacements,
and their motion do not get closed paths. The fluid particle positioned at contraction region when
time t = O experiences first a backward motion followed by a forward one, then a backward one
again, as time progresses. At the end of the each particle period, the particle possesses a net positive
axial displacement. The overall transport of particles near the axis possesses positive net longitudinal
displacement. In our example we found that reflux occurs near upper wall, and particles will be driven
in the opposite direction of the peristaltic wave, while the total net transport is in the direction of
the contraction. Each fluid particle near the axis (initial location is x = 0.71, » = 0.1) experiences
in three time periods a net positive displacement and its magnitude depends on channel curvature.
The magnitude of these displacements decreases with an increasing channel curvature. The particle
near the outer wall (x = 0.71, r = 0.65) undergoes a net negative displacement, and a net positive
displacement also near the inner wall. This reflex is much in the curved channel than in the straight
channel.

E. Pumping efficiency

Another important physical characteristic in pumping performance is the mechanical efficiency
of pumping E. Shapiro et al.> define the mechanical efficiency of peristaltic pumping as the ratio
between the average rate per wavelength at which work is done by the moving fluid against a pressure

£117£:50 G20z Aenuer zz



Phys. Fluids 25, 091903 (2013)

Ramanamurthy, Prasad, and Narla

091903-16

o ey I
v o~ 1© o 1y o 10

5 ©
p 2
NV/\ (\A@ I
< L Jo L J@
y KK £ -
MMWH‘ < A -
A s o | :
A : 1
= m r 1 [ )
D)) «
g 0 S ey
fwu &
= m L %\wo. r @wo.
£
' - e L I e
m T 3 s ] - - =] Q ! i
=5 H
) & — —
=
= g0 L Jo | ]®
H = m S T "
) g = ‘ = 7 e
2 =) - .
°
o
Ec i = -
E
> = ] b
£z i 1 I
o B
= £§ I lo | 1
ol ﬁ ° =
.1.\M/ I _‘w | {2
L =]
= I < =
E - ™~
o
< 1oy n ©

FIG. 12. Streamlines

(a)t

al locations; e, locations at the en

nd (d) k — o0. o, initi

10, a

2,b)k =5,(c)k

ries for (a) k

ticle trajector

Par
of three wave periods.

FIG. 13.



0919083-17 Ramanamurthy, Prasad, and Narla Phys. Fluids 25, 091903 (2013)

0.8 T T T T

0.7 4 0.75

0.6 4

054 K=15210,o
T 0.70

03
0.65 —
024 K=15,210,0

0.14

0.0 T T T T 0.60 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.5 0.6 / 0.7 0.8

Q1/Q

QTIQMax. T “Max.

(a) (b)

FIG. 14. (a) Mechanical efficiency against the ratio of averaged flow rate and the maximum averaged flow rate for different
values of ¥ with ¢ = 0.6. (b) Magnification of (a).

head and the mechanical work delivered to the wall from outside agencies:

E— __ OraP — Or APy , (55)

Ul gy T T )
/ / p—dxdt ¢ / —pcos(ZnX)dX
0o Jo = 0t 0 0X

where AP is the pressure difference across one wavelength, which is given by

! 82 — Or) — 16h
AP, = / X, (56)
0 di?h — S5 (log i)

The numerator denotes the average rate of work done by the moving fluid over one wavelength
against a pressure head and the denominator denotes the average rate of work done by the wall
on the fluid over one wavelength both being averaged over one period of the wave. Moreover, the
maximum flow rate is obtained by substituting Ap; = 0 in Eq. (56) as

! 1—nh
2 2 (k2—h?)? 1 +h)2dX
0 4/( h _ K —nt)” o Kkrh
h ( 8 —h . (57)

QMaXA =

! 1

/0 4i2h — —(Kz_hhz)z (log%)zdx

The mechanical efficiency FE as a function of Q7 is plotted in Figures 14 and 15 for different values of
« and ¢, respectively. It is observed that the pumping efficiency decreases with an increasing channel
curvature. This is obvious since the pumping performance in a straight channel is comparatively
higher than that in a curved channel. The mechanical efficiency increases with increasing amplitude
ratio ¢. It is physically interpreted that the pumping efficiency increases remarkably as ¢ increases
due to its maximal occlusion.

F. Heat transfer analysis

In order to study the quantitative effects of temperature and heat transfer coefficient, Figures 16
and 17 are plotted. Figure 16 illustrates the effect of the temperature for several values of Brinkman
number Br, pressure difference between two ends of the channel AP;, curvature parameter «, and
occlusion parameter ¢. The temperature profiles are almost parabolic. Figures 16(a) and 16(b) are
plotted to see the effects of curvature parameter « and pressure difference AP; on temperature,
respectively. It is observed that the temperature reduces as the curvature parameter k and APj,
increase. This indicates that the temperature is a decreasing function of x and the value of temperature
reduces when pressure difference increases. It is further observed from Figures 16(c) and 16(d)
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FIG. 15. Mechanical efficiency against the ratio of averaged flow rate and the maximum averaged flow rate for different
values of ¢ with k = 2.
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FIG. 16. Variation of temperature distribution 6 for different values of curvature parameter «, pressure difference APp,
Brinkman number Br, and occlusion parameter ¢. The other parameters chosen are (a) ¢ =04,1=1,Br=2, AP, =0, x
=05L=2,0b)¢p=04k=2,t=1,Br=6,x=05L=2,)¢p=04k=2,t=1,APL=0,x=0.5,L=2,and
(dk=2,t=0,Br=2, AP, =0,x=0.5,L=2.
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FIG. 17. Variation of Heat transfer coefficient Z at upper wall for different values of Brinkman number Br, pressure difference
APy, curvature parameter «, and occlusion parameter ¢. The other parameters chosen are (a) ¢ = 0.6,k =2,t=0, AP, =
0,L=2,b)$p=06,k=2,t=0,Br=2,L=2,(c)p =06,k =2,t=0,Br=2, AP =0,L=2,and (d) k =2,1=0,
Br=2,APp =0,L=2.

that the temperature increases by increasing the Brinkman number Br and occlusion parameter ¢.
Figure 17 depicts the effects of Brinkman number Br, pressure difference AP, between two ends of
the channel, curvature parameter «, and occlusion parameter ¢ on the heat transfer coefficient Z at
the upper wall. This figure illustrates that heat transfer coefficient is in oscillatory behavior, which
may be due to peristalsis. The absolute value of peak value of heat transfer coefficient increases with
increasing Br, APy, k, and ¢, respectively.

G. Concluding remarks

This paper presents time dependent analysis of fluid flow and heat transfer for peristaltic transport
of an incompressible viscous fluid in two-dimensional curved channels. We obtained the analytical
solution for fluid flow and temperature at low inertial effect when the wavelength is moderately large
compared to the channel width. The features of the flow characteristics are analyzed by plotting
graphs and discussed in detail. The following conclusions can be summarized:

1. The transport phenomena are mainly dependent on the curvature parameter (k), adverse
pressure gradient (AP ), and the occlusion parameter (¢) of the curved channel.

2. The relation between pressure and flow is found to be linear, and it increases slightly with an
increasing channel curvature.

3. The peristaltic flow in curved channel is low in magnitude when compared to flow in straight
channel (k — 00).
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4. The pressure difference graphs have two different maximum or minimum values and are not
cyclic for non-integral multiple of wavelength of the channel. But for integral multiple of
wavelength, the maximum or minimum values of pressure difference are the same and cyclic.

5. The shear stress decreases when one moves from curved channel to straight channel.

6. The trapped bolus of fluid in wave frame contains one bolus in large curved channel. As the
curvature decreases two asymmetrical boluses are formed.

7. Reflex and trapping occur well in the curved channel than in the straight channel over time
averaged flow rate.

8. The effects of curvature parameter («) and pressure difference between channel ends (APy) on
the temperature are opposite to the effect of Brinkman number (Br) and occlusion parameter

(9).

9. The mechanical efficiency increases with increasing curvature parameter (k) and occlusion
parameter (¢).
10. The temperature increases as the Brinkman number and occlusion parameter increase. It
decreases as curvature parameter and pressure difference between channel ends increase.
11. The absolute value of heat transfer coefficient increases with increase in curvature parameter
and all other parameters.
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