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Abstract

In this paper a perceptual subspace speech enhancement method using masking property of human auditory system with variance
normalization is presented. The masking property of the human auditory system is used while deciding the gain parameters for
the algorithm. Spectral Domain Constrained estimator was employed in determining the filter coefficients and colored noise was
handled by replacing the noise variance by Rayleigh quotient. Variance normalization is further done to remove the spikes in the
values so as to avoid abrupt increase or decrease in power of the output samples making the output more intelligible. The objective
measures SNRLoss and SNRLESC were chosen for performance evaluation based on their efficiency in determining the intelligibility
of the output. The results show an improved performance of the proposed method over some of the existing speech enhancement
methods in terms of intelligibility.
© 2015 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of organizing committee of the Eleventh International Multi-Conference on Information
Processing-2015 (IMCIP-2015).
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1. Introduction

Speech enhancement is the improvement in the quality and intelligibility of noise corrupted speech signals by using
various techniques for removing noise from it. Speech enhancement is commonly used as a pre-processing block in
a lot of applications like automatic speech recognizer and other communication systems. The performance of speech
communication systems can be improved using various speech enhancement techniques like spectral subtraction,
adaptive wiener filtering, model based methods etc. Spectral subtraction has been widely used for enhancing speech
because of its simplicity and ease of implementation in single channel systems but it suffers from the production
of musical noise after enhancement and is one of its major drawbacks. The use of perceptual features in speech
enhancement has been the latest trend in the field. Masking property of human auditory system makes the noise of a
particular band of frequency inaudible to the listener if it falls below the masking threshold of that particular frequency.
One of the earliest works utilizing perceptual features was done by Johnston1.

Signal distortion is considered as another important issue in speech enhancement. There has always been an effort
to develop speech enhancement techniques that give good compromise between residual noise and signal distortion
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of the output signal. Signal subspace approach (SSA),2–4, 6 have shown to give a better compromise between the
two compared to the other existing techniques. The use of perceptual features in subspace method by Jabloun and
Champagne12 had shown a reduction in residual noise compared to the conventional signal subspace methods. Variance
normalization was used in spectral subtraction speech enhancement algorithm by Maganti and Matassoni5 across the
critical bands to smoothen the output signal, removing the spikes in the output which reduced the effect of increased
variance at random frequencies.

This paper proposes a speech enhancement algorithm which reduces speech distortion and increases speech
intelligibility. For the purpose, signal subspace method utilizing the perceptual features and variance normalization is
employed. The use of perceptual features reduces signal distortion and variance normalization reduces abrupt changes
in the output making it more intelligible.

The rest of the paper is arranged as follows. In section 2, the subspace method of speech enhancement is
explained. Section 3 explains the perceptual subspace method of speech enhancement. Section 4 shows how variance
normalization is done. Section 5 mentions the steps involved in the proposed method. Section 6 explains about the
performance evaluation. Section 7 gives the results and section 8 provides the conclusion.

2. Signal subspace method of speech enhancement

Signal subspace approach of speech enhancement used by Ephraim and Van trees2 employed Eigen Value
Decomposition (EVD) and used Karhunen-Loeve Transform (KLT) to project clean speech into signal + noise
subspace called the signal subspace and removed noise which falls in the orthogonal noise subspace. Further,
the elements of the signal subspace were processed separately to remove any elements of noise from it using a
diagonal gain matrix based on the uncorrelated nature of the coefficients in the subspace. The gain matrix elements
were decided based on estimators like Time domain Constrained (TDC) or Spectral Domain Constrained (SDC)
estimators. Then inverse KLT was applied to get the enhanced output speech signal which gave a better compromise
between the signal distortion and residual noise compared to the other exiting speech enhancement methods.

One of the important features of SSA is dimensionality reduction which is achieved by reducing the rank of the
noise corrupted data matrix by forcing it back to that of the uncorrupted signal. Further, with proper tuning of the
parameters like window size, rank of the matrix etc, SSA offers a better compromise between signal distortion and
residual noise level over other speech enhancement methods.

The noisy signal (y) composed of the clean speech signal (s) and the additive noise (w) can be represented as in (1)

y = s + w (1)

The covariance matrix Rx of the noisy speech can be represented as

Rχ = Rs + Rw (2)

where Rs and Rw are the covariance matrices of clean speech and noise respectively with Rx assumed to have a higher
rank than Rs · Rx and Rs are toeplitz matrices, the nature of which was well studied by Gray7 The EVD of Rx and Rs

is given by (3) and (4) respectively

Rx = U�U H (3)

Rs = UP�sU H
P (4)

where � and �s given by (5) and (6) represent the diagonal matrices of the Eigen values respectively of Rx and Rs

� = diag(λ1, λ2 . . . . . . λQ) (5)

�s = diag(λs,1rλs,2 . . . . . . λs,P) (6)

The dimension of U is Q and that of UP is P such that Q > P . Also, Rw is given by:

Rw = σ 2 I (7)
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where σ 2 is the variance of noise and I represents identity matrix. Thus from (4) and (7), Rx can be represented as

Rx = U(�s + σ 2 I )U H (8)

Here, U = [UPUQ−P ] where, UP = [u1u2, . . . . . . u P ] spans the signal subspace and UQ−P = [u P+1, u P+2, . . . uQ ]
spans the noise subspace where ui represents the Eigen vector corresponding to the Eigen value λi .

A linear filter H is designed so as to separate the signal subspace from the noise subspace. Thus,

ŝ = H x (9)

The residual error is

r = ŝ − s = H x − I s (10)

Then,

r = H s − Hw − I s = (H − I )s + Hw = rs + rw (11)

where rs represents the signal distortion given by (12) and rw represents the residual noise given by (13)

rs = (H − I )s (12)

rw = Hw (13)

2.1 Estimation of H

Various optimization criteria can be employed for calculating H , which includes the following:

1. Least squares estimator (LSE)
LSE minimizes the squared fitting error between the observation vector x and a linear low order model.

2. Linear Minimum mean square error estimator (LMMSE)
In LMMSE, the residual error energy is minimized to get optimum value for H .

3. Time Domain Constrained (TDC) estimator.
TDC minimizes signal distortion subject to keeping the residual noise energy within a limit.

4. Spectral Domain Constrained Estimator (SDC)
In SDC, H is the solution for the optimization problem which minimizes the signal distortion subject to keeping
every spectral component of the residual noise in signal subspace below a threshold as given by (14). In this paper
SDC is considered

min
H

E{‖rs‖2} subject to

{
E{|u H

i rw|2} ≤ αiσ
2 for 1 ≤ i ≤ P

E{|u H
i rw|2} = 0 for P < i ≤ Q

(14)

where αi , is a set of non-negative constants2. The solution of matrix H is given by (15)

H = UP GU H
P (15)

where U H
P is called the Karhunen-Loeve Transform (KLT) and G is the gain matrix given by (16)

G = diag (gain value corresponding to each ui ) = gi = e−vσ 2/λs,i for i = 1, 2, . . . P (16)

where v is a control parameter.
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2.2 Considering colored noise

Some of the methods employed for handling the case of colored noise2, 3, 8–11 in subspace method are:

1. Pre-whitening and De-whitening.
In this approach proposed2, KLT is applied on the input speech by assuming that the noise is white. To deal with
colored noise, the noise is converted to white by multiplying the entire signal by the whitening matrix R−1/2

W and

later on dewhitening the enhanced signal by multiplying it with the de-whitening matrix R−1/2
W .

2. Using a common diagonalization matrix.
A common diagonalization matrix R−1

w Rs , for both noise and speech, was proposed by Yi Hu and Loizou8. The
EVD of R−1

w Rs gives
R−1

w Rs = UC�CU T
C (17)

such that

U T
C RsUC = �s (18)

U T
C RwUC = I (19)

where, UC and �C are the Eigen vector and Eigen value matrices of R−1
w Rs · U T

C represents the transpose of UC .
3. Rayleigh quotient method

Rayleigh quotient method used by Jabloun et al.12 replaced the variance of the noise by Rayleigh quotient. This
method is found to shape the noise better than the other existing methods and reduces the computational load as
well and hence is employed in this paper. The noise variance, σ 2, is taken as the noise energy in the direction
of the i th Eigenvector, which is the Rayleigh Quotient ξ associated with the i th Eigen vector ui of R̂s and Rw

given by
ξi = uT

i Rwui (20)

which in matrix notation gives

σ 2 = ξ = 1

K
U T �w (21)

where �w is the power spectral density estimate of noise.

3. Perceptual Subspace Method

Perceptual features have been used in speech enhancement to reduce the signal distortion and improve
intelligibility12–17. Initial work in the area was done by Johnston1 for coding of audio signals. Use of masking
property as the perceptual feature is based on the fact that within a critical band of frequency, one sound having a
greater magnitude masks the other with lesser magnitude. In the bark scale, one bark covers a critical band and hence
Eigen domain to Bark scale conversion has to be performed for efficiently including the masking property in subspace
method. For this conversion, Eigen to frequency domain conversion followed by frequency to bark domain conversion
is done.

For the conversion of Eigen to frequency domain the following equations are used

�B = 1

Q

P∑
i=1

λiνi (22)

where �B is Blackman-Tukey Spectrum Estimator and vi is given by (23) for a K point DFT

νi (k) =
∣∣∣∣Vi

(
2πk

K

)∣∣∣∣
2

for k = 0, 1, 2 . . . K (23)
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where Vi (w) is given by (24)

Vi (w) =
Q−1∑
q=1

ui (q)e− jwq (24)

In matrix form (22) can be represented by (25)

�B = 1

Q
νλ (25)

�B is then used to calculate the masking threshold �lhr as given by Jabloun et al.12 which is described below.

3.1 Steps in the calculation of masking threshold

First, frequency ( f ) to bark scale (z) conversion is done using (26)

z( f ) = 13 arctan(0.0076 f ) + 35 arctan

[(
f

7500

)2
]

(26)

The masking threshold at i barks due to the masking component located at j barks of tonal and nontonal component
are given by (27) and (28) respectively

Ttm( j, i) = Xtm( j) + Otm( j) + SF( j, i) (27)

Tnm( j, i) = Xnm( j) + Onm ( j) + SF( j, i) (28)

Masking components below the masking threshold are discarded, reducing distortion.
Xtm( j) is the sound pressure level in dB of the masking component with critical band index j which is given by (29)

X

(
z

(
Fsk

K

))
= �B(k) (29)

Otm( j) and Onm( j) are the threshold offsets given by (30) and (31) respectively.

Otm( j) = −1.525 − 0.275 j − 4.5 d B (30)

Onm( j) = −1.525 − 0.175 j − 0.5 d B (31)

SF( j, i) is the spreading function given by

SF( j, i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(17(dz + 1) − 0.4X ( j) − 6 d B −3 ≤ dz < −1

(0.4X ( j) + 6)dz d B −1 ≤ dz < 0

−17 dz d B 0 ≤ dz < 1

−(dz − 1)(17 − 0.15X ( j)) − 17 d B 1 ≤ dz < 8

(32)

�thr is calculated from (27) and (28).
The perceptual features are then converted to Eigen domain using

θ = 1

K
V T �thr (33)

Modified gain matrix G is thus obtained as

G = e−vσ 2/ max(λ,θ) (34)

The KLT using perceptual feature as mentioned in the above subsection is represented by PKLT.
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4. Variance Normalization

To smoothen the output of the enhancement algorithm Ching Ta Lu17, employed an optimal smoothing factor,
adapted by the variation of signal to spectral deviation ratio (SSDR) in successive frames. To reduce the effect
of any present tones which are caused by increased variance at random frequencies, Maganti et al.5 performed
variance normalization across the critical bands for spectral subtraction speech enhancement algorithm. This variance
normalization5 is used in this paper to smoothen the output. The variance is computed as

v(m) = 1

K − 1

K∑
i=1

(vi (m) − v̂(m))2 (35)

where K is the number of bands, m is the frame index, v̂ is the mean, and vi is the element number i . The peaks of
noise present in the enhanced speech are suppressed by normalizing them with respect to the maximum value across
the bands.

w(m) = v(m)

max{v(m)} (36)

w(m) gives the normalized values which are then multiplied with the energies to obtain a smoother output

Ŷk(m) = Yk(m)w(m) (37)

where Yk(m) is the energy of the mth frame and Ŷk(m) is the normalized energy of the mth frame.

5. Steps in the Proposed Algorithm

The following steps are involved in the proposed speech enhancement method called perceptual KLT with variance
normalization represented by PKLTV.

1. Calculation of noise covariance matrix Rw and noisy speech covariance matrix Rx by considering that the first
2. Estimation of the speech covariance matrix Rs using equation (2).
3. Performing the Eigen value decomposition of Rx and Rs to get U , UP , � and �s using equation (3) and (4) after

determining the order P from the number of �s that are greater than 0.
4. Calculation of the power spectral density using (25).
5. Computation of the auditory masking threshold using (26)–(32).
6. Variance normalization is done using (35)–(37).
7. Conversion of the perceptual features to Eigen domain using (33).
8. Calculation of gain matrix G using (34) with a very low value for v and σ 2 = ξ .
9. Estimation of the enhanced speech signal ŝ by multiplying the noisy speech subframes with H as in (9).

6. Performance Evaluation

The purpose of the proposed algorithm is to improve the intelligibility of the output speech. Hence the performance
evaluation was done using the parameters which gave a clear inference about the intelligibility. Work done by Hu
and Loizou18 gives a comparison of different objective measures used for performance evaluation. In this paper, the
objective parameters provided by Maa and Loizou19 namely SNRLOSS and SNRLESC were used which gives better
measure of intelligibility compared to the other objective measures. The lesser the values of these parameters, greater
is the performance of the algorithm in terms of intelligibility.
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6.1 SNRLOSS

SNRLOSS in the band j and frame m is defined as

L( j, m) = SNRx( j, m) − SNRx̂( j, m) (38)

where SNRx( j, m) and SNRx̂( j, m) are the SNRs of the j th frequency band of the mth frame of the input signal and
the enhanced signal respectively.

The limited value of L( j, m) used due to the dependence of L( j, m) on input SNR values is given by

L̂( j, m) = min(max(L( j, m),−SNRLim), SNRLim) (39)

where [−SNRLim,−SNRLim] is the restricted SNR range.
L is mapped to the range [0, 1] using the equation

SNRLOSS( j, m) =
⎧⎨
⎩

− C−
SNRLim

L̂( j, m) if L̂( j, m) < 0

C+
SNRLim

if L̂( j, m) ≥ 0
(40)

C− and C+ are the parameters controlling the slopes of the mapping function. The average SNRLOSS is given by

SNRLOSS = 1

M

M−1∑
m=0

f SNRLOSS(m) (41)

where

f SNRLOSS(m) =
∑k

j=1 W ( j)SNRLOSS(i, m)∑k
j=1 W ( j)

(42)

where W ( j) is the weight used.

6.2 SNRLESC

The excitation spectral correlation (ESC) measure at frame m is computed as follows:

r2(m) =
(∑K

k=1 X (k, m)X̂(k, m)
)2

∑K
k=1 X2(k, m)X̂2(k, m)

(43)

K is the number of bands (K = 25 in our study).

ESC = 1

M

M∑
m=1

r2(m) (44)

Combining the SNRLOSS and ESC measures gives the parameter SNRLESC as in

SNRLESC(m) = (1 − r2(m)) f SNRLOSS(m) (45)

The speech segments were divided into three level regions namely the high level, mid-level and low level regions and
ESC was calculated separately for these regions as described by Loizou et al.19 The ESC measures were used to get
three different SNRLESC values denoted as SNRLESC High, SNRLESC Mid and SNRLESC Low obtained for the high,
mid and low level segments respectively. SNRLESC Mid gives an approximation of the entire SNRLESC values and
hence in this paper, SNRLESC Mid values are calculated and tabulated for different algorithms.
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Fig. 1. (a) Waveforms for a female speaker; (b) Waveforms for a male speaker; (c) Spectrograms for the female speaker; (d) Spectrograms for the
male speaker.
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7. Results

The speech samples used for evaluation of the proposed algorithm were taken from the NOIZEUS database20.
Clean Female and male speech samples and their corresponding corrupted samples by various noises, sampled at
the rate of 8000 kz with 16 bits/sample, were taken for evaluating the performance of the proposed algorithm. Seven
different noise environments considered were airport, babble, car, exhibition, restaurant, station and street for 0 dB,
5 dB, 10 dB and 15 dB SNRs. A hanning window of length 256 was used for the frames in the analysis and the overlap
between frames is 50%. A subframe window of length 128 is used in the calculation of H as mentioned in step 9 of
section 5. The different algorithms compared with the proposed algorithm are spectral subtraction, KLT, non-KLT and
PKLT represented respectively by specsub, klt, nonklt and pklt in the analysis. The proposed algorithm (PKLTV) is
represented by pkltv.

The results are shown in terms of:

1. Waveforms and spectrograms
2. Comparative tables for SNRLOSS and SNRLESCMid values.

7.1 Waveforms and spectrograms

Figure 1(a) and 1(b) shows the waveforms corresponding to the clean speech, speech corrupted by 5dB street noise
and the enhanced speech by PKLTV for a female speaker and a male speaker respectively. Figure 1(c) and 1(d) shows
the respective spectrograms for Figures 1(a) and 1(c) respectively.

Table 1. SNRLOSS of various algorithms used.

INPUT SNRLOSS

SNR TYPE OF FEMALE MALE

(dB) NOISE specsub kltevd nonklt pklt pkltv specsub kltevd nonklt pklt pkltv

0 airport 0.8455 0.8404 0.8645 0.8449 0.7920 0.0068 0.8604 0.8645 0.8661 0.8296
0 babble 0.8788 0.8719 0.8760 0.8779 0.8390 0.8640 0.8439 0.8447 0.8407 0.8651
0 car 0.8879 0.8759 0.8796 0.8781 0.8462 0.9067 0.8830 0.8868 0.8766 0.8413
0 exhibition 0.8741 0.8466 0.8486 0.8502 0.8668 0.8720 0.8465 0.8497 0.8455 0.8526
0 restaurant 0.8700 0.9192 0.9227 0.9184 0.8533 0.8919 0.9094 0.9155 0.9092 0.8361
0 station 0.8806 0.9123 0.9175 0.9139 0.8399 0.9137 0.9002 0.9063 0.9032 0.8325
0 street 0.9183 0.9734 0.9741 0.9662 0.8933 0.9214 0.9380 0.9382 0.9308 0.8600
5 airport 0.8039 0.8044 0.8106 0.8177 0.7638 0.8558 0.7933 0.7994 0.8028 0.7852
5 babble 0.8338 0.8430 0.8479 0.8453 0.8338 0.8354 0.8015 0.8063 0.8076 0.8354
5 car 0.8430 0.8195 0.8193 0.8217 0.8045 0.8622 0.8017 0.8075 0.8035 0.7810
5 exhibition 0.8206 0.8061 0.8096 0.8098 0.7868 0.8436 0.7840 0.7871 0.7907 0.7937
5 restaurant 0.7505 0.6978 0.7016 0.7096 0.6924 0.8115 0.7995 0.8062 0.8093 0.7668
5 station 0.8523 0.8177 0.8177 0.8232 0.8083 0.8609 0.8058 0.8084 0.8106 0.8039
5 street 0.8940 0.9104 0.9093 0.9015 0.8235 0.8693 0.8250 0.8308 0.8194 0.7726
10 airport 0.7865 0.7063 0.7145 0.7370 0.7021 0.7625 0.7068 0.7125 0.7305 0.7061
10 babble 0.7504 0.6969 0.7016 0.7159 0.6998 0.7740 0.7108 0.7141 0.7253 0.7032
10 car 0.8092 0.7461 0.7535 0.7611 0.6973 0.8193 0.7334 0.7354 0.7484 0.7075
10 exhibition 0.7921 0.7778 0.7819 0.7800 0.7122 0.7507 0.6963 0.6988 0.7121 0.6821
10 restaurant 0.7736 0.7564 0.7618 0.7709 0.7001 0.7393 0.7263 0.7343 0.7450 0.6834
10 station 0.7274 0.6981 0.7075 0.7257 0.6523 0.8117 0.7701 0.7726 0.7716 0.7228
10 street 0.7830 0.7548 0.7568 0.7623 0.6910 0.7742 0.7021 0.7125 0.7260 0.6911
15 airport 0.6939 0.6124 0.6206 0.6492 0.5937 0.7187 0.6501 0.6580 0.6850 0.6133
15 babble 0.6978 0.6201 0.6271 0.6455 0.5779 0.7041 0.6275 0.6314 0.6484 0.6285
15 car 0.7156 0.6353 0.6401 0.670 0.6153 0.7389 0.6478 0.6507 0.6750 0.6277
15 exhibition 0.6935 0.6182 0.6219 0.6394 0.6270 0.7204 0.6495 0.6541 0.6725 0.6459
15 restaurant 0.6729 0.6262 0.6367 0.6647 0.5615 0.6951 0.6261 0.6313 0.6548 0.6035
15 station 0.7667 0.7163 0.7193 0.9381 0.6313 0.6791 0.6214 0.6294 0.8869 0.5786
15 street 0.7773 0.8002 0.7996 0.7801 0.6657 0.7368 0.7023 0.7037 0.7054 0.6501
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Table 2. SNRLESCMid values of various algorithms used.

INPUT SNRLESCMid

SNR TYPE OF FEMALE MALE

(dB) NOISE specsub kltevd nonklt pklt pkltv specsub kltevd nonklt pklt pkltv

0 airport 0.4484 0.4538 0.4817 0.4674 0.4314 0.4794 0.4806 0.4817 0.4932 0.4964
0 babble 0.5613 0.5640 0.5687 0.5853 0.5209 0.4180 0.3803 0.3786 0.3861 0.4335
0 car 0.4769 0.5410 0.5430 0.5454 0.5800 0.4025 0.3475 0.3486 0.3545 0.4145
0 exhibition 0.6432 0.6040 0.6053 0.6134 0.6099 0.3203 0.3241 0.3252 0.3128 0.3557
0 restaurant 0.5146 0.6358 0.6375 0.6687 0.5530 0.4490 0.4558 0.4573 0.4680 0.4182
0 station 0.5001 0.5246 0.5260 0.5190 0.4964 0.3694 0.3673 0.3680 0.3704 0.3957
0 street 0.4517 0.6048 0.6057 0.6579 0.5581 0.2553 0.3863 0.3857 0.3925 0.3360
5 airport 0.3442 0.3239 0.3252 0.3366 0.3500 0.3796 0.3030 0.3137 0.2943 0.2530
5 babble 0.3600 0.4020 0.4029 0.3929 0.3600 0.2087 0.2006 0.2011 0.2050 0.2087
5 car 0.2689 0.2714 0.2720 0.2718 0.3278 0.1541 0.1493 0.1515 0.1505 0.1824
5 exhibition 0.2304 0.2194 0.2196 0.2203 0.2570 0.1357 0.1178 0.1171 0.1228 0.1691
5 restaurant 0.2771 0.2307 0.2313 0.2300 0.2393 0.2083 0.2257 0.2287 0.2164 0.2109
5 station 0.3255 0.2934 0.2928 0.3020 0.3060 0.2479 0.2016 0.2039 0.2000 0.2126
5 street 0.3675 0.4133 0.4130 0.4311 0.2809 0.3388 0.2957 0.3097 0.2832 0.2086
10 airport 0.2655 0.1950 0.1968 0.1920 0.1803 0.1010 0.0734 0.0734 0.0804 0.0861
10 babble 0.1738 0.1809 0.1805 0.1788 0.1884 0.1147 0.0749 0.0759 0.0802 0.0984
10 car 0.1314 0.1160 0.1201 0.1155 0.1314 0.0602 0.0492 0.0491 0.0494 0.0810
10 exhibition 0.1210 0.0955 0.0957 0.0945 0.0981 0.0443 0.0326 0.0328 0.0336 0.0370
10 restaurant 0.2390 0.2191 0.2222 0.2209 0.2074 0.1103 0.1056 0.1065 0.1090 0.1053
10 station 0.1472 0.1601 0.1623 0.1630 0.1576 0.0595 0.0503 0.0501 0.0508 0.0589
10 street 0.1788 0.1840 0.1856 0.1753 0.1494 0.0712 0.0476 0.0501 0.0518 0.0514
15 airport 0.0830 0.0572 0.0559 0.0591 0.0616 0.0491 0.0331 0.0336 0.0354 0.0383
15 babble 0.0496 0.0403 0.0409 0.0393 0.0385 0.0358 0.0255 0.0249 0.0265 0.0303
15 car 0.0531 0.0430 0.0429 0.0446 0.0519 0.0453 0.0205 0.0205 0.0216 0.0244
15 exhibition 0.0531 0.0328 0.0323 0.0342 0.0409 0.0151 0.0126 0.0128 0.0132 0.0136
15 restaurant 0.1036 0.0901 0.0912 0.0919 0.0804 0.0356 0.0195 0.0196 0.0202 0.0210
15 station 0.0932 0.0806 0.0804 0.6533 0.0486 0.0290 0.0228 0.0237 0.4409 0.0192
15 street 0.0422 0.0499 0.0495 0.0396 0.0247 0.0229 0.0209 0.0210 0.0205 0.0235

7.2 Comparative tables for SNRLOSS and SNRLESCMid

Table 1 gives the SNRLOSS values of different speech enhancement algorithms under various noisy conditions for
both female and male speakers.

Table 2 gives the SEGLESC-Mid values of different speech enhancement algorithms under various noisy conditions
for both female and male speakers.

From the waveforms and spectrograms figure, it can be observed that the proposed algorithm removes a lot of noise
from the noisy speech to give an enhanced speech.

The Tables 1 and 2 show that the proposed algorithm has low SNRLOSS and SNRLESCMid values in a majority
of conditions which indicate that it outperforms some of the existing speech enhancement algorithms in terms of
intelligibility measure which is the main aim of the proposed algorithm. The results obtained by the objective measures
are supported by informal listening tests.

8. Conclusion

A perceptual subspace speech enhancement approach with variance normalization is proposed. In this paper,
Eigen Value Decomposition was used for the purpose. Perceptual features were included in the subspace method by
determining the auditory masking threshold at all frequency bands and changing the gain function according to it.
Conversion from Eigen domain to bark domain and back was done for incorporating the perceptual feature in the
enhancement algorithm. Finally variance normalization was done to the output. Use of perceptual features clearly
added to the performance of the speech enhancement system in terms of SNRLOSS and SNRLESC measure. The use
of variance normalization improved the intelligibility over using the perceptual features alone, as is evident from its
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lower SNR loss and SNRLESC values. It provided a smooth output in terms of intelligibility since it normalized abrupt
changes in the output values. Informal subjective tests support the objective measures.
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