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Abstract The Hall and ion-slip effects on fully developed
electrically conducting couple stress fluid flow between ver-
tical parallel plates in the presence of a temperature depen-
dent heat source are investigated. The governing non-linear
partial differential equations are transformed into a system
of ordinary differential equations using similarity transfor-
mations. The resulting equations are then solved using the
homotopy analysis method (HAM). The effects of the mag-
netic parameter, Hall parameter, ion-slip parameter and cou-
ple stress fluid parameter on velocity and temperature are
discussed and shown graphically.

Keywords Free convection· Couple stress fluid·Magneto-
hydrodynamics· Hall and ion-slip effects· HAM

1 Introduction

Natural convection heat transfer and fluid flow in vertical
parallel plate channels have been the focus of extensive in-
vestigation for many decades due to their wide range of heat
exchange applications such as cooling of electronic equip-
ment, solar collectors and passive solar heating, ventilation
of buildings and heat removal in nuclear technology applica-
tion. Studies on laminar natural convection between vertical
parallel plates date back to 1942 when Elenbaas [1] did ex-
perimental and theoretical analysis on natural convection be-
tween isothermal parallel plates and presented an optimiza-
tion of heat transfer rate. Bodoia and Osterle [2] numerically
analyzed the development of free convection boundary layer
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between parallel isothermal vertical plates for the case of
symmetric heating using finite difference method and ob-
tained results of variation in temperature, pressure and veloc-
ity throughout the flow field. Aung et al. [3] conducted ex-
perimental and numerical studies on the evolution of laminar
free convection between vertical flat plates with asymmetric
heating, under the thermal boundary conditions of uniform
heat flux and uniform wall temperature. Since then a num-
ber of studies have been reported in the literature with focus
concentrated on the problem of free convection heat transfer
and fluid flow between vertical parallel plates.

In recent years, several convection heat transfer and
fluid flow problems have received new attention within the
more general context of magnetohydrodynamics (MHD).
Several investigators have extended many of the available
convection heat transfer and fluid flow problems to include
the effects of magnetic fields for those cases when the fluid
is electrically conducting. Free convective flow of a vis-
cous, incompressible, electrically conducting fluid through a
porous medium between two vertical parallel plates which
are heated or cooled uniformly, under a pressure gradient
in the presence of a uniform transverse magnetic field has
been studied by Singh [4]. Singha and Deka [5] have con-
sidered the unsteady viscous incompressible free convection
flow of an electrically conducting fluid between two heated
vertical parallel plates in the presence of a uniform magnetic
field applied transversely to the flow. A two dimensional
steady laminar free convective flow of viscous incompress-
ible fluid between two parallel porous walls was considered
by Omowaye and Koriko [6]. In most of the MHD flow prob-
lems, the Hall and ion-slip terms in Ohms law were ignored.
However, in the presence of strong magnetic field, the in-
fluence of Hall current and ion-slip are important. Tani [7]
studied the Hall effects on the steady motion of electrically
conducting viscous fluid in channels. Hall and ion-slip ef-
fects on MHD Couette flow with heat transfer have been
considered by Soundelgekar et al. [8]. Attia [9] consid-
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ered the steady Couette flow of an electrically conducting
viscous incompressible fluid between two parallel horizontal
non-conducting porous plates with heat transfer, taking the
ion-slip into consideration.

During recent years the study of convection heat and
mass transfer in non-Newtonian fluids has received much at-
tention and this is because the traditional Newtonian fluids
can not precisely describe the characteristics of the real flu-
ids. Ziabakhsh and Domairry [10] have obtained the solu-
tion for natural convection of the Rivlin–Ericksen fluid of
grade three between two infinite parallel vertical flat plates.
Sajid et al. [11] studied fully developed mixed convection
flow of a viscoelastic fluid between permeable parallel verti-
cal walls using HAM. In addition, progress has been consid-
erably made in the study of heat and mass transfer in mag-
neto hydrodynamic flow of non-Newtonian fluids for the pur-
pose of facilitating its application to many devices, like the
MHD power generator, aerodynamics heating, electrostatic
precipitation and Hall accelerator etc. Different models have
been proposed to explain the behavior of non-Newtonian
fluids. Among these, couple stress fluids introduced by
Stokes [12] have distinct features, such as the presence of
couple stresses, body couples and non-symmetric stress ten-
sor. The couple stress fluid theory presents models for flu-
ids whose microstructure is of mechanical significance. The
effect of very small microstructure in a fluid can be felt if
the characteristic geometric dimension of the problem con-
sidered is of the same order of magnitude as the size of the
microstructure. The main feature of couple stresses is to in-
troduce a size dependent effect. Classical continuum me-
chanics neglects the size effect of material particles within
the continua. This is consistent with ignoring the rotational
interaction among particles, which results in symmetry of the
force-stress tensor. However, in some important cases such
as fluid flow with suspended particles, this can not be true
and a size dependent couple-stress theory is needed. The
spin field due to microrotation of freely suspended particles
set up an antisymetric stress, known as couple-stress, lead-
ing thus to couple-stress fluid. These fluids are capable of
describing various types of lubricants, blood, suspension flu-
ids etc. The study of couple-stress fluids has applications in a
number of processes that occur in various industries such as
the extrusion of polymer fluids, solidification of liquid crys-
tals, cooling of metallic plate in a bath, and colloidal solu-
tions etc. Stokes [12] discussed the hydromagnetic steady
flow of a fluid with couple stress effects. A review of couple
stress (polar) fluid dynamics was reported by Stokes [13].
Srinivasacharya and Srikanth [14] studied the effect of cou-
ple stresses on the flow in a constricted annulus.

The homotopy analysis method [15], first proposed by
Liao in 1992, is one of the most efficient methods in solving
different types of nonlinear equations such as coupled, de-
coupled, homogeneous and non-homogeneous. Also, HAM
provides us with a great freedom to choose different base
functions to express the solution of a nonlinear problem [16].

The application of HAM in engineering problems is exten-
sively considered by scientists, because HAM provides us
with a convenient way to control the convergence of ap-
proximation series, which depicts a fundamental qualita-
tive difference in analysis between HAM and other meth-
ods. Later Liao [17] presented an optimal homotopy anal-
ysis approach for strongly nonlinear differential equations.
HAM is used to get analytic approximate solutions for heat
transfer of a micropolar fluid through a porous medium with
radiation by Rashidi [18]. Si et al. [19] derived HAM so-
lutions for the asymmetric laminar flow in a porous channel
with expanding or contracting walls. Recent developments
of HAM, like convergence of HAM solution, Optimality of
convergence control parameter were discussed by Turkyil-
mazoglu [20,21].

In this paper, we have investigated the Hall and ion-
slip effects on the steady free convective heat transfer flow of
couple stress fluid between two vertical parallel plates. The
Homotopy Analysis method is employed to solve the gov-
erning nonlinear equations. Convergence of the derived se-
ries solution is analyzed, and the behavior of emerging flow
parameters on the velocity and temperature is discussed.

2 Mathematical formulation

Consider an incompressible electrically conducting couple
stress fluid flow between two vertical parallel plates at dis-
tance 2d apart. Choose the coordinate system such thatx-
axis be taken along vertically upward direction through the
central line of the channel,y is perpendicular to the plates
and the two plates are infinitely extended in the direction of
x andz. The plates of the channel are aty = ±d. The flow
is subjected to a uniform magnetic field perpendicular to the
flow direction with the Hall and ion-slip effects. Since the
effect of Hall and ion-slip current gives rise to forces in the
z-direction, which induces a cross flow in that direction and
hence the flow becomes three dimensional. Assume that the
flow is steady and the magnetic Reynolds number is very
small so that the induced magnetic field can be neglected in
comparison with the applied magnetic field. Further, assume
that all the fluid properties are constant except the density
in the buoyancy term of the momentum equation. The flow
configuration and the coordinates system are shown in Fig. 1.

With the above assumptions, the equations governing
the steady flow of an incompressible couple stress fluid, un-
der usual MHD approximations are

∂v
∂y
= 0, (1)

ρv
∂u
∂y
= µ
∂2u
∂y2
− η1
∂4u
∂y4
+ ρgβT(T − T0)

−
σB2

0

α2
e + β

2
h

(αeu+ βhw), (2)
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Fig. 1 Physical model and coordinate system

ρv
∂w
∂y
= µ
∂2w
∂y2
− η1
∂4w
∂y4
+
σB2

0

α2
e + β

2
h

(βhu− αew), (3)

ρCpv
∂T
∂y
= K f

∂2T
∂y2
+ 2µ
[(
∂u
∂y

)2
+

(
∂w
∂y

)2]
+η1

[(
∂2u
∂y2

)2
+

(
∂2w
∂y2

)2]
+ γ0v(T − T0), (4)

whereu, v,w are, respectively, thex-, y- andz-components
of the velocity,ρ is the density,g is the acceleration due to
gravity, Cp is the specific heat,µ is the coefficient of vis-
cosity, βh is the Hall parameter,βi is the ion-slip parame-
ter, αe = 1 + βhβi , βT is the coefficient of thermal expan-
sion, K f is the coefficient of thermal conductivity,η1 is the
additional viscosity coefficient which specifies the charac-
ter of couple-stresses in the fluid.T0 is the temperature in
hydrostatic state,γ0 is the constant of proportionality and
γ0v(T − T0) is the amount of heat generated per unit vol-
ume in unit time, which is assumed to be a linear function
of temperature. From Eq. (1), we observe that the velocity
componentv is constant i.e.v = v0.

The boundary conditions are given by

u = 0, w = 0, at y = ±d, (5a)

uyy = 0, wyy = 0, at y = ±d, (5b)

T = T1, at y = −d, T = T2, at y = d. (5c)

The boundary condition equation (5a) corresponds to the
classical no-slip condition from viscous fluid dynamics. The
boundary condition equation (5b) imply that the couple
stresses are zero at the plate surfaces.

Introducing the following similarity transformations

y = ηd, u =
K f

ρgβTd2
U,

w =
K f

ρgβTd2
W, T − T0 =

K fµ

ρ2g2β2
Td4
θ,

(6)

in Eqs. (2)–(4), we get the following nonlinear system of
differential equations

α2U(iv) − U′′ + ReU′ − θ +
Ha2

α2
e + β

2
h

(αeU + βhW) = 0, (7)

α2W(iv) −W′′ + ReW′ −
Ha2

α2
e + β

2
h

(βhU − αeW) = 0, (8)

θ′′ − RePrθ′ + 2[(U′)2 + (W′)2] + α2[(U′′)2 + (W′′)2]

+γ1RePrθ = 0, (9)

where primes denote differentiation with respect toη,
α =

√
η1/µ
/
d is the couple stress parameter,Re =

ρv0d/µ is the Reynolds number,Pr = µCp/K f is the
Prandtl number,Ha = B0d

√
σ/µ is the Hartmann number,

γ1 = γ0d/ρCp is the dimensionless vertical distance and
Gr = gβTd3(T1 − T0)/ν2 is the Grashof number. The effects
of couple-stress are significant for large values ofα(= l/d),
wherel =

√
η1/µ is a material constant. Ifl is a function of

molecular dimensions of the liquid, it will vary greatly for
different liquids. For example, the length of a polymer chain
may be a million times the diameter of water molecule [12].
Therefore, there are all the reasons to expect that couple-
stresses appear in noticeable magnitudes in liquids with large
molecules.

Boundary conditions equation (5) in terms ofU, W, θ
become

U = 0, W = 0, U′′ = 0,

W′′ = 0, θ = Q, at η = −1,

U = 0, W = 0, U′′ = 0,

W′′ = 0, θ = εQ, at η = 1,

(10)

whereQ = PrGrβTgd/Cp andε = (T2 − T0)/(T1 − T0), the
non-dimensional heating parameter

3 The HAM solution of the problem

For HAM solutions, we choose the initial approximations of
U(η), W(η) andθ(η) as follows

U0(η) = 0, W0(η) = 0,

θ0(η) =
1
2

(Q+ εQ) +
1
2

(εQ− Q)η,
(11)

and choose the auxiliary linear operators

L1 =
∂4

∂η4
, L2 =

∂2

∂η2
, (12)

such that

L1(c1 + c2η + c3η
2 + c4η

3) = 0, L2(c5 + c6η) = 0, (13)

whereci (i = 1,2, · · · ,6) are constants. Introducing non-zero
auxiliary parametersh1, h2 andh3, we develop the zeroth-
order deformation problems as

(1− p)L1[U(η; p) − U0(η)] = ph1N1[U(η; p)], (14)

(1− p)L1[W(η; p) −W0(η)] = ph2N2[W(η; p)], (15)
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(1− p)L2[θ(η; p) − θ0(η)] = ph3N3[θ(η; p)], (16)

subject to the boundary conditions of

U(−1; p) = 0, U(1; p) = 0,

U′′(−1; p) = 0, U′′(1; p) = 0,

W(−1; p) = 0, W(1; p) = 0,

W′′(−1; p) = 0, W′′(1; p) = 0,

θ(−1; p) = Q, θ(1; p) = εQ,

(17)

wherep ∈ [0,1] is the embedding parameter and non-linear
operatorsN1, N2 andN3 are defined as

N1[U(η, p),W(η, p), θ(η, p)]

= α2U(iv)(η, p) − U′′(η, p) + ReU′(η, p)

−θ(η, p) +
Ha2

α2
e + β

2
h

(αeU + βhW), (18)

N2[U(η, p),W(η, p), θ(η, p)]

= α2W(iv)(η, p) −W′′(η, p) + ReW′(η, p)

−
Ha2

α2
e + β

2
h

(βhU − αeW), (19)

N3[U(η, p),W(η, p), θ(η, p)]

= θ′′(η, p) − RePrθ′(η, p)

+γ1RePrθ + 2[(U′(η, p))2 + (W′(η, p))2]

+α2[(U′′(η, p))2 + (W′′(η, p))2]. (20)

For p = 0 we have the initial guess approximations

U(η; 0) = U0(η), W(η; 0) =W0(η), θ(η; 0) = θ0(η). (21)

Whenp = 1, Eqs. (14)–(16) are the same as Eqs. (7)–
(9), respectively, therefore atp = 1 we get the final solutions

U(η; 1) = U(η), W(η; 1) =W(η), θ(η; 1) = θ(η). (22)

Hence the process of giving an increment top from 0 to
1 is the process ofU(η; p) varying continuously from the ini-
tial guessU0(η) to the final solutionU(η) (similar forW(η, p)
andθ(η, p)). This kind of continuous variation is called de-
formation in topology so that we call system Eqs. (14)–(17),
the zeroth-order deformation equation. Next, them-th-order
deformation equations follow as

L1[Um(η) − χmUm−1(η)] = h1RU
m(η), (23)

L1[Wm(η) − χmWm−1(η)] = h2RW
m (η), (24)

L2[θm(η) − χmθm−1(η)] = h3Rθm(η), (25)

with the boundary conditions of

Um(−1) = 0, Um(1) = 0,

U′′m(−1) = 0, U′′m(1) = 0,

Wm(−1) = 0, Wm(1) = 0,

W′′m(−1) = 0, W′′m(1) = 0,

θm(−1) = 0, θm(1) = 0,

(26)

where

RU
m(η) = α2U(iv) − U′′ + ReU′ − θ

+
Ha2

α2
e + β

2
h

(αeU + βhW), (27)

RW
m (η) = α2W(iv) −W′′ + ReW′

−
Ha2

α2
e + β

2
h

(βhU − αeW), (28)

Rθm(η) = θ′′ − RePrθ′ + γ1RePrθ

+2
[ m−1∑

n=0

(U′m−1−nU′n +W′m−1−nW′n)
]

+α2
[ m−1∑

n=0

(U′′m−1−nU′′n +W′′m−1−nW′′n )
]
, (29)

for mbeing integer

χm = 0, for m≤ 1,

χm = 1, for m> 1.
(30)

The initial guess approximationsU0(η),W0(η) andθ0(η), the
linear operatorsL1, L2 and the auxiliary parametersh1, h2

and h3 are assumed to be so selected that Eqs. (14)–(17)
have solution at each pointp ∈ [0,1]. With the help of Tay-
lors series and by referring to Eq. (21)U(η; p), W(η; p) and
θ(η; p) can be expressed as

U(η; p) = U0(η) +
∞∑

m=1

Um(η)pm, (31)

W(η; p) =W0(η) +
∞∑

m=1

Wm(η)pm, (32)

θ(η; p) = θ0(η) +
∞∑

m=1

θm(η)pm, (33)

in whichh1, h2 andh3 are choosen in such a way that the se-
ries equations (31)–(33) are convergent [22] atp = 1. There-
fore we have from Eq. (22) that

U(η) = U0(η) +
∞∑

m=1

Um(η), (34)

W(η) =W0(η) +
∞∑

m=1

Wm(η), (35)

θ(η) = θ0(η) +
∞∑

m=1

θm(η), (36)
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for which we presume that the initial guesses toU, W and
θ the auxiliary linear operatorsL and the non-zero auxil-
iary parametersh1, h2 andh3 are so properly selected that
the deformationU(η, p), W(η, p) and θ(η, p) are smooth
enough and theirm-th-order derivatives with respect top
in Eqs. (34)–(36) exist and are given, respectively, by

Um(η) =
1
m!
∂mU(η; p)
∂pm

∣∣∣∣∣
p=0

, Wm(η) =
1
m!
∂mW(η; p)
∂pm

∣∣∣∣∣
p=0

,

θm(η) =
1
m!
∂mθ(η; p)
∂pm

∣∣∣∣∣
p=0

. It is clear that the convergence

of Taylor series atp = 1 is a prior assumption, whose justi-
fication is provided via a theorem [21], so that the system in
Eqs. (34)–(36) holds true. The formulae in Eqs. (34)–(36)
provide us a direct relationship between the initial guesses
and the exact solutions. All the effects of interaction of the
magnetic field as well as of the heat transfer, Hall and Ion
effects and couple stress flow field can be studied from the
exact formulas (34)–(36). Moreover, a special emphasize
should be placed here that them-th-order deformation sys-
tem (23)–(26) is a linear differential equation system with an
auxiliary linear operatorsL whose fundamental solution is
known.

4 Convergence of the HAM solution

The expressions forU,W and θ contain the auxiliary
parametersh1,h2 andh3. As pointed out by Liao [15], the
convergence and the rate of approximation for the HAM so-
lution depend strongly on the values of auxiliary parame-
ter h. For this purpose,h-curves are plotted by choosing
h1,h2 andh3 in such a manner that the solutions (31)–(33)
ensure convergence [15]. Here to see the admissible values
of h1,h2 andh3, the h-curves are plotted for 15th-order of
approximation in Figs. 2–4 by taking the values of the pa-
rameters as:Pr = 0.71, Q = 1, ε = 0.5, γ1 = 1, Re = 2,
βh = 2, βi = 2, α = 0.5 andHa = 5. It is clearly noted
from Fig. 2 that the range for the admissible values ofh1 is
−1.25 < h1 < −0.75. From Fig. 3, it can be seen that theh-
curve has a parallel line segment that corresponds to a region
of −1.25< h2 < −0.75. Figure 4 depicts that the admissible
value ofh3 are−1.5 < h3 < −0.5. A wide valid zone is ev-
ident in these figures ensuring convergence of the series. To
choose optimal value of the auxiliary parameter, the average
residual errors (see Ref. [17] for more details) are defined as

EU,m =
1

2K

K∑
i=−K

{
N1

[ m∑
j=0

U j(i∆t)
]}2
, (37)

EW,m =
1

2K

K∑
i=−K

{
N2

[ m∑
j=0

Wj(i∆t)
]}2
, (38)

Eθ,m =
1

2K

K∑
i=−K

{
N3

[ m∑
j=0

θ j(i∆t)
]}2
, (39)

Fig. 2 Theh curve ofU(η) whenβh = 2, βi = 2,α = 0.5, Ha = 5

Fig. 3 Theh curve ofW(η) whenβh = 2, βi = 2,α = 0.5, Ha = 5

Fig. 4 Theh curve ofθ(η) whenβh = 2, βi = 2,α = 0.5, Ha = 5

where∆t = 1/K and K = 5. At different orders of ap-
proximations (m), the minimum of average residual errors
are shown in Tables 1–3. It is clear from Table 1 that the
average residual error forU is minimum ath1 = −1.04. It
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can be seen from Table 2 that the minimum of average resid-
ual error forW attainsh2 = −0.98. Table 3 depicts that
at h3 = −1.025, Eθ attains minimum. Therefore, the opti-
mum values of convergence control parameters are taken as
h1 = −1.04,h2 = −0.98,h3 = −1.025.

Table 1 Optimal value ofh1 at different orders of approximations

Order Optimal ofh1 Minimum of Em

10 −1.04 1.19× 10−5

15 −1.04 4.16× 10−6

20 −1.04 2.41× 10−7

Table 2 Optimal value ofh2 at different orders of approximations

Order Optimal ofh2 Minimum of Em

10 −0.94 1.77× 10−7

15 −0.98 5.15× 10−8

20 −0.98 2.72× 10−8

Table 3 Optimal value ofh3 at different orders of approximations

Order Optimal ofh3 Minimum of Em

10 −1.020 7.82× 10−5

15 −1.025 8.92× 10−6

20 −1.025 8.84× 10−7

To see the accuracy of the solutions, the residual errors
are defined for the system as

REU = α
2U(iv)

n (η) − U′′n (η) + ReU′n(η) − θn(η)

+
Ha2

α2
e + β

2
h

(αeUn + βhWn), (40)

REW = α
2W(iv)

n (η) −W′′n (η) + ReW′n(η)

−
Ha2

α2
e + β

2
h

(βhUn − αeWn), (41)

REθ = θ′′n (η) − RePrθ′n(η) + γ1RePrθn

+2[(U′n(η))2 + (W′n(η))2]

+α2[(U′′n (η))2 + (W′′n (η))2], (42)

where Un(η), Wn(η) and θn(η) are the HAM solution for
U(η), W(η) andθ(η). For optimizing the convergence con-
trol parameters, residual errors [18] for different values ofh
in the convergence region displayed in Figs. 5–7. We can
see thath1 = −1.04,h2 = −0.98,h3 = −1.025 gives a better
solution. Table 4 establishes the convergence of the obtained
series solution. It is found from the above observations that
the series given by Eqs. (31)–(33) converge in the whole
region ofη whenh1 = −1.04,h2 = −0.98,h3 = −1.025.

Fig. 5 Relative error ofU(η) whenβh = 2, βi = 2,α = 0.5, Ha = 5

Fig. 6 Relative error ofW(η) whenβh = 2,βi = 2,α = 0.5, Ha = 5

Fig. 7 Relative error ofθ(η) whenβh = 2, βi = 2,α = 0.5, Ha = 5

In order to pursue the convergence of the HAM solu-
tions to the exact ones, the graphs for the ratio (following the
recent work of Ref. [21])
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βU =

∣∣∣∣∣ Um(h)
Um−1(h)

∣∣∣∣∣,
βW =

∣∣∣∣∣ Wm(h)
Wm−1(h)

∣∣∣∣∣, (43)

βθ =

∣∣∣∣∣ θm(h)
θm−1(h)

∣∣∣∣∣,
against the number of termsm in the homotopy series is pre-
sented in Figs. 8–10. Figures strongly indicate that a finite
limit of β will be attained in the limit ofm→ ∞, which will
remain less than unity (actually figures imply a limit of 0.91
for U, W and θ). The velocity and temperature solutions
seem to converge in an oscillatory manner which requires
more terms in the homotopy series. Thus, the convergence
to the exact solution is assured by the HAM.

Table 4 Convergence of HAM solutions for different orders of
approximations

Order U(0) W(0) θ(0)

1 0.256 250 000 0 0 1.860 000 000

5 0.266 892 314 4 0.055 651 358 0 2.113 014 591

10 0.268 922 610 6 0.054 909 169 1 2.137 602 471

15 0.268 624 370 8 0.054 728 226 6 2.138 233 341

20 0.268 624 361 9 0.054 728 217 9 2.138 233 185

30 0.268 624 348 5 0.054 728 212 1 2.138 233 071

40 0.268 624 342 7 0.054 728 211 6 2.138 233 028

50 0.268 624 342 6 0.054 728 211 5 2.138 233 027

Fig. 8 The ratioβU from the theorem to reveal the convergence of
the HAM solutions

5 Results and discussion

The solutions forU(η), W(η) andθ(η) have been computed
and shown graphically in Figs. 11 to 22. The effects of
magnetic parameter (Ha), Hall parameter (βh), ion-slip pa-
rameter (βi) and couple stress fluid parameter (α) have been
discussed. To study the effect ofHa, βh, βi andα, computa-
tions were carried out by takingPr = 0.71, Q = 1, ε = 0.5,
γ1 = 1, Re= 2 andh1 = −1.04,h2 = −0.98,h3 = −1.025.

Fig. 9 The ratioβW from the theorem to reveal the convergence of
the HAM solutions

Fig. 10 The ratioβθ from the theorem to reveal the convergence of
the HAM solutions

Fig. 11 The influence of the magnetic parameterHa on U when
βh = 2.0, βi = 2.0,α = 0.5

Figure 11 displays the effect of the magnetic parame-
ter Ha on U(η). It can be observed that the velocityU(η)
decreases with an increase in parameterHa. This is due to
the fact that, the introduction of a transverse magnetic field,
normal to the flow direction, has a tendency to create the
drag known as the Lorentz force which tends to resist the
flow. Hence the velocity decrease as the magnetic parame-
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ter Ha increases. The effect of Ha on the induced flow in
z-directionW(η) is shown in Fig. 12. It can be seen from
this figure thatW(η) increases with an increase in parameter
Ha. Figure 13 depicts the variation of temperature withHa.
The temperatureθ(η) decreases with an increase in param-
eterHa. As explained above, the transverse magnetic field
gives rise to a resistive force known as the Lorentz force of
an electrically conducting fluid. This force makes the fluid
experience a resistance by increasing the friction between its
layers and thus decreases its temperature and concentration.

Fig. 12 The influence of the magnetic parameterHa on W when
βh = 2.0, βi = 2.0,α = 0.5

Fig. 13 The influence of the magnetic parameterHa on θ when
βh = 2.0, βi = 2.0,α = 0.5

The variation of velocity componentsU(η) and W(η)
and temperatureθ(η) with βh is shown in Figs. 14 to 16.
We see that the dimensionless velocity componentU(η) and
temperatureθ(η) increase with an increase in parameterβh.
The inclusion of Hall parameter decreases the resistive force
imposed by the magnetic field due to its effect in reducing
the effective conductivity. Hence, the velocity component
U(η) and temperatureθ(η) increases as the Hall parameter
increases. The induced flow in thez-direction decreases as
βh increases.

Fig. 14 The influence of the Hall parameterβh onU whenβi = 2.0,
α = 0.5, Ha = 2

Fig. 15 The influence of the Hall parameterβh onW whenβi = 2.0,
α = 0.5, Ha = 2

Fig. 16 The influence of the Hall parameterβh onθ whenβi = 2.0,
α = 0.5, Ha = 2

Figures 17 to 19 represent the effect of the ion-slip pa-
rameterβi onU(η), W(η) andθ(η). It can be seen from these
figures that the velocityU(η) increase with an increase in
parameterβi . The induced flow in the z-direction decreases
with an increase in parameterβi . The temperatureθ(η) in-
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creases with an increase in parameterβi . As βi increases the
effective conductivity also increases, which in turn decreases
the damping force on the velocity component in the direction
of the flow, and hence the velocity component in the flow di-
rection increases.

Fig. 17 The influence of the ion-slip parameterβi on U when
βh = 2.0,α = 0.5, Ha = 2

Fig. 18 The influence of the ion-slip parameterβi on W when
βh = 2.0,α = 0.5, Ha = 2

Fig. 19 The influence of the ion-slip parameterβi on θ when
βh = 2.0,α = 0.5, Ha = 2

Figures 20 to 22 indicate the effect of the couple stress
fluid parameterα on U(η), W(η) and θ(η). As the couple
stress fluid parameterα increases, the velocityU(η), the in-
duced flow in thez-direction W(η) decrease. It is also clear

Fig. 20 The influence of the couple stress parameter (α) onU when
βh = 2.0, βi = 2.0, Ha = 2

Fig. 21 The influence of the couple stress parameter (α) on W
whenβh = 2.0, βi = 2.0, Ha = 2

Fig. 22 The influence of the couple stress parameter (α) onθ when
βh = 2.0, βi = 2.0, Ha = 2
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that the temperatureθ(η) decreases with an increase inα. It
can be noted that the velocity in the case of couple stress
fluid is less than that in the Newtonian fluid case. Thus, the
presence of couple stresses in the fluid decreases the velocity
and temperature.

6 Conclusions

In this paper, the Hall and ion-slip effects on fully developed
electrically conducting couple stress fluid flow between ver-
tical parallel plates has been studied. Using similarity trans-
formations, the governing equations have been transformed
into non-linear ordinary differential equations. The govern-
ing equations are expressed in the non-dimensional form and
are then solved by HAM. The features of flow characteristics
are analyzed by plotting graphs with detailed discussions.
The main findings are summarized as follows:

(1) As the magnetic parameter increases, velocity in the di-
rection of the flow and the temperature are decreased and
the induced flow velocity component is increased.

(2) The velocity in the flow direction and temperature are
increased and the induced flow in thez-direction is de-
creased as the Hall parameter increases.

(3) The velocity in the flow direction and the temperature in-
crease and the induced flow in thez-direction decreases
with an increase in the ion-slip parameter.

(4) It is noticed that the presence of couple stresses in the
fluid decreases the velocity and temperature.
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