

Synthetic Communications

An International Journal for Rapid Communication of Synthetic Organic Chemistry

ISSN: 0039-7911 (Print) 1532-2432 (Online) Journal homepage: www.tandfonline.com/journals/lsyc20

Facile, One-Pot, Three-Component Synthesis of Benzo[*a*]naphthacene-8,13-diones

Vakiti Srinivas & Vedula Rajeswar Rao

To cite this article: Vakiti Srinivas & Vedula Rajeswar Rao (2012) Facile, One-Pot, Three-Component Synthesis of Benzo[*a*]naphthacene-8,13-diones, *Synthetic Communications*, 42:3, 388-393, DOI: [10.1080/00397911.2010.524961](https://doi.org/10.1080/00397911.2010.524961)

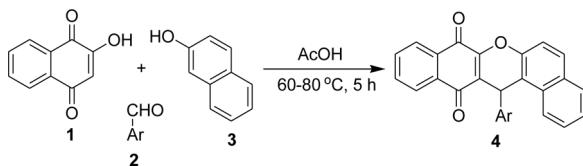
To link to this article: <https://doi.org/10.1080/00397911.2010.524961>

Published online: 06 Oct 2011.

Submit your article to this journal

Article views: 321

View related articles


Citing articles: 2 [View citing articles](#)

FACILE, ONE-POT, THREE-COMPONENT SYNTHESIS OF BENZO[*a*]NAPHTHACENE-8,13-DIONES

Vakiti Srinivas and Vedula Rajeswar Rao

Department of Chemistry, National Institute of Technology, Warangal, India

GRAPHICAL ABSTRACT

Abstract One-pot synthesis of 14-aryl-14H-7-oxa-benzo[*a*]naphthacene-8,13-diones was developed by the reaction of 2-hydroxynaphthalene-1,4-dione, aromatic aldehydes, and 2-naphthol in the presence of acetic acid. The structures of these compounds were identified by elemental analyses, infrared, ¹H NMR, and mass.

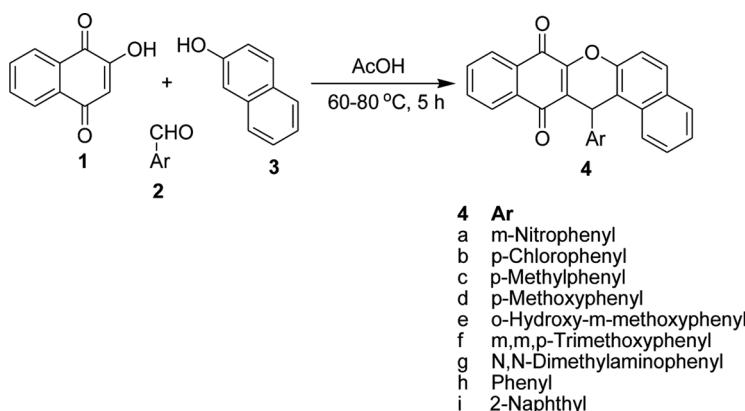
Keywords Benzo[*a*]naphthacene-8,13-diones; lawsone; 2-naphthol

INTRODUCTION

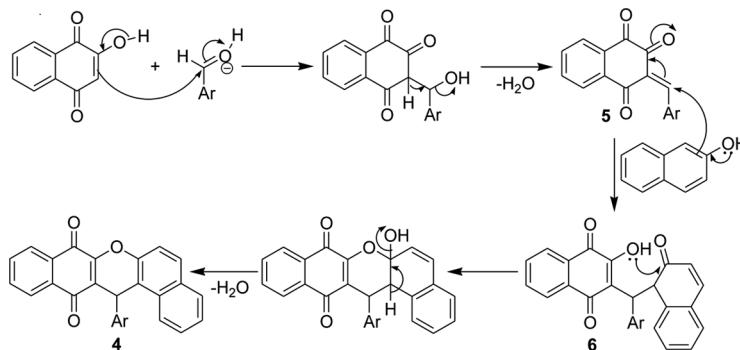
The chemistry of quinones is of considerable interest, because this class of compounds includes many natural products and numerous important synthetic products.^[1,2] Quinone derivatives may be toxic to cells by a number of mechanisms^[3,4] including redox arylation, intercalation, induction of DNA strand breaks, generation of free radicals, and alkylation via quinone methide formation.^[5] As a consequence, the molecular frameworks of a great number of pharmaceuticals and biologically important compounds contain a quinone moiety. Their importance in pharmacological activity is also attributed to the inhibition of special proteins, such as bacterial topoisomerase II-DNA gyrase (antibacterial),^[6] mammalian topoisomerases I and II (antitumor),^[7] and HIV-1 integrase and proteinase (antiviral).^[8] Representative examples of this class of compounds are well-known anticancer drugs of the anthracycline series-doxorubicine and mitoxanthrone. The action of these compounds is believed to occur via topoisomerase II inhibition.^[7]

Compounds containing the quinone group represent an important class of biologically active molecules that are widespread in nature.^[9] However, to the best of

Received August 4, 2010.


Address correspondence to V. Rajeswar Rao, Department of Chemistry, National Institute of Technology, Warangal 506 004, A.P., India. E-mail: vrajesw@yahoo.com

our knowledge, there are no reports on the synthesis of 14*H*-7-oxa-benzo[a]naphthacene-8,13-dione ring systems. The development of multicomponent reactions (MCRs) designed to produce elaborate biologically active compounds has become an important area of research in organic, combinatorial, and medicinal chemistry.^[10-13] The MCR strategy offers significant advantages over conventional linear synthesis because of its flexible, convergent, and atom-efficient nature.^[14,15] In continuation of our earlier work on the synthesis of heterocyclic quinones,^[16,17] we report a one-pot synthesis of 14-aryl-14*H*-7-oxa-benzo[a]naphthacene-8,13-dione.


RESULTS AND DISCUSSION

The one-pot, three-component reaction of lawsone **1** with various aromatic aldehydes **2** in the presence of 2-naphthol **3** proceeded rapidly in glacial acetic acid at 60–80 °C to afford 14-aryl-14*H*-7-oxa-benzo[a]naphthacene-8,13-dione **4** in good yields (Scheme 1).

A plausible mechanism for the formation of products **4** is proposed in Scheme 2. Acid-catalyzed condensation between **1** and **2** will give an intermediate **5**. The intermediate **5** on reaction with **3** gave another intermediate **6**. The intermediate formed in situ **6** undergoes cyclization to give the final product **4**. The newly prepared compounds revealed the presence of 1,4-quinone moiety by the reduction and aerial oxidation test with Zn/AcOH. The structures of products **4** were established on the basis of their elemental analyses, infrared (IR), ¹H and ¹³C NMR, and mass spectral data. The ¹H NMR spectrum of **4a** exhibited one singlet for CH of pyranine at δ 6.04 ppm and a multiplet observed at δ 7.52–8.28 ppm was assigned to aromatic protons. The proton decoupled ¹³C NMR spectrum of **4a** displayed 27 distinct resonance signals, in agreement with the proposed structure. The quinone carbonyls appeared downfield at 182.0 and 182.9 respectively. The mass spectrum of **4a** showed a molecular ion peak at *m/z* 434 [M + H] (Table 1).

Scheme 1. One-pot, three-component reaction of 2-hydroxy-1,4-naphthoquinone, aromatic aldehyde, and 2-naphthol.

Scheme 2. Mechanism of the reaction.

Table 1. One-pot, three-component reaction of 2-hydroxy-1,4-naphthoquinone, aromatic aldehyde, and 2-naphthol

Entry	Ar	Yield (%) ^a
4a	m-Nitrophenyl	94
4b	p-Chlorophenyl	92
4c	p-Methylphenyl	95
4d	p-Methoxyphenyl	93
4e	o-Hydroxy-m-methoxyphenyl	91
4f	m,m,p-Trimethoxyphenyl	96
4g	N,N-Dimethylaminophenyl	90
4h	Phenyl	93
4i	2-Naphthyl	96

^aIsolated yields.

CONCLUSION

In conclusion, we have carried out a three-component synthetic method for preparation of some benzo[*a*]naphthacene-8,13-diones. This method has several advantages such as readily available starting materials, easy workup, and good yields of the products.

EXPERIMENTAL

Melting points were determined in open capillaries with a Cintex melting-point apparatus (Mumbai, India). Melting points are uncorrected, and CHNS analysis was done on a Carlo Erba EA 1108 automatic elemental analyzer. The purity of the compounds was checked by thin-layer chromatographic (TLC) plates (E. Merek, Mumbai, India), and IR spectra (KBr) were recorded on a Bruker WM-4(X) spectrometer (577 model). ¹H NMR spectra were recorded on a Bruker WM 400-MHz spectrometer in δ ppm using tetramethylsilane (TMS) as internal standard. Mass spectra (EI-MS) were determined on a Perkin-Elmer (SCIEX API-2000, ESI) instrument at 12.5 eV.

General Procedure for the Synthesis of 14-Aryl-14*H*-7-oxa-benzo[a]naphthacene-8,13-dione (4)

A mixture of lawsone (1 mmol), aromatic aldehyde (1 mmol), and 2-naphthol (1 mmol) was stirred at 60–80 °C for 5 h. The progress of the reaction was monitored by TLC (20% methanol in chloroform). After completion of the reaction, the solid separated was filtered and washed with water. The crude product was purified by recrystallization from ethanol to give 4.

Data

14-(3-Nitrophenyl)-14*H*-7-oxa-benzo[a]naphthacene-8,13-dione (4a). Yellow powder, mp > 300 °C; IR (KBr) ($\nu_{\text{max}}/\text{cm}^{-1}$): 3070 (C-H), 1698 (C=O), 1650 (C=O), 1527 (C=C); ^1H NMR (400 MHz, DMSO- d_6) (δ ppm): 6.04 (1H, s, CH of pyran ring), 7.52–8.28 (14H, m, ArH). Anal. calcd. for $\text{C}_{27}\text{H}_{15}\text{NO}_5$: C, 74.82; H, 3.49; N, 3.23%. Found: C, 72.77; H, 3.45; N, 3.19%.

14-(4-Chlorophenyl)-14*H*-7-oxa-benzo[a]naphthacene-8,13-dione (4b). Yellow solid, mp > 300 °C; IR (KBr) ($\nu_{\text{max}}/\text{cm}^{-1}$): 2911 (C-H), 1703 (C=O), 1665 (C=O), 1576 (C=C); ^1H NMR (400 MHz, DMSO- d_6) (δ ppm): 5.83 (1H, s, CH of pyran ring), 7.26–8.27 (14H, m, ArH). Anal. calcd. for $\text{C}_{27}\text{H}_{15}\text{ClO}_3$: C, 76.69; H, 3.58%. Found: C, 76.61; H, 3.52%.

14-(4-Methylphenyl)-14*H*-7-oxa-benzo[a]naphthacene-8,13-dione (4c). Orange powder, mp > 300 °C; IR (KBr) ($\nu_{\text{max}}/\text{cm}^{-1}$): 2914 (C-H), 1703 (C=O), 1665 (C=O), 1575 (C=C); ^1H NMR (400 MHz, DMSO- d_6) (δ ppm): 2.13 (3H, s, CH_3), 5.76 (1H, s, CH of pyran ring), 6.99–8.27 (14H, m, ArH). Anal. calcd. for $\text{C}_{28}\text{H}_{18}\text{O}_3$: C, 83.57; H, 4.51%. Found: C, 83.52; H, 4.48%.

14-(4-Methoxylphenyl)-14*H*-7-oxa-benzo[a]naphthacene-8,13-dione (4d). Yellow powder, mp > 300 °C; IR (KBr) ($\nu_{\text{max}}/\text{cm}^{-1}$): 2931 (C-H), 1702 (C=O), 1666 (C=O), 1580 (C=C); ^1H NMR (400 MHz, DMSO- d_6) (δ ppm): 3.69 (3H, s, OCH_3), 5.97 (1H, s, CH of pyran ring), 6.75 (2H, d, J = 8.8 Hz, ArH), 7.13 (2H, d, J = 8.8 Hz, ArH), 7.75–7.98 (10H, m, ArH). Anal. calcd. for $\text{C}_{28}\text{H}_{18}\text{O}_4$: C, 80.37; H, 4.34%. Found: C, 80.31; H, 4.39%.

14-(2-Hydroxy-3-methoxylphenyl)-14*H*-7-oxa-benzo[a]naphthacene-8,13-dione (4e). Yellow powder, mp > 300 °C; IR (KBr) ($\nu_{\text{max}}/\text{cm}^{-1}$): 2938 (C-H), 1683 (C=O), 1656 (C=O), 1575 (C=C); ^1H NMR (400 MHz, DMSO- d_6) (δ ppm): 3.88 (3H, s, OCH_3), 5.75 (1H, s, CH of pyran ring), 6.68–6.70 (1H, m, ArH), 6.96–7.07 (2H, m, ArH), 7.78–8.07 (10H, m, ArH). Anal. calcd. for $\text{C}_{28}\text{H}_{18}\text{O}_5$: C, 77.41; H, 4.18%. Found: C, 77.36; H, 4.39%.

14-(3,3,4-Trimethoxylphenyl)-14*H*-7-oxa-benzo[a]naphthacene-8,13-dione (4f). Yellow powder, mp > 300 °C; IR (KBr) ($\nu_{\text{max}}/\text{cm}^{-1}$): 2937 (C-H), 1708 (C=O), 1673 (C=O), 1592 (C=C); ^1H NMR (400 MHz, DMSO- d_6) (δ ppm): 3.63 (9H, s, OCH_3), 5.98 (1H, s, CH of pyran ring), 6.52 (2H, s, ArH), 7.77–7.99 (10H, m, ArH). Anal. calcd. for $\text{C}_{30}\text{H}_{22}\text{O}_6$: C, 75.30; H, 4.63%. Found: C, 75.25; H, 4.69%.

14-(4-N,N-Dimethylaminophenyl)-14*H*-7-oxa-benzo[*a*]naphthacene-8,13-dione (4g). Brown powder, mp > 300 °C; IR (KBr) (ν_{max} /cm⁻¹): 3069 (C-H), 1693 (C=O), 1656 (C=O), 1587 (C=C); ¹H NMR (400 MHz, DMSO-*d*₆) (δ ppm): 2.50 (6H, s, N-CH₃), 3.95 (1H, s, CH of pyran ring), 6.78–8.10 (14H, m, ArH). Anal. calcd. for C₂₉H₂₁NO₃: C, 80.72; H, 4.91; N, 3.25%. Found: C, 80.65; H, 3.19; N, 3.20%.

14-Phenyl-14*H*-7-oxa-benzo[*a*]naphthacene-8,13-dione (4h). Orange powder, mp > 300 °C; IR (KBr) (ν_{max} /cm⁻¹): 3021 (C-H), 1697 (C=O), 1654 (C=O), 1571 (C=C); ¹H NMR (400 MHz, DMSO-*d*₆) (δ ppm): 5.81 (1H, s, CH of pyran ring), 7.08–8.28 (15H, m, ArH). Anal. calcd. for C₂₇H₁₆O₃: C, 83.49; H, 4.15%. Found: C, 83.41; H, 4.12%.

14-(2-Naphthyl)-14*H*-7-oxa-benzo[*a*]naphthacene-8,13-dione (4i). Orange powder, mp > 300 °C; IR (KBr) (ν_{max} /cm⁻¹): 2918 (C-H), 1673 (C=O), 1636 (C=O), 1574 (C=C); ¹H NMR (400 MHz, DMSO-*d*₆) (δ ppm): 5.99 (1H, s, CH of pyran ring), 7.40–8.31 (17H, m, ArH). Anal. calcd. for C₃₁H₁₈O₃: C, 84.92; H, 4.14%. Found: C, 84.91; H, 4.10%.

ACKNOWLEDGMENT

We thank the University Grants Commission, New Delhi [F. no. 32-201/2006 (SR)] for financial support.

REFERENCES

1. Patai, S.; Rappoport, Z. *The Chemistry of Quinonoid Compounds*; Wiley Interscience: New York, 1988, vol. 2, pp. 552–570.
2. Ulrich, H.; Richter, R. In *Methoden der Organischen Chemie, Chinone Teil 1, p-Chinone der Benzol und Naphthalin Reihen*; C. Grundmann (Ed.); Georg-Thieme Verlag: Stuttgart, 1977.
3. Webb, J. L. In *Enzyme and Metabolic Inhibitors*; Academic Press: New York, 1996; vol. 3, pp. 421–594.
4. Marion, G. M.; Adrian, R.; Gerald, M. C. Mechanisms of toxicity of naphthoquinones to isolated hepatocytes. *Biochem. Pharmacol.* **1986**, *35*, 1177–1184.
5. Moore, H. W. Bioactivation as a model for drug design bioreductive alkylation. *Science*. **1977**, *197*, 527–532.
6. Barrett, J. F.; Gootz, T. D.; McGuirk, P. R.; Farrell, C. A.; Sokolowski, S. A. Use of in vitro topoisomerase II assays for studying quinolone antibacterial agents. *Antimicrob. Agents Chemother.* **1989**, *33*, 1697–1703.
7. Foglesong, P. D.; Reckord, C.; Swink, S. Doxorubicin inhibits human DNA topoisomerase I. *Cancer Chemther. Pharmacol.* **1992**, *30*, 123–125.
8. Fesen, M. R.; Kohn, K. W.; Leteurtre, F.; Pommier, Y. Inhibitors of human immunodeficiency virus integrase. *Natl. Acad. Sci. U.S.A.* **1993**, *90*, 2399–2403.
9. Dewick, P. M. In *Medicinal Natural Products*, 2nd ed.; Wiley: Chichester, UK, 2002.
10. Orru, R. V. A.; Greef, D. M. Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds. *Synthesis* **2003**, *10*, 1471–1499.
11. Balme, G.; Bossharth, E.; Monteiro, N. Pd-assisted multicomponent synthesis of heterocycles. *Eur. J. Org. Chem.* **2003**, 4101–4111.

12. Bräse, S.; Gil, C.; Knepper, K. The recent impact of solid-phase synthesis on medicinally relevant benzoannelated nitrogen heterocycles. *Bioorg. Med. Chem.* **2002**, *10*, 2415–2437.
13. Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. *Angew. Chem. Int. Ed.* **2000**, *39*, 3168–3210.
14. Weber, L. Multi-component reactions and evolutionary chemistry. *Drug. Discov. Today* **2002**, *7*, 143–147.
15. Dömling, A. Recent advances in isocyanide-based multicomponent chemistry. *Curr. Opin. Chem. Biol.* **2002**, *6*, 306–313.
16. Srinivas, V.; Rajeswar Rao, V. Regioselective synthesis of thiadiazolo[3,2-*a*]benzimidazole-5,8-diones. *J. Chem. Res.* **2009**, 679–681.
17. Srinivas, V.; Rajeswar Rao, V. A highly regioselective synthesis of 8-hydroxy-3-sulfanyl-7-undecyl-5*H*-[1,2,4]triazolo[3,4-*b*][1,3,4]benzothiadiazole-6,9-dione and its derivatives. *J. Chem. Res.* **2010**, 80–82.