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Abstract

Decision-theoretic rough set model is the probabilistic generalization of the Pawlak rough set model. In this paper, we have
analyzed decision-theoretic rough set model (DTRSM) in the context of attribute reduction. DTRSM is based on Bayesian
decision theory for classifying an object into a particular category. The risk associated with classifying an object is defined in
terms of loss functions and conditional probabilities. We have used least mean squares learning algorithm to determine the
Bayesian loss functions by taking expected overall risk as the learning function. With the loss functions ready, DTRSM can be
applied to classification problems. We have proposed attribute reduction in DTRSM by optimizing the expected overall risk
using particle swarm optimization algorithm. The proposed algorithm was tested on various data sets found in University of
California, machine learning repository. The proposed algorithm has given good results for the cardinality of the reduct and
classification accuracy during tests performed on the data sets. Experimental results obtained by the proposed algorithm have
been found to give better reduced length of the reduct and classification accuracy in comparison to the results obtained by the
consistency subset evaluation feature selection algorithm described in the literature.
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1. Introduction

Data collected from real world applications may contain irrelevant, redundant, noisy and unreliable attributes.
Accuracy and performance of classifiers built on training such data sets will be poor. In-order to have a better classi-
fication accuracy and an improved computation performance, quality of the data sets has to be improved. Quality of
the data sets can be improved by identifying and removing irrelevant and redundant attributes. This process is called
attribute reduction. Attribute reduction is a pre-process step in data analysis. Attribute reduction is the process of
finding a minimal subset of attributes that preserves a particular criterion of the original data set. Some of the crite-
ria of attribute reduction are attribute correlation, entropy, consistency, inter class separability and minimum concept
description length. Various approaches to attribute reduction have been proposed in the literature. In*, Mark A. Hall
has proposed correlation based feature subset selection (CFS). CFS uses feature-feature correlation and feature-class
correlation to find an optimal subset of features. In '*, Huan Liu et al. have proposed consistency subset evaluation
feature selection (CSE) method. In CSE, the metric for feature selection is the consistency level of the class values.
In "', Kira et al. have proposed ReliefF feature selection method. ReliefF selects a random sample instance and
identifies the nearest neighbor from the same and different class by considering the attribute values.

Attribute reduction requires a search algorithm and an evaluator. The search algorithm, performs a search
operation among all the possible attribute subsets. Commonly used search algorithms are best-first, exhaustive,
genetic, greedy, random and rank algorithms. The attribute evaluator will evaluate the relative significance of the
attribute subsets. Attribute reduction methods are mainly categorized into wrappers and filters. Wrappers are target
learning algorithm dependent. They evaluate attribute subsets based on the score metrics provided by the target
learning algorithm. Filters are independent of the learning algorithms. They evaluate an attribute subset based on the
attribute filter metrics. Popular filter evaluators are correlation, consistency, chi-squared, information gain, gain ratio
and principal components.

In this paper, we propose a filter based approach to attribute reduction. Expected overall risk in DTRSM is con-
sidered as scoring metric for attribute subset evaluation and particle swarm optimization algorithm (PSO) is used for
searching across all the possible attribute subsets. As DTRSM is used in many applications, we are using this model
for attribute evaluation. In ', Wen Li et al. have proposed an instance centric hierarchical classification framework
for text classification based on DTRSM. In ", Dun Liu et al. have used DTRSM to propose a profit-based three-way
approach to investment decision making. In *°, Hong Yu et al. have proposed an autonomous knowledge-oriented
clustering technique using DTRSM. In **, Hong Yu et al. have proposed an approach to automatically determine the
number of clusters using DTRSM. In %, Bing Zhou et al. have introduced three-way decision approach in email
spam filtering. In *°, Xianzhong Zhou et al. have proposed a three-way view of decision model based on DTRSM,
here optimistic, pessimistic, or equable decision is made based on the cost of error.

In 2! Yiyu Yao has introduced DTRSM as a probabilistic generalization of Rough set theory (RST). DTRSM
introduces two threshold parameters « and , where 0 < f <« <1 . These threshold parameters probabilistically
redefine RST approximations. In DTRSM, threshold parameters are formulated based on Bayesian decision theory
loss functions. In this approach, classification decisions are made based on the cost and probability associated with
the decision. The loss functions can be provided by the user or they can be determined using machine learning
techniques. In > ® 7, game theoretic rough set model (GTRSM) analyzes the problem of determining the threshold
parameters based on game theory. GTRSM uses machine learning techniques to obtain a sequence of risk
modifications and then finds the loss function values by optimizing one or more classification measures. GTRSM
requires user to provide the measures of classification ability and the acceptable threshold to stop the learning
procedure. In *, Xiuyi Jia et al. have determined the threshold parameters by optimizing the decision cost. Here
Xiuyi Jia et al. have assumed the search space of the threshold parameters as the set of probabilities of all objects
instead of  {0.. In this paper, we also determine the loss functions in DTRSM using least mean squares (LMS)
learning algorithm.

The rest of the paper is organized as follows: section 2 introduces basic concepts of RST, section 3 describes the
concepts of DTRSM, section 4 describes the process of determining the threshold parameters of DTRSM, section 5
describes the process of attribute reduction using PSO in DTRSM, section 6 shows the experimental results on
different data sets from UCI machine learning repository and section 7 concludes the paper.
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2. Rough Set Theory

RST was introduced by Pawlak in 1982 ' '®'7 RST is a mathematical methodology in data analysis to deal with
inconsistent and imperfect knowledge. In RST, real world data is represented as decision table. A decision table is
defined in terms of attributes, objects, indiscernibility, concepts and consistency. Let S=(U,C,d.V,f) be a
decision table, where U is the universe of objects, C is the set of conditional attributes, d is a decision attribute,
V is the value set defined by V={V |ceC}, where V, is the value set of the conditional attribute c,
Jf:UxC—Vis a mapping function, where f(x,,c) represents a value for object x, € U on conditional attribute
¢ € Cin the domain 7/, .

The main concept of RST is indiscernibility. Let [x,]. be the set of indiscernible objects of an object x, eU .
[x,]. is also referred as the equivalence class of x, with respect to C . [x,]. is defined as
[x].={x,eU|VceCl, f(x,c)= f(x,,c)}. Let 7. be the partition of U with respect to the set of conditional
attributes. 7. ={[x,].|x, €U }. The set of objects those are of the same decision class are grouped into concepts.
Let X, , be the concept of decision class d,. X, is defined as X, ={x, eU| f(x,,d)=d,} . Let 7, be the
partition of U defined by the decision attribute d as T, =X, |d, € V } A decision table can be either consistent
or inconsistent.

consistent fVxl.en.,3X, en,|lx].cX,
inconsistent otherwise

RST can efficiently analyze inconsistent data sets by defining lower and upper approximations of concepts. Let
LACX, |=.)and UA(X, |7.) be the lower and upper approximations of X, , respectively defined as follows
LAX, |7 = Jlx 1o 1Ix, ). < X, band UAX, |z)= (Jix) I[x) 0 X, # 4}

[xjlcerc [xjlcerc
Based on the definitions of lower and upper approximations, a concept X, € 7, is defined in terms of three regions
i.e., positive region, boundary region and negative region. Positive region of a concept is the set of objects that
certainly belong to that concept. Boundary region of a concept is the set of objects that may or may not belong to
that concept. Negative region of a concept is the set of objects that certainly does not belong to that concept. Let
POS(X, |7.), BND(X, |z.) and NEG(X, | z.) represent the positive, boundary and negative regions of X,
respectively. POS(X, |7.), BND(X, |z.) and NEG(X, | z.) are defined as follows
POS(X, | 7.) = LA(X, | 7.), BND(X, | ) =UA(X,, | 7,)~LA(X, | ) and NEG(X, | z,) =U ~UA(X,, | ).

3. Decision-Theoretic Rough Set Model

RST requires rigid participation specifications i.e., satisfying the constraint [x,]. =X, for deciding
[x]1. gLA(X | 7.) and the constraint [x,]. "X, #¢ for deciding [x,]. gUA(X |7.). RST is extended to
DTRSM by relaxmg these strict participation rules, through introducing a pair of threshold parameters o and 3,
0<f<a<1??232 These threshold parameters & and f3, are formulated based on Bayesian decision theory
loss functions. The loss functions can either be known from the domain knowledge or can be determined using
machine learning techniques.

In * | Yiyu Yao has introduced Bayesian decision theory in DTRSM, to determine & and £ threshold
parameters. Bayesian decision theory is a statistical approach for solving classification problems '. In Bayesian
decision theory, posterior probabilities are calculated using the prior probabilities and the conditional probabilities.
Then the object is assigned to the class with maximum posterior probability, thus achieving minimum probability
for the classification error. If there is a penalty or cost associated with each misclassification and if this cost is
different for different classes, then weighted posterior probabilities has to be considered for classification decisions.

Yao et al, have related Bayesian decision theory to the problem of deciding [x,]. < POS(X 4 | 7.) or
[x1. CBND(Xd |7.) or [x,]. CNEG(X, | z.) as follows. Let a,, a, and a, be the actions of deciding
whether [x,]. CPOS( |z,.)or [x,]. < BND(Xd |z.)or [x]. < NEG(Xd | 7.) respectlvely Let lpxd , iBXd ,
Ay 4 lp)?d_ , lw?d and A be the loss functions. Let Apx, s Ay, ” and 4, 'be the costs incurred for taking actions
a

a and a, respectlvely when x, € X .Let 4, %, 0 A ~and /1 be tlﬁe costs incurred for taking actions a,
aj

P> BX
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a, and a, when x, € X, , where X, is the complement of concept X, . X, =U-X, . Let R(a,|[x].),
R(a |[x] ) and R(a,V |[x] ) be the ‘conditional risks incurred in taklng actions a,, a, and a, respectively.
Bayesian decision theory defines these conditional risks as follows

R(a, [[x]c) = A, POX,, [Tx 1)+ A, P(X,, [[x])
R, [[x]e) = Ay, POX,, |[x]0) + A, P(X,, |1610)
X R[(a.\]r ||[X,-]C) = Aw,, PO D] + Ay, P(X, |[x].)
d; M xx C !
where P(X, |[x].)= W .The expected overall risk R is defined as follows
J X .
R= Y R(a,|[x])+R(a,|[x].)+Ra,|[x]) (D

[xilce 7c
Bayesian decision theory states that the action with minimum conditional risk has to be taken among all the possible
actions i.e.,
if R(a,|[x].) < R(a, |[x],) and R(a, |[x].) < R(a, |[x].) then, [x]. < POS(X, | x,)

if R(a, |[x]0) <R(a, |[x].) and R(a, |[x].) < R(a, |[x].) then, [x]. < BND(X, |7.)
if R(a, |[x].)<R(a,|[x].)and R(a, |[x,].) <R(a, |[x,].) then, [x,]. < POS(X, |7rc)
Yao et al., have restated these decision rules under the assumption, 4,, < A,, <A4,, ., and }“Nx < /13)7/ < /IF)?/ as,
pos, (X, 1z)=J, . {x].1P(X, Jixl) 2 al S
BND, (X, |7)={] . Alx)|B<PX, |[x])<a}
NEG, , (X, |7.)= U A [ POX, [ [x ) < By

ﬂ’Pf(d, N 18)711, lb’)?d/. - ﬂ'{\f(d/
where o= and [ =
AP)?d - 13)74 +13Xd - lPXd ﬂ'B)?d - ﬂ“v;?d +lNde - ﬂ’gxdj .

The decision rules of X, ~can be extended to 7, as follows

POS, (7, | 70) = deewu x| PY, ] 2 @
BND, (7 |7 =U,, U, {[x,.]c |B<PX, |[x])<al
NEG, (7,17 ={], . U, .. 51| PX, |Ix]1) < B}

Xd erp

Discriminant function is one way of representing a classifier. For each equivalence class [x,]., a discriminant
function g([x,].) is designed. [x,].is assigned to the region with maximum g([x,].) value. Consider the loss
function, where there is no cost for correct classification. Let A be the cost for an incorrect classification. Let A, be

the cost for classifying an object into a boundary region i.e., /1,,)(/ ﬂwd =0, A;, = Ay, =4 and
/IBXd =z =4 . Conditional risks associated w1th each ‘action are given as

R(a,,|[x] j A, (I—P(Xd [[x,1.)) . R(a,|[x].)=A and R(a, |[x,].)=4, P(Xd |[x,].) . Decision rules in this
case are defined as

Py P(de 15102 222 then, [x]). € POS,, (X, | %)

s

=4 then, [x,]. € BND,,, /,)(Xd | 7,.)

s

(N)ifP(Xd, Ilx]) < j then, [x,]c = NEG, ;,(X,, |7c)

s

X, 1) <

B if
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Discriminant function can be defined as g([x,].)=P(X 4 |[x,].) .- Depending upon P(X 4 [[x,].) value, [x,].is
said to be of positive region or boundary region or negative region.

The corresponding threshold parameter values are o = A=A and S =

4. Determining threshold parameters using LMS training rule

Algorithm 1 LMS Algorithm to determine optimal loss functions

Input: S - decision table, 77 - learning rate, ¢ - threshold value
Output: Optimal loss functions.
1: Initialize each of the loss functions with a small random value
2: Initialize error value E to zero

if (P(X,, |[x]) =D or (P(X, |[x]c) =1)

otherwise

3: For each equivalence class [x,]. |
1) Determine V([x,].) as {

iiy  Use the current loss functions and compute I}([x, 10)

P10 = Ay PX, 110)0) + A, POX, 1610+ Ay, POX, 3]0+

PXg . X,
dj PXa;

Ay P 11510 + A, POX, [T6]0)+ 2

BXg .
d./

P(X, |[x].)

N)?dj
iii) Update each loss function as
Aniy) = Aoy, +1 V(X1 =V(Ix 1)) PX, [Txe) s Ay, = A, 411 V(1 10) =V ([Ix 1)) P(X,, |[x]c)

Aoy, = Aoy, 411 V(1) =V 1) P, (1310 Ay, = A, +7 V(210 =V (210) PEX,, |[x]0)

Ay, = Ay, T V(X 1) —V([x1.) PXX,, 1% Ay, = Az, +71 V([x1) =V ([x1) PX,, [[x]0)

iv)  Update error as E=E+ (V' ([x,].) - l}([x‘. 1)’

v)  If theconstraints 4, < 4, <4, and 4, < 4,
learning ! ! ! J »
otherwise stop learning and output the current loss function values.

Repeat steps 2- 3 till E<¢

5:  Return the final loss function

<A, are satisfied then, continue
J J

To determine optimal values for threshold parameters, we have to design a learning system. A learning system is
provided with a set of training examples along with the ideal target function ¥ and a representation to describe the
target function. The learned function which we want to approximate the target function can be represented as a
linear function of the form V =w, +w, x, + w, x, +...+w, x,, where x,, x,, ..., x, are features of the problem to
be solved and w,, w,, w,, ..., w, are the numerical coefficients or the weights of each feature. The learned
function learns its weights w,, w,, w,, ..., w, by using LMS training rule to approximate the target function V .

LMS training rule is a learning algorithm for choosing the weights to best fit the set of training examples. The
best fit weights are those which minimize the squared error between the target function V([x,].) values and the
learned function V([x,].) values. Optimal values for the threshold parameters can be determined using LMS
training rule. The target function V([x,].) is defined as

Vx],) = {1 if (P(X,, |[x]) =D or (P(X,, |[x])=1)

0 otherwise
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Learned function l}([x,.] ) is defined as I}([ 1)=4 xl + 4, x,+ A, x, + 4, x, + A x, + A, x, where
n=x=x =P k) ==, SPX NN - A=Ay o A=Ay A=A A
A=Az W, and A, /lw A, , , 14 , As s "and A, are the welghts used by the learning function. Thése
weights are the loss functions used in the calculation of expected overall risk shown in equation (1). The squared
error £ between the target function and the learned function is defined as £ = z (x1)-V(x1)).

[xlce 7c

The LMS algorithm to determine the optimal values of the loss functions is shown in Algorithm 1. Initialize all
the loss functions to a small random values while satisfying the constraints 4, < 4, <ﬂ,wd and
Az, £ Az <A . Inthis algorithm, in each iteration adjust the loss functions in the dlrectlon to reduce the error.
The algorlthm loops through steps 2 - 3 until the error £ falls below the threshold value &. & is chosen to be a
sufficiently small value. The algorithm returns optimal values for the loss functions. @ and f values are

determined from the loss functions.

5. Particle Swarm Optimization algorithm for attribute reduction in DTRSM

Algorithm 2 Finding the reduct in DTRSM using PSO

Input: S - decision table, @ and S - threshold parameters, # - size of the particle swarm, ¥ - maximum

max

velocity of the particles in the swarm, cn? - iteration count, c, and c, - positive constants, 7, and r, - random
numbers, W - inertia factor.

Output: Reduct - an attribute set R with optimized (minimized) fitness value.
1: Initialize particles at random positions in the search space
Initialize velocities of the particles as a positive integer between 1 and V__
For each particle initialize its best position as the current position
Initialize ¢ to zero
Repeat steps 6 - 8 till ¢ <cnt
For each particle i in the swarm
i) calculate the fitness value
a. Let A be the attribute set represented by the position of the particle I

b /(=L S R, (91 + Rid, 1310+ R, [51)

| ‘ [xilae7a

SANRANE S

i) if the current fitness value of the particle is greater than the fitness value of its previous best
position then, update its best position to the current position

iii) calculate its velocity v,(¥)

a.Let p,(t —1) be the position of the particle at iteration ¢ —1, let pBest, is the best
position of the particle i till iteration f and let pBest be the global best position of
the swarm

b.v(&)=w*v(t =D +c *r,*(pBest, - p(t =) +c, *r, *(pBest,,,, - p.(t = 1))
iv) update its position as p,(¢)=p,(t—1) +v,(¢)
7:  Set the global best position pBest as the position of the particle with the maximum fitness value.
8: Update f to £ +1.

9: Return the attribute set R, that is represented by the position of the global best particle as the reduct with
the optimized fitness value.

global

global

Particle swarm optimization (PSO) is an evolutionary algorithm introduced by Kennedy and Eberhart '°. PSO
provides a methodology to solve optimization problems with a huge search space. PSO is motivated by the social
behavior of a flock of birds trying to reach an unknown destination. In this paper, we use PSO as a search algorithm
to the problem of attribute reduction. Search space for attribute reduction is 2" —1 attribute subsets, where n=|C]|.
In "°, Xiangyang Wang et al. have solved the problem of attribute reduction using PSO.
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Xiangyang Wang et al. have represented the position of a particle by a bit string of length |C|. Let
C={c,c,,...,c,}, be the set of conditional attributes. A value of 1 in the bit string at position I represents c, is
present in the attribute set and a value of 0 in the bit string at position i represents c, is not present in the attribute
set. Hence, an attribute set is represented by the position of a particle. Different attribute sets are represented by the
respective positions of particles in the swarm. The difference between two positions is the number of distinct bits
between the two positions.

Xiangyang Wang et al. have defined velocity of a particle as the positive integer between 1 and V. The
velocity of a particle i at iteration ¢ is defined as follows as

v(O)=w*v (=1 +c *r*(pBest - p(t =1) +c, *r, *(pBest,,, - p(t 1)
where w is the inertia factor, v,(# —1) is the velocity of the particle i at iteration ¢ —1, ¢, and ¢, are the positive
constants, 7 and r, are the random numbers, pBest, is the best position of the particle i till iteration ¢ —1, p, (¢ —1)
is the position of the particle i at iteration ¢ —1 and pBest,,,, is the global best position of the swarm till iteration
t —1. The position of the particle i at iteration ¢ is updated as p,(t )= p,(t —1) + v,(¢) , where p,(¢) is the position
of the particle i at iteration ¢, p,(t —1) is the position of the particle i at iteration  —1 and v,(¢) is the velocity
of the particle i at iteration ¢.

Fitness function of an attribute set 4 < C is denoted by f(A). An attribute set with a minimum number of
attributes and with minimum expected overall risk will be the fittest attribute set. Such attribute sets will survive
through PSO iterations. The attribute set with minimum fitness value will be selected as the reduct. The fitness
function f(A) is defined as

r=1Sg e SR 1)+ R, (], + Ria, [x),)
[xilas7g
The first term of f(A) corresponds to a measure of the cardinality of the reduct and the second term corresponds to
the expected overall risk. The PSO algorithm to find reduct in DTRSM is as shown in Algorithm 2. The inputs for
this algorithm are decision table S, threshold parameters & and [ determined using the LMS training rule, size of
the particle swarm #, maximum velocity of the particles in the swarm ¥V, positive constants ¢, and c,, random
numbers 7 and r, and iteration count. The output of this algorithm is the reduct R with minimized fitness value.

6. Experimental results and analysis

In this section, we analyze the effectiveness of our proposed DTRSM-PSO algorithm for attribute reduction by
conducting a series of experiments on 10 data sets from machine learning repository at University of California,
Irvine *. The details of all the 10 data sets selected for our experimentation are shown in table 1. All the chosen data
sets are of multi-category, with the number of classes ranging from 2 to 24, the number of objects ranging from
148 to 8124 and the number of conditional attributes ranging from 9 to 69 . The experiments were conducted on a
2.27 GHz PC running Windows 7 with Intel Core i3 processor with 4 GB RAM.

Table 1. Data sets description.

S. No Data set No. of Conditional Attributes No. of Objects No. of Classes
1. Audiology 69 226 24
2. Breast-cancer 9 286 2
3. Dermatology 34 366 6
4. German-credit 20 1000 2
5. Hepatitis 19 155 2
6. Lymphography 18 148 4
7. Mushroom 22 8124 2
8. Primary-tumor 17 339 22
9. Vehicle 18 846 4
10. Vote 16 435 2
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We conducted a series of experiments using DTRSM-PSO algorithm to determine a reduct on all the 10 data sets
shown in table 1. We also compared our proposed DTRSM-PSO algorithm with the reduct obtained using the CSE
algorithm '* described in the literature. Criteria for comparison chosen are i) cardinality of the reduct ii) attributes of
reduct iii) classification accuracies obtained, when tested using the C4.5 classifier '® and iv) classification accuracies
obtained, when tested using the Naive Bayes classifier °.

Table 2 shows the comparisons on cardinality of the reduct determined by CSE algorithm and DTRSM-PSO
algorithm. These results show that DTRSM-PSO algorithm is achieving a minimal length reduct on 6 out of 10
data sets. CSE algorithm is achieving a minimal length reduct on 3 out of 10 data sets. Both the algorithms are
achieving equal length reduct on remaining | data set. The bold values in this table indicate the minimal length
reduct.

Table 2. Comparisons of the cardinality of the reduct determined by CSE and DTRSM-PSO algorithm.

S. No Data set CSE DTRSM-PSO
1. Audiology 13 16
2. Breast-cancer 8 4
3. Dermatology 9 23
4. German-credit 11 6
5. Hepatitis 6 5
6. Lymphography 7 12
7. Mushroom 5 3
8. Primary-tumor 16 11
9. Vehicle 7 7
10. Vote 12 4

Reduced data sets are obtained by retaining the attributes of reduct in the original data sets and removing other
attributes not in the reduct. The performance of DTRSM-PSO algorithm is evaluated by training C4.5 classifier and
Naive Bayes classifier on the reduced data sets. We have used the implementation of C4.5 classifier and Naive
Bayes classifier provided by Weka software tool *. Classification accuracy was obtained by using C4.5 classifier and
Naive Bayes classifier with 10 fold cross-validation approach for validation.

Table 3. Comparisons of the reduct attributes obtained using CSE and DTRSM-PSO algorithm

S. No Data set CSE DTRSM-PSO
1. Audiology {c1, €2, ¢4, €5, Cs, €7, C10, C14, C15, Cdo, Ca7, Ced» Co6)  {C1, €2, C3, C4s C5, Ce, €7, C10, Ci1, €15, C57, €58, €59, Co05 Cods Co6 )
2. Breast-cancer {c1, ¢, C3, C4, C, C7, Cs, Co} {C4, Cs, Ce, Co}
3. Dermatology {c1, €4, Co, C14, Ci5, Ca1, C32, C33, C34} {c2, €3, €4, Cs, Cs, Cs, Co, Ci0, Ci2, C14, Ci5, Ci6, C19, €20, C21, €22,
C24, €25, C26, €27, €28, C29, C33}
4. German-credit {c1, ¢z, C3, C4, Cs, Cg, C7, Cs, Co, C13, C14} {c1, ¢, C3, C4, Cs, C6}
5. Hepatitis {c1, ¢11, €12, C14, C15, Cl6} {Ce, €12, €13, C18, C10}
6. Lymphography {Cl, €2, C8, C10, 13, Ci4, Cig} {Cl, €2, €7, €8, C9, C10, Ci1, C12, C13, C14, Ci5, Cig}
7. Mushroom {ca, ¢, Cs, C12, Ca0} {cs, Co, Ca0}
8. Primary-tumor {c1, ¢, C3, C4, Cs, C7, Cs, Co, C10, C11, C12, C135 C14, {c1, €2, €3, C4, Cs, Co, Ci0, C13, C1s, Ci6, C17}
C15, C16, C17}
9. Vehicle {Cz, C3, Co, C13, Ci5, Ci6, C]g} {C], Cs, C7, Cg, Co, Cq1, C]z}
10. Vote {c1, €2, C3, C4, Cs, C7, Ci0, Ci1, C12, C13, C15, Ci6} {cs, €4, Cs, C12}

Next, we present the comparison analysis of the performance of our proposed DTRSM-PSO algorithm with the
CSE algorithm. Table 3 shows the comparisons on the reducts obtained using CSE algorithm and DTRSM-PSO
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algorithm. For the different data sets, columns 3 and 4 of table 4 shows the comparisons of classification
accuracies obtained by training C4.5 classifier for the reduct determined by DTRSM-PSO algorithm with the reduct
obtained using CSE algorithm. These results show that DTRSM-PSO algorithm is achieving a reduct with higher
classification accuracies on majority i.e., 6 out of 10data sets. CSE algorithm is achieving reduct with higher
classification accuracies on 4 out of 10 data sets. For the different data sets, columns 5 and 6 of table 4 shows
the comparisons of classification accuracies obtained for the reduct determined by DTRSM-PSO algorithm with the
reduct obtained using CSE algorithm. These results show that DTRSM-PSO algorithm is achieving a reduct with
higher classification accuracies on majority i.e., 7 out of 10 data sets. CSE algorithm is achieving a reduct with
higher classification accuracies on 2 out of 10 data sets. Both the algorithms are achieving equal classification
accuracy on remaining 1 data set. The bold values in this table indicate the higher classification accuracies.

Table 4. Comparisons of the classification accuracy obtained by CSE and DTRSM-PSO algorithm

S. No Data set C4.5 Naive Bayes
CSE DTRSM-PSO CSE DTRSM-PSO

1. Audiology 75.67 76.30 69.09 73.28
2. Breast-cancer 72.51 73.75 72.29 72.27
3. Dermatology 89.45 92.05 90.71 97.21
4. German-credit ~ 73.38 74.44 76.23 75.29
S. Hepatitis 83.65 83.13 79.88 83.99
6. Lymphography  75.95 80.41 83.56 85.09
7. Mushroom 100 99.41 98.52 98.88
8. Primary-tumor ~ 41.04 42.63 47.14 46.46
9. Vehicle 65.16 64.54 56.43 57.48
10. Vote 96.32 95.63 91.82 92.85

From the experimental results obtained, we conclude that DTRSM-PSO algorithm is giving better results
compared to CSE algorithm in terms of i) cardinality of the reducts found for different data sets ii) classification
accuracies obtained for different data sets, when tested using the C4.5 classifier and iii) classification accuracies
obtained for different data sets, when tested using the Naive Bayes classifier.

7. Conclusion

The contribution of this paper is the proposed DTRSM-PSO algorithm. In this algorithm, the attribute subset
evaluation is done by optimizing the expected overall risk in DTRSM. Particle swarm optimization is used as the
search algorithm for finding the reduct. We have analyzed the performance of our proposed DTRSM-PSO algorithm
by conducting a series of experiments on 10 data sets from machine learning repository at University of California,
Irvine. Initially, we conducted a series of experiments using DTRSM-PSO algorithm to determine reducts for each
of the 10 data sets. Reduced data sets from each of the 10 data sets are obtained by retaining the attributes of reduct
in the original data sets and removing other attributes not in the reduct. Testing for classification accuracy was done
on all 10 reduced data sets using C4.5 classifier and Naive Bayes classifier respectively. We compared our
proposed DTRSM-PSO algorithm with the consistency subset evaluation feature selection algorithm proposed by
Huan Liu et al. We conclude that DTRSM-PSO algorithm is giving better results compared to consistency subset
evaluation feature selection algorithm as shown by the experimental results obtained for i) cardinality of the
reducts found for different data sets ii) classification accuracies obtained for different data sets, when tested using
the C4.5 classifier and iii) classification accuracies obtained for different data sets, when tested using the Naive
Bayes classifier.
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