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Flow stress during hot deformation depends mainly on the strain, strain rate and temperature, and shows
a complex nonlinear relationship with them. A number of semi empirical models were reported by others
to predict the flow stress during deformation. In this work, an artificial neural network is used for the
estimation of flow stress of austenitic stainless steel 316 particularly in dynamic strain aging regime that
occurs at certain strain rates and certain temperatures and varies flow stress behavior of metal being
deformed. Based on the input variables strain, strain rate and temperature, this work attempts to develop
a back propagation neural network model to predict the flow stress as output. In the first stage, the
appearance and terminal of dynamic strain aging are determined with the aid of tensile testing at various
temperatures and strain rates and subsequently for the serrated flow domain an artificial neural network
is constructed. The whole experimental data is randomly divided in two parts: 90% data as training data
and 10% data as testing data. The artificial neural network is successfully trained based on the training
data and employed to predict the flow stress values for the testing data, which were compared with
the experimental values. It was found that the maximum percentage error between predicted and exper-
imental data is less than 8.67% and the correlation coefficient between them is 0.9955, which shows that
predicted flow stress by artificial neural network is in good agreement with experimental results. The
comparison between the two sets of results indicates the reliability of the predictions.

© 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

Austenitic stainless steel 316 has been increasingly and exten-
sively applied in the field of nuclear applications because of its
excellent corrosion resistance in seawater environment due to hav-
ing addition of molybdenum which prevents chloride corrosion.
This steel is very useful in nuclear applications - particularly for
cladding of fuel rods in the nuclear reactors. At elevated tempera-
tures for specific strain rates under tensile load, the phenomenon
of Dynamic Strain Aging (DSA) has been observed in this material.
DSA is characterized by serrated stress-strain curve, i.e., wavy pat-
tern like saw teeth on stress-strain curve. This is also called as
Portevin-Le Chatelier (PLC) effect. This is due to the diffusion of sol-
ute atoms into mobile dislocations which temporarily get arrested
at obstacles. The solute atoms are able to diffuse at a rate faster
than the speed of the dislocations to catch and lock them. There-
fore, due to the locked dislocations the load increases and when
the dislocations are annihilated from the solute atoms, there is a
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sudden load drop. This process occurs many times, which causes
serration in the stress-strain curve. Thus, DSA is manifested by a
negative strain rate sensitivity, which results in unstable, jerky
flow. DSA occurs for certain range of temperatures and strain-rates.
A critical strain rate is required for serrated yielding to take place
in a particular temperature range. This temperature range is called
blue brittle region because metal heated to this temperature region
shows a decrease in ductility and notch impact resistance. A widely
accepted consequence of DSA is the negative strain rate sensitivity
that is observed for many alloys.

Several researchers have studied the behavior of austenitic
stainless steel under tension test to investigate the effect of tem-
perature and strain rate on its mechanical properties [1-4]. Kaiping
et al. [1] studied the serrated flow behavior of austenitic stainless
steels in the different ranges of 523-673 K and 723-873 K at the
strain rates of 5x 10™*s~!. For these temperature-strain-rate
combinations, a slow decrease in ultimate tensile strength and
the negative strain rate sensitivity have been observed, which indi-
cates the presence of DSA phenomenon in the material. The DSA
pre-treatment can effectively improve the creep strength and the
short-time tensile strength at high temperatures. Samuel et al.
[2] observed increase in the ductile fracture resistance of titanium
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Table 1

Chemical composition of austenitic stainless steel 316 (wt.%).
Element Fe Cr Ni Mo Mn Si Co Cu
Composition (%) 67.690 16.630 10.850 2.420 1.280 0.380 0.210 0.210

Fig. 1. A computer controlled UTM with a high temperature chamber.

modified stainless steel due to DSA. The strengthening effect of
DSA pre-treatment is much better than traditional cold-working
pre-treatment. In a large number of metals and alloys, the DSA
phenomenon alters the flow stress behavior of the metal and even
it may cause the formation of flow-localized regions during defor-
mation due to the negative strain rate sensitivity [5,6].

The flow stress during the hot deformation is influenced by
many factors such as strain, strain rate and temperature etc. Due
to the complex interconnections among these parameters and
materials properties, mathematical models are sometimes very
complex to handle by the numerical techniques as well as by
experimental methods, especially when it involves some particular
material phenomenon such as DSA. Considerable amount of work
were done in past few decades to correlate the flow stress with
the process parameters through the constitutive and the empirical
models [7-16]. Cabrera et al. [7] determined the constitutive equa-
tions for the flow behavior of commercial Ti micro-alloyed steel.
They conducted uniaxial hot compression tests over a wide range
of strain rates (1074-10s™') and temperatures (1123-1423K)
and showed the inadequacy of the classical constitutive equations
in taking the grain size into account. Chakravarty et al. [8] studied

the characteristics of hot deformation of B-quenched Zr-2.5Nb-
0.5Cu in the temperature range 650-1050 °C and in the strain rate
range 0.001-100 s~! using hot compression testing with the ap-
proach of processing maps and their interpretation through the
Dynamic Materials Model. Cingara et al. [9] developed the consti-
tutive equation relating peak stress, strain rate and temperature
for hot working of 301, 304 and 317 steels using sinh equations.
Laasraoui and Jonas [10] formulated the constitutive equations
pertaining to idealized isothermal conditions for flow behavior of
steels during deformation in the roll gap. Maheshwari et al. [11]
used a modified Johnson-Cook (JC) material model to develop con-
stitutive equations for hot deformation behavior of Al-2024 alloy.
This empirical method depends on regression analysis to find the
constants. The quantitative assessment of these models yields a
wide range of errors which can go up to about 60% for a range of
strain rates from (0.0001-100s~!). Many of the mechanisms of
regression analysis do not describe the complex relationships of
the various factors of flow stress with sufficient accuracy, because
the effecting factors (strain, strain rate and temperature) of flow
stress presents highly complicated non-linear interaction relation-
ships during hot deformation. It is difficult to deal with the dis-
persed data through the regression method and also when a new
experimental data is added, the regression constants need to be
recalculated and moreover the regression method consumes a sig-
nificantly longer time during computation. The research conducted
by Guo and Sha [12], Malinov et al. [13] and Sun et al. [14] have
mentioned the drawbacks concerning the development of consti-
tutive relationship using conventional methods.

Recently artificial neural networks (ANN) have been applied for
describing the hot deformation processes. The neural networks are
a relatively new artificial intelligence technique that emulates the
behavior of biological neural systems in digital software or hard-
ware and this approach need not to have a well-defined process
for algorithmically converting an input to an output. A significant
advantage of the ANN approach is that one does not need to have
a well-defined process for algorithmically converting an input to
an output. Rather, it needs only a collection of representative
examples of the desired mapping. The ANN then adapts itself to
reproduce the desired output when presented with training sam-
ple input. Owing to their inherently high parallelism, ANN is ide-
ally suited for the problem of estimating the flow stress from the
available experimental data. ANN is the novel way to study the
high temperature deformation behavior and some efforts have
been made to the applications of ANN in some alloys. This model
has good generalization performance without needing explicit
mathematical and physical knowledge of deformation mechanism.
The understanding of flow stress behavior in DSA regime becomes
easier by using ANN modeling compared to modeling by constitu-
tive equations.

Li et al. [15] established the predicting model for the calculation
of flow stress of Ti-15-3 alloy based on the ANN method. Reddy

Table 2
Temperatures and strain rates in DSA region of austenitic stainless steel 316.
Temperatures (°C) 350 400 450 500 550 600 650
Strain rates (s—') 104 104 104 1074 104 104 104
1073 1073 1073 1073 1073 1073
1072 1072 1072 1072 102 1072
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et al. [16,17] attempted to develop aback propagation neural net-
work model to predict the flow stress of Ti-6AI-4V alloy for any gi-
ven processing conditions. Kapoor et al. [18] used the ANN model
to predict the deformation behavior of Zr-2.5Nb-0.5Cu, in the
strain rate range of 10>-10s~!, temperature range of 650-
1050 °C and strain range of 0.1-0.5. Singh and Gupta [19] devel-
oped an ANN model for predicting mechanical properties of extra
deep drawn steel in the DSA regime. However, on the basis of
ANN, little research work with regard to DSA region of austenitic
stainless steel 316 was reported in the past years. Hence, in the
present paper, constitutive relationship of austenitic stainless steel
316 in DSA regime was established using a feed-forward back-
propagation ANN to asses flow stress. The input parameters are se-
lected as strain, strain rate and temperature and the output param-
eter is flow stress. To construct ANN, tensile testing is done at
different temperatures and strain rates and then the region of ser-
rated flow is determined. The experimental data is divided into
two parts. 90% data points are randomly selected as training data
for training ANN and the remaining 10% data points are used as
test data to evaluate the capability of the trained-up ANN. A good
agreement is observed between the predicted results and the
experimental data for test data that shows the reliability of the em-
ployed model.

2. Experimental details

The austenitic stainless steel 316 sheet with 1 mm thickness
was used in this investigation. The composition of the employed
material is given in Table 1. The samples were machined out of
the raw material sheet by wire-cutting electro-discharge machin-
ing process for high accuracy and finish. Laboratory tensile tests
were carried out to assess the flow stress behavior as well as to
study the dynamic strain aging phenomenon. The tensile tests
were performed using an indigenously developed universal test-
ing machine (UTM) (as shown in Fig. 1) with capability of con-
ducting tensile tests at elevated temperatures and constant
strain rates. Four different true strain rates were used (1074
1073, 1072 and 107!s~!) and various temperatures from room
temperature to 650 °C at an interval of 50 °C. A computer control
system is used to record the load versus displacement, which
were converted into true stress versus true strain curves. Among
all the conducted experiments, the strain rates and temperatures
for the DSA region were identified, which are shown in Table 2.
This data was used for preparing initial data for ANN as database.
This data is divided into two sets; 90% data points are randomly
selected as training data set for training ANN and the remaining
10% data points are used as test data set for testing the developed
ANN.

3. Development of ANN model

Artificial neural network is a powerful data information treat-
ment system which tries to simulate the neural networks structure
of the human brain. It can represent and capture complex non-lin-
ear relationships between inputs and outputs. Each neural network
is composed of an input layer, an output layer and one or more hid-
den layers, which are connected by the processing units called neu-
rons. Each neuron works as an independent processing element,
and has an associated transfer function, which describes how the
weighted sum of its inputs is converted to the results into an out-
put value. Currently, there are diverse training algorithms avail-
able. Among the various kinds of ANN approaches that have
existed, the back propagation (BP) learning algorithm has become
the most popular in engineering applications. Back propagation

algorithm is based on minimization of the quadratic cost function
by tuning the network parameters. The mean square error (MSE) is
considered as a measurement criterion for a training set. Specially,
BP neural network is the most suitable tool for treating non-linear
systems.

Hence, a back propagation algorithm was applied to train a feed
forward neural network, which is reliable and most commonly uti-
lized. In this investigation, the input variables of ANN include stain,
strain rate and deformation temperature, while the output variable
is flow stress. Hence, a feed forward network trained with the back
propagation algorithm was developed, as shown in Fig. 2. Before
training the network, the input and output datasets have been nor-
malized within the range of 0.05-0.95 to prevent a specific factor
from dominating the learning for the ANN model. The main reason
for normalizing the data matrix where the variables have been
measured in different units is to recast them into the dimension-
less units to remove the arbitrary effect of similarity between the
objects. Thus, using Eq. (1), the experimental data was normalized
to make the neural network training more efficient prior to the use
of the datasets.

Xn = 0.05 + 0.90" (X - Xmin)/(xmax - Xmin) (1)

where Xqin and Xpax are the minimum and maximum values of x
and x, is the normalized data of the corresponding x. Once the best
trained network is found, all the transformed data returns to their
original value using the following equation:

X = Xmin + (Xn — 0.05)" (Xmax — Xmin)/0.9 (2)

Temperature

Strain rate
Flow stress

Strain

Output layer

Hidden layer

Input layer

Fig. 2. Schematic illustration of the neural network architecture.
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Fig. 4. True stress-true strain curves of austenite stainless steel 316 in DSA regime (a-g).
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One of the most unresolved questions in the literature on ANN
is what architecture should be used for a given problem. Architec-
ture selection requires choosing both the appropriate number of
hidden units and the connections thereof. The desirable network
architecture contains as minimal as possible hidden units and con-
nections necessary for a good approximation of the true function.
In most of the applications of ANN, this selection was done using
a trial-and-error procedure. The number of hidden layers deter-
mines the complexity of neural network and precision of predicted
values. If the architecture is too complex, it may not converge dur-
ing training or the trained data may be over fitted. In other way,
the trained network might not have sufficient ability to learn the
process correctly. Therefore, various network structures with vary-
ing number of neurons in hidden layer were examined. Fig. 3
shows the influence of number of neurons in hidden layer on the
network performance. The value of mean square error (MSE) is
used to check the ability of a particular architecture. It is observed
that the mean square error of network decreases to the minimum
value when the number of neurons is 15, which indicates that a
network with 15 neurons in hidden layer can exhibit the best
performance.

4. Results and discussion

Table 2 presents different temperatures and different strain
rates at which the DSA phenomenon occurs in austenitic stainless
steel 316. DSA occurrence is identified with the appearance of ser-
rated flow in true stress—true strain curves, as shown in Fig. 4a-g.
For the purpose of data analysis, the strains are selected from 0.02
to 0.30 at an interval of 0.01. Thus, total data points are 553, from
which 90% data points (498) have been randomly selected as train-
ing dataset and the remaining 10% data points (55) have been ta-
ken as testing dataset. The correlation coefficient (R) is a
commonly used statistic and provides information on the strength
of linear relationship between experimental and predicted values.
For perfect prediction, all the data points should lie on the line in-
clined at 45° from horizontal. Figs. 5 and 6 represent the predicted
versus experimental flow stress values for the training and testing
datasets respectively. In Fig. 5, the correlation coefficient is found
to be 0.998, indicating that a very good correlation between exper-
imental and predicted flow stress values has been obtained for the
training dataset. Similarly, Fig. 6 shows the correlation coefficient
to be 0.9955 for the testing dataset, indicating a very good correla-
tion between experimental and predicted flow stress values. The
results imply that the developed ANN model for austenitic stain-
less steel 316 are consistent with what is expected from funda-
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Fig. 5. Comparison between flow stress experimental and predicted values for the
training dataset.
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Fig. 6. Comparison between flow stress experimental and predicted values for the
testing dataset.

mental theory of hot deformation, which suggests that the
present model possesses excellent capability to predict the strain
hardening and flow softening stages, especially in the DSA regime.
Recently researchers [19,20] modeled DSA phenomenon using
ANN and prediction of flow stresses was made very accurately.
Singh and Gupta [19] also supported that ANN model can be ap-
plied to serrated flow and mechanical properties can be predicted
very accurately once sufficient input data is calculated in the DSA
region by experiments. Since in the present research 553 data
points were calculated experimentally to model the ANN, flow
stresses are predicted to some unknown temperature to a very
close accuracy. This is also supported by Sheikh and Serajzadeh
[20] in employing a neural network algorithm to assess flow stress
of AA5083 in both regions of the serrated flow and the smooth
yielding.

Table 3 shows the experimental and ANN model predicted flow
stress values along with the associated absolute and percentage er-
rors for randomly selected unseen testing dataset. The maximum
percentage error is found to be 8.67 with some exceptional cases
(8,9, 10, 36, 48, 49, 51 and 54 datasets as represented in Table 3
with bold and asterisk). It is observed that all these exceptional
cases are found in the region where the experimental flow stress
values are very low. Low flow stress values are associated with
high temperature and low strain rate conditions [21,22]. As the
temperature of the material increases there will be decrease in
the mean flow stresses due to decrease in the work hardening re-
gion. The prediction of material properties and flow stresses are
important in warm and hot forming to understand the behavior
of any material during deformation and to finally model it for fur-
ther stress analysis [21]. The evaluation of material properties re-
quired at a particular temperature is a time consuming process.
As reported in the present research that at a very low strain rate
(0.0001 s~ 1), it requires nine hours to conduct experiments on a
servo hydraulic UTM. Test is required to calculate the parameters
used in the constitutive equation at a particular temperature and
the sensitivity index. It was also seen in the present investigation
that once ANN model is developed all these parameters including
the flow stresses required for simulation of warm forming [22]
can be calculated at any unknown temperature. In DSA region
the material properties behaves in a very unusual way. Depending
on alloying element in the material like Cr (also in the present
case) DSA region appears in certain temperature band which again
increases the strength coefficient and work hardening exponent
[19]. This happens to be on the boundary of the input domain. In
general, the performance of any function fitting technique will be
better, if more numbers of data are taken near the domain
boundaries.
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Table 3

Comparison of ANN predicted vs. experimental flow stress values for the testing dataset.
S. No. Temperature Strain rate Strain Flow stress (MPa) Flow stress (MPa) Absolute error % Error

(experimental) (predicted)

1 350 0.0001 0.08 379.7 373.09 6.61 1.740848
2 350 0.0001 0.21 609.15 585.98 23.17 3.803661
3 350 0.0001 0.24 677.33 632.6 44.73 6.603871
4 350 0.0001 0.31 792.95 72417 68.78 8.673939
5 400 0.01 0.11 288.85 291.65 2.8 0.969361
6 400 0.0001 0.05 255.4 273.01 17.61 6.895067
7 400 0.0001 0.12 411.05 405.1 5.95 1.447512
8 450 0.01 0.03 48.54 135.12 86.58 178.3684
9 450 0.01 0.05 49.51 97.9 48.39 97.73783
10« 450 0.01 0.09 51.54 71.482 19.942 38.69228
11 450 0.001 0.07 267.75 289.67 21.92 8.186741
12 450 0.001 0.08 287.41 303.51 16.1 5.601754
13 450 0.001 0.1 312.34 324.19 11.85 3.793942
14 450 0.001 0.13 357.61 342.97 14.64 4.093845
15 450 0.001 0.14 372.01 353.78 18.23 4.900406
16 450 0.001 0.17 401.93 416.28 14.35 3.570273
17 450 0.001 0.18 424.8 425.34 0.54 0.127119
18 450 0.001 0.21 457.18 442.46 14.72 3.219738
19 450 0.001 0.26 509.03 484.38 24.65 4.842544
20 450 0.0001 0.18 421.04 422.85 1.81 0.429888
21 450 0.0001 0.19 442.35 431.84 10.51 2.375947
22 500 0.01 0.03 200.63 213.95 13.32 6.639087
23 500 0.01 0.15 388.55 380.05 8.5 2.187621
24 500 0.001 0.05 217.86 230.29 12.43 5.705499
25 500 0.001 0.07 254.27 263.58 9.31 3.661462
26 500 0.001 0.17 409.38 401.69 7.69 1.87845
27 550 0.01 0.05 204.66 218.63 13.97 6.825955
28 550 0.01 0.1 279.37 274.85 4.52 1.617926
29 550 0.01 0.19 379.7 3791 0.6 0.158019
30 550 0.01 0.29 486.82 471.03 15.79 3.243499
31 550 0.001 0.05 211.93 223.32 11.39 5.374416
32 550 0.001 0.21 346.94 343.35 3.59 1.034761
33 550 0.001 0.22 345.37 346.72 1.35 0.390885
34 550 0.0001 0.05 206.31 224.06 17.75 8.603558
35 550 0.0001 0.09 285.18 288.36 3.18 1.115085
36+« 600 0.01 0.01 132.36 164.04 31.68 23.93472
37 600 0.01 0.24 455.87 441.06 14.81 3.248733
38 600 0.001 0.16 274.53 288.42 13.89 5.059556
39 600 0.001 0.24 305.36 309.47 4.11 1.345952
40 600 0.0001 0.1 263.75 275.89 12.14 4.602844
41 600 0.0001 0.22 344.36 338.13 6.23 1.809153
42 650 0.01 0.01 106.27 112.59 6.32 5.947116
43 650 0.01 0.03 165.04 174.59 9.55 5.786476
44 650 0.01 0.11 259.37 266.62 7.25 2.795235
45 650 0.01 0.16 287.43 293.64 6.21 2.160526
46 650 0.01 0.17 292.15 298.52 6.37 2.180387
47 650 0.01 0.2 306.86 310.73 3.87 1.261161
48+« 650 0.001 0.03 53.39 117.26 63.87 119.6291
49 650 0.001 0.04 102.96 137.07 34.11 33.12937
50 650 0.001 0.08 198.98 198.11 0.87 0.43723
51 650 0.0001 0.01 44.41 123.18 78.77 177.37
52 650 0.0001 0.07 195.34 211.54 16.2 8.293232
53 650 0.0001 0.08 209.18 222.06 12.88 6.157376
54« 650 0.0001 0.09 206.15 231.75 25.6 12.41814
55 650 0.0001 0.16 276.37 282.37 6 2.171003

5. Conclusions

In the present study, the flow stress of austenitic stainless steel
316 is predicted using artificial neural networks with regard to dy-
namic strain aging that occurs in certain deformation conditions
and varies flow stress behavior of metal being deformed. The con-
stitutive relationship of the austenitic stainless steel 316 alloy is
successfully established using the ANN model based on experi-
mental results from the hot tensile testing. In the developed ANN
model, the inputs are strain, strain rate and deformation tempera-
ture, whereas flow stress is the output. After testing the effect of
number of neurons in the hidden layer on the network perfor-
mance, the optimal configuration of the ANN model using BP algo-
rithm was found to be 3-15—1. The neural network based model

clearly indicates that it can be learned from the training dataset
and able to predict accurately the output of unseen testing dataset.
The maximum percentage error for the testing dataset is found to
be 8.67%, and the correlation coefficient is 0.9955. From this it can
be concluded that well-trained artificial neural network models
provide fast, accurate and consistent results, making them superior
to the conventional constitutive models, especially in the DSA re-
gime of austenitic stainless steel 316.
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