
Fuzzy Controlled Scalar Multiplication for ECC
Ravi Kishore Kodali, Harpreet Singh Budwal, Kashyapkumar Patel and Narasimha Sarma, NVS

Department of Electronics and Communication Engineering,
National Institute of Technology, Warangal, INDIA

E-mail: ravikkodali@gmail.com

Abstract—Traditionally, RSA is being used for authentication
and key exchange for symmetric key cryptography (SKC).
Improved network security demands forward secrecy also.
Even though, RSA, a widely used key exchange approach
can not provide forward secrecy, the same can be achieved
by making used Elliptic Curve Diffie-Hellman Ephemeral
(ECDHE) technique for SKC and RSA for the purpose of
authentication. However, ECDHE RSA based approach is more
compute intensive compared to the RSA alone. The predominant
operation in the ECDHE technique is Elliptic Curve (EC) based
scalar multiplication. Hence, speeding up of ECDHE operation
demands faster EC scalar multiplication algorithm. Binary
method, Non-adjacent form (NAF) method and sliding window
method are used to carry out the EC scalar point multiplication.
An algorithm based on both the NAF and the sliding window
techniques is considered. This technique is more efficient in
terms of EC point operations. There is a trade-off between
the number of EC point addition operations and the number
of pre-computed values. A fuzzy based controller method is
proposed to determine an optimum window width, resulting in
faster scalar multiplication.

Keywords- forward secrecy, ECC, EC-DHE, Fuzzy control.

I. INTRODUCTION

The Transport Layer Security (TLS) protocol makes use of
one of the two key exchange mechanisms: RSA and Diffie-
Hellman (DH). The RSA is primarily used for exchanging keys
to be used for SKC based communication as the DH based
key exchange is more expensive. In case of any breach in the
RSA based security model, SKC keys can be extracted thereby
resulting in hijack and data capture. RSA based key exchange
uses the same pair of keys for many sessions, whereas DH
based key exchange uses different pairs of keys for multiple
sessions. Even if there occurs a single session compromise,
the data capture is constrained to that session alone. This
is called forward secrecy and RSA does not provide the
same [1]. It means that the information, which is secure at
present, will also remain secure in near future. The forward
secrecy strength depends on the DH key pairs [2]. The problem

DH 1024 2048 3072 7689
ECC 163 233 283 409

TABLE I
COMPARABLE KEY SIZES [3]

of computational complexity of DH RSA approach can be
overcome by making use of Elliptic Curve (EC) based DH.
Table I shows that the same standard of security with reduced

number of bits is pursued by the Elliptic Curve Cryptography
(ECC) compared to DH. In ECDH Ephemeral (ECDHE)
technique, as shown in Fig. 1, the generated key pair is used
for a single session, usually lasting for a short duration.

A standard elliptic curve E, specifically for purpose of
cryptography over the prime field (FP) is given as:

y2 mod p = (x3 + ax+ b) mod p, (1)

where a,b ∈ FP and (4a3+27b2) mod p �= 0 [4]. The points
on E, is calculate with equation (1). Addition of two points
(Point Addition) and doubling of a point (Point Doubling)
are the basic operation performed over EC, as given in Table
II. The rest of the paper is organized as follows: Section II

EC Operation Slope (S) x3 y3

Point Addition
y2 − y1

x2 − x1

S2 − x1 − x2 S(x1 − x3)− y1

P (x1, y1) +Q(x2, y2)

Point Doubling
3x2

1
+ a

2y1
S2 − 2x1 S(x1 − x3)− y1

2P (x1, y1)

TABLE II
EC MATHEMATICAL OPERATION [4]

discusses various scalar multiplication methods, Section III
presents the proposed scheme and the fuzzy controller and
Section IV compares various scalar multiplication techniques.

II. SCALAR MULTIPLICATION

The classical Elliptic Curve Diffie Hellman ephemeral
(ECDHE) scheme is illustrated by the Fig. 1.

Fig. 1. Elliptic Curve Diffie-Hellman [2]

Initially, both the server and the client nodes agree on a
particular Elliptic curve (EC) in the prime field FP , with a
specific base point termed the generator point, G. The G is
one of the valid point on the EC curve which has highest
order [4]. Both the server and client nodes set their respective
private keys by selecting randomly any scalar integer in the

978-1-4673-6349-5/13/$31.00 ©2013 IEEE

IEEE 2013 Tencon - Spring

352
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 18,2025 at 06:49:37 UTC from IEEE Xplore. Restrictions apply.

prime field, FP . The corresponding public keys, QA and QB,
are computed by multiplying the generator point, G, with the
corresponding private keys namely KA and KB. This public
keys are then shared over the network between the server and
the client, which again multiply them with the corresponding
private key, hence generating a shared secret key given as
T = KA ∗ QB = KB ∗ QA. Due to Elliptic Curve Discrete
Logarithmic Problem (ECDLP), even though the value of QA

and QB and G are spread over the network, it would be
computationally infeasible to calculate the private keys KA

and KB for an intruder [5].
The two frequently used operations in ECDHE key ex-

change are: scalar multiplication and modular reduction. Scalar
multiplication based on ECDLP, consumes 85% of computa-
tional cost in ECC [6]. It consist of multiplying a point on
the E, with a scalar integer k, such that k ∈ FP .. Scalar
Multiplication consist of point addition and point doubling
operations. Table III shows the number of prime field operation
required by the point addition and the point doubling over EC.

TABLE III
EQUIVALENT PRIME FIELD OPERATION

Inversion Multiplication
Point Addition (P �= Q) 1 3
Point Doubling (P = Q) 1 4

Thus the speed of ECDHE key exchange method is directly
proportional on the performance of the scalar multiplication
on the EC. This can be achieved by adopting techniques for
recoding of the scalar integer k.

Recoding of Scalar Integer k: The recoding of scalar
integer k attempts to reduce the length and the number of
1′s in the binary form of k, as the number of point addition
operations depends the number of 1′s in k and number of
point doubling operations depends on the length of k, thereby
speeding up the scalar multiplication operation.

A. Binary Method

Binary method is the simplest and the most computationally
expensive scalar multiplication method [7]. Binary represen-
tation of the integer k helps use to conclude that, consecutive
summation of the point doubling and point addition operation
over the EC leads to scalar multiplication.

k =

l−1∑

j=0

Kj2
j, Kj ∈ {0, 1} (2)

Q = kG = K0G+ 2(K1G++ 2(Kl−1G)))) (3)

In scalar multiplication, point addition (A) and point dou-
bling (D) operation are used to determine computational cost
of different algorithms. The number of 1′s in the binary
representation of k is called its Hamming weight (W) and
l is the total number of bits in k. The computational cost of
the Binary method is given by the equation (4).

Cost = (W − 1)A + (l − 1)D (4)

B. NAF Method

Contrary to the representation of k in Binary method, if the
representation of k also consist of negative bits, i.e. {-1,0,1},
then it is called as Binary Signed Digit Representation (SDR).
In Non-adjacent form (NAF), both W and l are kept as small
as possible. A NAF of a positive integer, k, is given by the
equation (5) [7].

k =
l−1∑

j=0

Kj2
j, Kj ∈ {−1, 0, 1}, (5)

such that, multiplication of any two consecutive bits is always
zero i.e. Kj ∗Kj+1 = 0. The NAF form of integer k is denoted
as NAF(k), its length is at most (l+1) of the binary form of k.
Algorithm 1 is used to convert the integer k into its NAF(k).

Algorithm 1 Binary(k) to NAF(k) [8]
Input: Scalar k shown in equation (2)
Output:NAF(k)

1: E0 ← 0
2: for i = 0 to (l − 1) do
3: E(i+1) ← [(Ki + Ei +K(i+1))/2]
4: Si ← Ki + Ei − 2E(i+1)

5: end for
6: Return(Sl.........S0)

Scalar multiplication for NAF(k) is obtained using the
equation (3), only difference is that when −1 appears G should
be subtracted from Q. The W of the positive integer k can be
reduced to (l/3) by using NAF(k) and the number of point
doubling operations remains to be the same as in the binary
method [7]. Therefore, the computational cost of the scalar
multiplication using NAF(k) is given by the equation (6).

Cost =
l

3
A + lD (6)

Table IV illustrates different examples of NAF (k).

TABLE IV
NAF FORM OF INTEGER

Decimal Binary NAF
Representation Representation Representation

26 11010 101̄010

1122334455 1000 0101 1100 1010 1000 101̄0 01̄01 01̄01̄
1110 1101 1110 111 000 1̄ 001̄0 0001̄ 001

C. Sliding window Method

To reduce the computational cost of Binary and NAF
methods, the digits used for representing k can be extended
beyond 3 bits as in NAF, {−1, 0, 1}. This reduces the number
of point additions. But this advantage comes at the cost,
little amount of values that are multiple of G should be pre-
computed and stored in memory, such that they are added or
subtracted to the Q [7] during multiplication. The memory
required to hold pre-computed values becomes a constraint.

IEEE 2013 Tencon - Spring

353
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 18,2025 at 06:49:37 UTC from IEEE Xplore. Restrictions apply.

The sliding window method processes at most consecutive w
digits of the scalar integer k such that the decimal equivalent
of the window-w consecutive digit should be odd. This method
has no fixed window width, the same can be varied from 1 to
w and 0 bit is ignored.

Algorithm 2 presents the scalar multiplication for the sliding
window method with binary representation of integer k. Table

Algorithm 2 Binary Sliding window for scalar multiplication
[5]

Input : Generator point G, k, window width-w
Output:Q = kG

1: Calculate [x]G where x = 1, 3, 5...., (2(w−1) − 1)
2: j ← l − 1, where l is length of k
3: while j ≥ 0 do
4: if (Kj == 0)
5: Q ← [2]Q ,N ← 0, j ← j − 1
6: end if
7: else
8: i ← maximum(j − w + 1, 0)
9: while Ki == 0 do

10: i ← i+ 1
11: end while
12: for d = 1 to (j − i+ 1) do
13: d = d+ 1 and Q ← [2]Q
14: end for
15: N ← (KjKi)2
16: j ← i− 1
17: end else
18: Q ← Q⊕ [N]G
19: end while
20: Return Q

V provides the details for the different window widths (w).
The computational cost for the binary sliding window method
is shown in Table VI, where V (w) as given in the equation
(7), is the average length of a run of 0′s within the window
[4].

V (w) =
4

3
−

(−1)w

3 ∗ 2w−2
(7)

III. PROPOSED SCHEME

A. NAF sliding window Method

Algorithm 3 uses both sliding window method and NAF(k).
The NAF(k) is computed and the same is given as input to
this algorithm.

The combination of sliding window and NAF methods,
reduces the number of pre-computations required compared
to the combination of Binary method and sliding window
methods. This improves the efficiency of the algorithm, in a
system with limited memory. The computational cost for the
NAF and sliding window method is given in Table VI. The
computational cost of the Algorithm 2 and 3 depends upon
the window width, w. An optimal window width, w, needs to
be chosen before hand in order to reduce the computational
cost.

Algorithm 3 NAF Sliding window for Scalar Multiplication
[4]

Input: Generator Point G, integer k, window width-w
Output: Q = kG

1: Compute NAF(k) with Algorithm 1.
2: Calculate [x]G where x = (1, 3, 5,, ((2w −

(−1)w)/3− 1))
3: j ← l − 1 where l is the length of k
4: while j ≥ 0 do
5: Algorithm (2) Steps 4 to 17
6: if (N ≥ 0)
7: Q ← Q+ [N]G, end if
8: else Q ← Q− [N]G, end else
9: end while

10: return (Q)

Method Number of Number of Number of
[4] Doublings(D) Additions(A) Pre-computations

Binary l
l

w + v(w)
1D+(2w−1 − 1)A

NAF l
l

w + v(w)
1D+(2

2w − (−1)w

3
− 1)A

TABLE VI
COMPUTATIONAL COST FOR SLIDING WINDOW SCALAR MULTIPLICATION

B. Fuzzy controller

From the Table VI, it can be observed that the computational
cost of sliding window method depends on the window width-
w. The optimum selection of the window width-w leads to
reduced number of arithmetic operations in point multiplica-
tion of ECC. This motivates the need of the controller, which
can select optimum window width-w automatically. To achieve
this, a controller based on fuzzy logic as shown in Fig. 2,
is used. This approach proves to be a more efficient and
computationally in-expensive. A fuzzy system dealing with

Window Size

Point Additions

Pre−Computations

Fuzzy Output
Decision Making
window size
up/stayRules

Fig. 2. Window Width Controller [9]

uncertainties, is a set of fuzzy rules which converts input
to output [10]. Fuzzy sets are defined by their vague and
ambiguous properties, on the contrary to crisp sets. Fuzzy
system helps to build inference system, which converts the
human vague reasoning logic to an artificial knowledge based
system.

The block diagram of fuzzy controller for optimum win-

IEEE 2013 Tencon - Spring

354
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 18,2025 at 06:49:37 UTC from IEEE Xplore. Restrictions apply.

TABLE V
DIFFERENT WINDOW WIDTH COMPARISON IN SLIDING WINDOW METHOD

Window Number of Integer Intermediate Number of Number of Pre-computations
width-w Pre-computations k=2973 values Additions Doublings

5G, 10G, 20G, 23G, 46G,
3 3 101 11 00 111 01 92G, 184G, 368G, 736G, 743G, 3 9 [3]G, [5]G, [7]G

1486G, 2972G, 2973G.
23G, 46G, 92G, 184G, [3]G, [5]G, [7]G

5 15 10111 00111 01 368G, 736G, 743G, 1486G, 2 7 [9]G.......... [25]G
2972G, 2973G. [27]G, [29]G, [31]G

TABLE VII
RULES FOR FUZZY WINDOW CONTROLLER

Number of Number of Window
Point Additions Pre-computations Width-w

Low Low Up
Low Average Stay
Low High Stay

Average Low Up
Average Average Up
Average High Stay

High Low Up
High Average Up
High High Stay

dow width selection as given in Fig. 2 comprises of two
inputs, namely, number of point additions and number of pre-
computations [9]. As only a slight change occurs in the number
of point doublings for different window sizes, the same is
considered constant in this fuzzy system. Here, the memory
storing pre-computations is considered constant. Accordingly,
the membership for the two input system is considered. Both
these inputs have three statuses 1)Low 2)Average 3)High and
their respective Gaussian membership functions are defined.
One output, window width-w is defined for the fuzzy con-
troller which has two statuses, namely as 1) Up and 2) Stay
and the triangular membership functions are used for defining
the window width-w.

Two models of fuzzy inference systems, namely Mamdani
model and Takagi-Sugeno model are mostly used for
building of the fuzzy system. Mamdani model deals with
the fuzzy set as rules and consequent. Takagi-Sugeno deals
with linear function of the input variable [10]. The fuzzy
controller developed here, Fig. 3 uses the Mamdani model.
The rules defined for this system [9] are given as in Table VII:

Fig. 3. The Current Fuzzy Controller

The simulation of Fuzzy rule for the fuzzy controller is
shown in Fig. 4. Thus with the help of the fuzzy rules, the
controller as shown in Fig 2 attempts to find out the optimum
selection of the window width-w.

Fig. 4. Simulation of Fuzzy Rules

IV. COMPARISON

In this section, a comparison of different scalar
multiplication methods is presented. The comparison as given
in the Table VIII, considers number of EC mathematical
operations: point addition and point doubling. The sliding
window and the NAF sliding window methods are also
compared along with the number of pre-computations
required for different window width-w. The standard Elliptic
curve, secp160r1 of 160-bit is considered, with the follwing
domain parameter values:
p = 2160 − 231 − 1,
a = (D6031998D1B3BBFEBF59CC9BBFF9AEE1)16,
b = (5EEEFCA380D02919DC2C6558BB6D8A5D)16
A 160-bit k scalar, is also considered and the same is used to
carry out the comparison of all the four methods for scalar
multiplication.
The following scalar integer, k of size, 160− bits is
considered. k =(BBBB BBBB BBBB BBBB BBBB BBBB
BBBB BBBB BBBB BBBB)16.

In Table VIII Binary sliding window and NAF sliding
window methods have fixed window width-w of 5, however,
the window size can be varied. Table IX and X provide the
number of point doublings and point additions required for
diferrent window widths. The number of pre-computations,
which also depends on the window size, is also used for this
comparison.

IEEE 2013 Tencon - Spring

355
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 18,2025 at 06:49:37 UTC from IEEE Xplore. Restrictions apply.

Method Number of Number of
Point Doublings Point Additions

Binary Method 159 119
NAF Method 159 42

Binary Sliding Window(w=5) 158 29
NAF Sliding Window(w=5) 158 20

TABLE VIII
DIFFERENT METHODS VS NO OF ADDITIONS AND DOUBLINGS

Window Number Of Number Of Pre-
size Point Doublings Point Additions computations

3 157 40 3
4 156 39 7
5 155 29 15
6 155 26 31
7 153 20 63
8 152 19 127
9 151 17 255
10 151 15 511

TABLE IX
SLIDING WINDOW METHOD

From Tables IX and X, it can be noticed that for different
window width-w’s, the number of pre-computations and the
number of point additions change significantly. Hence, an
optimum selection of the window width-w, enables to achieve
reduced computational cost for the scalar multiplication meth-
ods. The same can be achieved using the Fuzzy controller as
shown in Fig.2 and the surface graph for the same controller
is given in Fig.5.

Fig. 5. Surface graph of the Fuzzy controller

V. CONCLUSIONS

In this work, different methods of EC scalar multiplica-
tion, namely Binary, NAF, Binary Sliding window and NAF
sliding window, are compared. It is observed that the NAF
sliding window method for an optimum window width-w,
outperforms the remaining methods for scalar multiplication.
This NAF sliding window method uses least number of point
additions and some pre-computed values of G, which are far
less than the pre-computed values required for binary sliding
window method. The controller based on the fuzzy logic
is used during optimum selection of the window width-w.

Window Number Of Number Of Pre-
size Point Doublings Point Additions computations

3 158 41 2
4 158 39 4
5 158 39 10
6 154 20 20
7 154 19 42
8 154 19 84
9 154 13 170

10 150 13 340

TABLE X
NAF SLIDING WINDOW METHOD

Thus, using fuzzy controller along with NAF sliding window
method for scalar multiplication in key exchange mechanisms
of ECDHE RSA reduces the computational cost considerably.

REFERENCES

[1] B. Vincent, “Ssl/tls and perfect forward secrecy,” 2011.
[2] E. Käsper, “Fast elliptic curve cryptography in openssl,” Financial

Cryptography and Data Security, pp. 27–39, 2012.
[3] S. Blake-Wilson, B. Moeller, V. Gupta, C. Hawk, and N. Bolyard,

“Elliptic curve cryptography (ecc) cipher suites for transport layer
security (tls),” 2006.

[4] D. Hankerson, A. Menezes, and S. Vanstone, Guide to elliptic curve
cryptography. Springer, 2004.

[5] X. Huang, D. Sharma, and H. Cui, “Fuzzy controlling window for
elliptic curve cryptography in wireless sensor networks,” in Information
Networking (ICOIN), 2012 International Conference on. IEEE, 2012,
pp. 312–317.

[6] N. Gura, A. Patel, A. Wander, H. Eberle, and S. Shantz, “Comparing
elliptic curve cryptography and rsa on 8-bit cpus,” Cryptographic
Hardware and Embedded Systems-CHES 2004, pp. 925–943, 2004.

[7] O. YAYLA, “Scalar multiplication on elliptic curves,” Ph.D. dissertation,
Master?s Thesis, Department of Cryptography, Middle East Technical
University, August 2006. Available at http://www3. iam. metu. edu.
tr/iam/images/3/3e/O% C4% 9Fuzyaylathesis. pdf(link tested 01-Dec-
2011), 2006.

[8] X. Huang and D. Sharma, “Fuzzy controlling window for elliptic
curve cryptography in wireless networks,” in Computer Sciences and
Convergence Information Technology (ICCIT), 2010 5th International
Conference on. IEEE, 2010, pp. 521–526.

[9] X. Huang, D. Sharma, and P. Shah, “Efficiently fuzzy controlling
with dynamic window in elliptic curve cryptography sensor networks,”
in Proceeding of the International MultiConference of Engineers and
Computer Scientists, vol. 1, 2011.

[10] S. Sivanandam, S. Sumathi, and S. Deepa, Introduction to fuzzy logic
using MATLAB. Springer, 2006.

IEEE 2013 Tencon - Spring

356
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 18,2025 at 06:49:37 UTC from IEEE Xplore. Restrictions apply.

