
Latin American Applied Research 45:107-112 (2015) 

ROTATION OF A POROUS APPROXIMATE SPHERE IN AN 
APPROXIMATE SPHERICAL CONTAINER 

D. SRINIVASACHARYA   and   M. KRISHNA PRASAD

Department of Mathematics, National Institute of Technology, Warangal-506 004, A.P., India. 
Tel.: +91 870 2462821 Fax: +91 870 2459547 

Email:  dsc@nitw.ac.in, dsrinivasacharya@yahoo.com, kpm973@gmail.com  

Abstract −− The problem of steady rotation of a 
porous approximate sphere located at the center of 
an approximate spherical container has been investi-
gated. The Brinkman’s model for the flow inside the 
porous approximate sphere and the Stokes equation 
for the flow in an approximate spherical container 
were used to study the motion. The torque experi-
enced by the porous approximate spherical particle 
in the presence of cavity is obtained and wall correc-
tion factor is calculated. The special cases of rotation 
of a porous sphere and a solid sphere in a spherical 
container are obtained from the present analysis.  

Keywords −− Rotation, porous approximate 
sphere, Stokes flow, Brinkman equation, Stress jump 
coefficient. 

I. INTRODUCTION 
Fluid flows past rotating axially symmetric bodies are of 
fundamental and received considerable attention due to 
their practical interest in the areas of chemical, biomed-
ical and environmental engineering and science. One of 
the important physical quantities, which is needed in 
different applications, is the couple experienced by 
steadily rotating bodies in an incompressible viscous 
fluid. The couple experienced by a rotating body is re-
quired for designing and calibration of viscometers 
(Kanwal, 1961).  A survey of literature regarding the 
fluid flows past and within porous bodies indicates that 
while abundant information is available for flows in an 
infinite expanse of fluid, very little information is avail-
able for flows in enclosures.  Cunningham (1910) and 
Williams (1915), independently, considered the motion 
of a solid sphere in a spherical container. They present-
ed solutions for the case of an inner solid sphere.  Ha-
berman and Sayre (1962) have made an analogous study 
for the motion of an inner Newtonian fluid sphere. All 
the above authors used no-slip condition on the surface 
of the inner sphere.  Ramkissoon and Rahaman (2001, 
2003) investigated the motion of inner non-Newtonian 
(Reiner-Revlin) fluid sphere in a spherical container and 
a solid spherical particle in a spheroidal container. They 
evaluated the expression for drag on the inner sphere 
and examined the wall effects.  

The flow problems of the motion of a porous particle 
in a container have been modeled by using the Stokes 
version of the Navier-Stokes equation for the flow in-
side the container and Darcy’s law or Brinkman’s equa-
tion to describe the flow within the porous particle. The 

boundary condition for the flow field across a porous-
liquid interface has drawn the attention of many re-
searchers.  Several types of boundary conditions at the 
interface of the free fluid and porous region to link the 
different flow regimes were suggested in literature. One 
type amongst them is continuity of the velocity, pres-
sure and tangential stresses at the porous-liquid inter-
face. Using this condition, the quasi-steady translation 
and steady rotation of a spherically symmetric compo-
site particle composed of a solid core and a surrounding 
porous shell located at the center of a spherical cavity 
filled with an incompressible Newtonian fluid is studied 
by Keh and Chou (2004). The quasi-steady translation 
and steady rotation of a spherically symmetric porous 
shell located at the center of a spherical cavity filled 
with an incompressible Newtonian fluid is investigated 
analytically by Keh and Lu (2005).  They evaluated the 
hydrodynamic drag force and torque exerted by the fluid 
on the porous particle and found that the boundary ef-
fects of the cavity wall on the creeping motions of a 
composite sphere can be significant in appropriate situa-
tions.  Srinivasacharya (2005) studied the motion of a 
porous sphere in a spherical container. The flow prob-
lem of an incompressible axisymmetrical quasi-steady 
translation and steady rotation of a porous spheroid in a 
concentric spheroidal container are studied analytically 
by Saad (2010).  Motivated by an interest in the interac-
tion of cells or microspheres with the glycocalix, Dami-
ano et al. (2004) have obtained exact solutions to the 
problem of translational and rotational motion of a 
sphere in a Stokes flow near a Brinkman medium.  

Ochoa-Tapia and Whitaker (1995 a, b) have investi-
gated the boundary conditions at the porous-liquid inter-
face by applying volume average techniques. They have 
shown that the equations require a discontinuity in the 
shearing stress but continuity in velocity components 
and normal stress. Ochoa-Tapia has derived the stress 
jump boundary condition  
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where up, ul are tangential velocity components in po-
rous region and liquid region respectively, ε is the po-
rosity, k is the permeability of the homogeneous portion 
of the porous region and σ is the stress jump coefficient. 
If σ ≠0, there is a discontinuity in the shear stress at the 
porous-liquid interface.  This jump condition is con-
structed to join Darcy’s law with the Brinkman correc-
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tion to Stokes equations.  Experimentally it has been 
verified that the jump coefficient σ varies in the range 
−1 to 1 (Ochoa-Tapia and Whitaker, 1995a,b), Kuz-
netsov 1996, 1998).  Kuznetsov (1996, 1998) used this 
stress jump boundary condition at the interface between 
a porous medium and a clear fluid to discuss flow in 
channels partially filled with porous medium.  Raja 
Sekhar and Bhattacharyya (2005) have used stress jump 
boundary condition while discussing the Stokes flow of 
a viscous fluid inside a sphere with internal singulari-
ties, enclosed by a porous spherical shell. They con-
cluded that the fluid velocity at a porous-liquid interface 
varies with the stress jump coefficient and it plays an 
important role in describing the flow field associated 
with porous medium. The flow of a viscous fluid in a 
spherical annulus formed by a solid sphere rotating with 
a constant angular velocity and a concentric spherical 
porous medium has been discussed by Srivastava and 
Saxena (2008) using this stress jump boundary condi-
tion. They concluded that the torque on the rotating 
sphere also increases with the decrease of the permea-
bility of the porous medium.  

In this paper, we consider slow steady rotation of a 
porous approximate sphere in an approximate spherical 
container. We have used the Brinkman’s model for the 
flow inside the porous approximate sphere and Stokes’ 
model for the flow within the approximate spherical 
container. The flow examined is axially symmetric in 
nature. As boundary conditions, continuity of the ve-
locity and the slip condition at the porous-liquid inter-
face proposed by Ochoa-Tapia and Whitaker are em-
ployed. The hydrodynamic torque acting on the porous 
approximate sphere in the presence of the cavity and 
wall effects are studied numerically. 

II. FORMULATION OF THE PROBLEM 
Let (r, θ, φ) denote a spherical polar co-ordinate system 
with origin at the center of a sphere r=a with ( φθ eeer

 ,, ) 
are unit base vectors. Consider the body r=a[1+f(θ)], 
where f(θ) is a function of θ which can be expressed as 
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=
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m mmf ζϑβζ , where ϑm(ζ)=[Pm-2(ζ)-Pm(ζ)]/ 

(2m-1), ζ=cos(θ) in which Pm(ζ) is the Legendre func-
tion of the first kind.  ϑm(ζ) is the Gegenbauer function 
of the first kind of order m and degree −1/2 (Happel and 
Brenner, 1965).  For small βm ’s we refer to this body as 
an approximate sphere.  If all βm are zero, the approxi-
mate sphere reduces to a sphere of radius a.  

Consider the slow steady rotation of a porous ap-
proximate spherical particle located at the center of an 
approximate spherical vessel containing an incompress-
ible Newtonian viscous fluid (see Fig.1).  Assume that 
the approximate spherical particle is rotating slowly 
with angular speed Ω about the axis of symmetry θ=0.  
Let the equation of the porous approximate spherical 
particle be [ ] am mm rar ≡+= ∑∞

=2
)(1 ζϑβ  and that of 

approximate spherical vessel be [ += 1br  
] bm mm r≡∑∞

=2
)(ζϑγ .  

 
Figure 1: The physical situation and the coordinate system 
(m=20, b=1, a=0.6).  

Assume that the flow within the approximate spheri-
cal container (i.e. ra≤r≤rb) is governed by the Stokes’ 
approximation to Navier-Stokes equations,  
 0)1( =⋅∇ q , (1) 
 )1(2)1( qp 

∇=∇ µ . (2) 
and the flow inside the porous approximate sphere (i.e., 
r≤ra) is governed by Brinkman’s equations,  
 0)2( =⋅∇ q , (3) 

 )2()2(2)2( q
k

qp  µµ =∇+∇− . (4) 

where )(iq  is the volumetric average of the velocity, µ is 
the coefficient of viscosity, p(i) is the average of the 
pressure and k is the permeability of the porous medi-
um.  

Since flow is axially symmetric about the axis of ro-
tation, all the physical quantities are independent of φ. 
Hence, we assume that the velocity vectors )1(q  and 

)2(q  in the form  
 .2,1,),()()( == ierwq ii

φq   (5) 
Substituting (5) in (2) and (4) and after simplifica-

tion, we get the following dimensionless equations  
 ( ) 0sin )1(2 =wrE θ , (6) 
 ( )( ) 0sin )2(22 =− wrE θα . (7) 
where α2=a2/k and E2= ∂2/∂r2+ (1−ζ2)/r2 ∂2/∂r2 is the 
Stokesian stream function operator. 

III. BOUNDARY CONDITIONS 
The boundary conditions are  
(i) Continuity of velocity component on the boundary 

of the porous approximate sphere, i.e.,  
 arrrwrw == on),(),( )2()1( θθ , (8) 
(ii) Ochoa-Tapia’s stress jump boundary condition for 

tangential stress, i.e.,  
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where σ is the stress jump coefficient.  
(iii) on the cell surface  
 brrrw =Ω−= onsin)1( θ , (10) 
The boundary conditions from Eqs. (8) to (10) in di-
mensionless form are  
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where η = a/b. 

IV. SOLUTION OF THE PROBLEM 
The solution of (6) is  
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and the solution of (7) is  
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where In−1/2(αr) denote the modified Bessel function of 
the first kind of order n − 1/2.  

V. DETERMINATION OF ARBITRARY 
CONSTANTS 

We first develop the solution corresponding to the 
boundaries r=1+βmϑm(ζ) and r=(1/η)[1+γmϑm(ζ)].  As-
suming that the coefficients βm and γm are sufficiently 
small that squares and higher powers may be neglected 
(Happel and Brenner, 1965).  Comparison of the above 
solution with those obtained in case of motion of porous 
sphere in a spherical container (Srinivasacharya, 2005), 
indicates that the terms involving An, Bn and Cn for n>2 
are the extra terms here which are not present in the 
case of sphere. The body that we are considering now is 
an approximate sphere and the flow generated is not ex-
pected to be far different from the one generated by ro-
tation of a porous sphere.  Also the coefficients An, Bn 
and Cn for n>2 are of order βm and the coefficients An, 
Bn for n> 2 are of order γm.  Therefore, while imple-
menting the boundary conditions, we ignore the depar-
ture from the spherical form and set in (11) r= 1 in the 
terms involving An, Bn and Cn for n>2 and in (12) r=1/η 
in the terms involving An and Bn for n> 2.  

Using the observations made above and the bounda-
ry conditions (11) and (12) in the expressions (13) and 
(14) and equating leading coefficients to zero in the re-
sulting equations, we get a system of equations in A2, B2 
and C2. Solving this system of equations, we get  
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where  
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Using the identities given in Happel and Brenner 
(1965), (p.142), we get An=Bn=Cn=0 for n≠m−2, m, m+2 
and another system of equations in An, Bn and Cn for 
n=m−2, m, m+2.  Solving this system of equations, we 
get the expressions for the arbitrary constants An, Bn and 
Cn for n=m−2, m, m+2. As the expressions for these 
constants are lengthy, they have not presented here. 
Now, we employ the same technique to the boundaries  
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for each value of m. The final solution appears to be a 
superposition of the solutions for all m. Thus the veloci-
ty components of both flow regions are given by  
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VI. TORQUE ON THE BODY AND WALL 
EFFECTS 

The hydrodynamic couple acting on the porous approx-
imate sphere in an approximate spherical container is 
obtained as  
 ∫ ∑
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If b →∞ (or η=0), the couple exerted on the rotating po-
rous approximate sphere in an unbounded medium is  
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The wall correction factor Wc is defined as the ratio 
of the actual couple experienced by the particle in the 
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enclosure and the couple on a particle in an infinite ex-
panse of fluid.  With the aid of Eqs. (20) and (23) this 
becomes  
 

∞

=
T
TWc

 (26) 

Note that Wc=1 for η = 0 and Wc ≥ 1 for 0 <η ≤ 1. 

VII. SPECIAL CASES 
A. Porous sphere in a spherical container  
If βm=0 and γm=0 for m≥2, the inner and outer approxi-
mate spheres reduces to spheres. The hydrodynamic 
couple acting on the porous sphere in an spherical con-
tainer is obtained as  
 2

34 BaT Ω−= µπ  (27) 
The wall correction factor Wc is  
 

[ ]3
31

1
∆−
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ηcW  (28) 

A.1. Porous sphere in a spherical container using 
continuity of stresses at the porous-liquid interface  
For the steady rotational motion of a porous sphere in a 
spherical container with continuity of stress σ=0, the 
expression for the hydrodynamic torque becomes  
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which agrees with the result obtained by Keh and Lu 
(2005), Saad (2010).  

The wall correction factor Wc is given by  
 ( )[ ] 1123 coth3311 −−− −+−= αααhcW  (30) 
A.2. Solid sphere in a spherical container  
In the limiting case of α→∞(or k = 0),  
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This is the result for the rotation of an impermeable sol-
id sphere in a cell model (Saad, 2010).  

The Wall correction factor Wc is given by  
 

31
1
η−

=cW  (32) 

which is well-known result obtained in Keh and Lu 
(2005), Saad (2010). 

VIII. RESULTS AND DISCUSSION 
The variation of wall correction factor Wc with permea-
bility k1(=1/α) is plotted in Fig. 2 for different values of 
σ and β2=β4=β (inner deformation parameter), γ2=γ4=γ 
(outer deformation parameter), separation parameter η 
are fixed . The validity of σ values (Ochoa-Tapia and 
Whitaker, 1995 a, b; Kuznetsov, 1996, 1998) is exam-
ined so that the wall correction factor gives a physical 
significance. It is observed that increasing permeability 
parameter k1 decreases the wall correction factor or 
torque.  Further, the wall correction factor or torque is 
decreasing for increasing values of the stress jump coef-
ficient.  For positive values of stress jump coefficient σ, 
there is a change in the behavior of Wc at a particular 
value of permeability. Beyond the value of this permea-
bility, Wc < 1 which is not physically possible. There- 
 

 
Figure 2: Variation of wall correction factor Wc with permea-
bility k1 for different values of the stress jump coefficient σ; 
inner deformation parameter β=0.15, outer deformation pa-
rameter γ=0.1, separation parameter η=0.6.  

 
Figure 3: Variation of wall correction factor Wc with permea-
bility k1 for different values of inner deformation parameter β; 
stress jump coefficient σ=0, outer deformation parameter 
γ=0.1, separation parameter η=0.6.  

 
Figure 4: Variation of wall correction factor Wc with permea-
bility k1 for different values of inner deformation parameter β; 
stress jump coefficient σ=−0.3, outer deformation parameter 
γ=0.1, separation parameter η=0.6.  

fore, the positive values of σ can not be considered be-
yond that particular permeability.  If negative σ is con-
sidered in the stress jump condition (9), the shear stress 
shows an increase at the external (liquid) flow region 
than that of the internal (porous) flow region.  Due to  
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Figure 5: Variation of wall correction factor Wc with permea-
bility k1 for different values of the separation parameter η; in-
ner deformation parameter β=0.15, outer deformation parame-
ter γ=0.1, stress jump coefficient σ=−0.5.   

this, a significant torque force is generated on the po-
rous surface for any permeability.  But, for positive val-
ues of σ, although the shear stress of the external region 
becomes low, for a particular range of permeability a 
significant torque exerts on the surface.  It seen that the 
wall correction factor or torque is more effective for 
negative values of stress jump coefficient.  

The variation of wall correction factor Wc with per-
meability k1 for various values of β2=β4=β (inner defor-
mation parameter) and γ2=γ4=γ (outer deformation pa-
rameter) are shown in Fig. 3 and Fig. 4 respectively, for 
fixed values of stress jump coefficient σ and separation 
parameter η. It can be noticed that there is an increase in 
the wall correction factor or torque as the deformation 
of the inner sphere β is increasing.  It is interesting to 
note that the torque on the porous sphere is less than 
that of the torque on the porous approximate sphere in 
presence of cavity wall.  It is observed from Fig. 4 that 
the correction factor Wc decreases as the stress jump co-
efficient increases.  

The effect of the separation parameter η on wall cor-
rection factor Wc with permeability k1 is shown in Fig. 
5.  It is seen that the wall correction factor increases 
monotonically with an increase in the value of η. The 
boundary effect on the correction factor (or hydrody-
namic torque) of the permeable particle is stronger when 
the permeability k1 is smaller. For k1<<1, the value of 
the correction factor of the porous sphere is close to that 
of a solid particle (with k1→0 and Wc is given by the Eq. 
32) when η is small, while the difference is more signif-
icant as η→1.  When the porous particle is in contact 
with the cavity wall (η=1), its correction factor does not 
vanish for cases with a finite value of α.  Thus, the 
stress jump condition (9) can have a significant influ-
ence on the mobility of a particle. It is seen that Wc or 
torque not only depends on the separation parameter η 
and permeability k1 but also on the stress jump coeffi-
cient σ.  

IX. CONCLUSIONS 
An exact solution for the problem of steady rotation of a 

porous approximate sphere in an approximate spherical 
container is obtained by considering the Brinkman’s law 
in the porous region and Stokes’ equation in the liquid 
region.  At the porous-liquid interface Ochoa -Tapia and 
Whitaker’s stress jump condition, continuity of the ve-
locity components have been used.  An expression for 
the hydrodynamic torque acting on the porous sphere in 
the presence of the cavity and wall correction factor are 
obtained. The torque acting on the porous sphere is de-
creasing as the permeability k1 is increasing as well as 
the stress jump coefficient is increasing. Wall correction 
factor Wc increases as the separation parameter η in-
creases.  
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