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Abstract — The problem of steady rotation of a
porous approximate sphere located at the center of
an approximate spherical container has been investi-
gated. The Brinkman’s model for the flow inside the
porous approximate sphere and the Stokes equation
for the flow in an approximate spherical container
were used to study the motion. The torque experi-
enced by the porous approximate spherical particle
in the presence of cavity is obtained and wall correc-
tion factor is calculated. The special cases of rotation
of a porous sphere and a solid sphere in a spherical
container are obtained from the present analysis.
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I. INTRODUCTION

Fluid flows past rotating axially symmetric bodies are of
fundamental and received considerable attention due to
their practical interest in the areas of chemical, biomed-
ical and environmental engineering and science. One of
the important physical quantities, which is needed in
different applications, is the couple experienced by
steadily rotating bodies in an incompressible viscous
fluid. The couple experienced by a rotating body is re-
quired for designing and calibration of viscometers
(Kanwal, 1961). A survey of literature regarding the
fluid flows past and within porous bodies indicates that
while abundant information is available for flows in an
infinite expanse of fluid, very little information is avail-
able for flows in enclosures. Cunningham (1910) and
Williams (1915), independently, considered the motion
of a solid sphere in a spherical container. They present-
ed solutions for the case of an inner solid sphere. Ha-
berman and Sayre (1962) have made an analogous study
for the motion of an inner Newtonian fluid sphere. All
the above authors used no-slip condition on the surface
of the inner sphere. Ramkissoon and Rahaman (2001,
2003) investigated the motion of inner non-Newtonian
(Reiner-Revlin) fluid sphere in a spherical container and
a solid spherical particle in a spheroidal container. They
evaluated the expression for drag on the inner sphere
and examined the wall effects.

The flow problems of the motion of a porous particle
in a container have been modeled by using the Stokes
version of the Navier-Stokes equation for the flow in-
side the container and Darcy’s law or Brinkman’s equa-
tion to describe the flow within the porous particle. The

boundary condition for the flow field across a porous-
liquid interface has drawn the attention of many re-
searchers. Several types of boundary conditions at the
interface of the free fluid and porous region to link the
different flow regimes were suggested in literature. One
type amongst them is continuity of the velocity, pres-
sure and tangential stresses at the porous-liquid inter-
face. Using this condition, the quasi-steady translation
and steady rotation of a spherically symmetric compo-
site particle composed of a solid core and a surrounding
porous shell located at the center of a spherical cavity
filled with an incompressible Newtonian fluid is studied
by Keh and Chou (2004). The quasi-steady translation
and steady rotation of a spherically symmetric porous
shell located at the center of a spherical cavity filled
with an incompressible Newtonian fluid is investigated
analytically by Keh and Lu (2005). They evaluated the
hydrodynamic drag force and torque exerted by the fluid
on the porous particle and found that the boundary ef-
fects of the cavity wall on the creeping motions of a
composite sphere can be significant in appropriate situa-
tions. Srinivasacharya (2005) studied the motion of a
porous sphere in a spherical container. The flow prob-
lem of an incompressible axisymmetrical quasi-steady
translation and steady rotation of a porous spheroid in a
concentric spheroidal container are studied analytically
by Saad (2010). Motivated by an interest in the interac-
tion of cells or microspheres with the glycocalix, Dami-
ano et al. (2004) have obtained exact solutions to the
problem of translational and rotational motion of a
sphere in a Stokes flow near a Brinkman medium.

Ochoa-Tapia and Whitaker (1995 a, b) have investi-
gated the boundary conditions at the porous-liquid inter-
face by applying volume average techniques. They have
shown that the equations require a discontinuity in the
shearing stress but continuity in velocity components
and normal stress. Ochoa-Tapia has derived the stress
jump boundary condition

’16Lp — aiul - iu p
oy oy Wk

where uP, u' are tangential velocity components in po-
rous region and liquid region respectively, ¢ is the po-
rosity, k is the permeability of the homogeneous portion
of the porous region and o is the stress jump coefficient.
If o #0, there is a discontinuity in the shear stress at the
porous-liquid interface. This jump condition is con-
structed to join Darcy’s law with the Brinkman correc-
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tion to Stokes equations. Experimentally it has been
verified that the jump coefficient ¢ varies in the range
—1 to 1 (Ochoa-Tapia and Whitaker, 1995a,b), Kuz-
netsov 1996, 1998). Kuznetsov (1996, 1998) used this
stress jump boundary condition at the interface between
a porous medium and a clear fluid to discuss flow in
channels partially filled with porous medium. Raja
Sekhar and Bhattacharyya (2005) have used stress jump
boundary condition while discussing the Stokes flow of
a viscous fluid inside a sphere with internal singulari-
ties, enclosed by a porous spherical shell. They con-
cluded that the fluid velocity at a porous-liquid interface
varies with the stress jump coefficient and it plays an
important role in describing the flow field associated
with porous medium. The flow of a viscous fluid in a
spherical annulus formed by a solid sphere rotating with
a constant angular velocity and a concentric spherical
porous medium has been discussed by Srivastava and
Saxena (2008) using this stress jump boundary condi-
tion. They concluded that the torque on the rotating
sphere also increases with the decrease of the permea-
bility of the porous medium.

In this paper, we consider slow steady rotation of a
porous approximate sphere in an approximate spherical
container. We have used the Brinkman’s model for the
flow inside the porous approximate sphere and Stokes’
model for the flow within the approximate spherical
container. The flow examined is axially symmetric in
nature. As boundary conditions, continuity of the ve-
locity and the slip condition at the porous-liquid inter-
face proposed by Ochoa-Tapia and Whitaker are em-
ployed. The hydrodynamic torque acting on the porous
approximate sphere in the presence of the cavity and
wall effects are studied numerically.

Il. FORMULATION OF THE PROBLEM
Let (r, 8, ¢) denote a spherical polar co-ordinate system
with origin at the center of a sphere r=a with (€ ,€,,€,)

are unit base vectors. Consider the body r=a[1+f(6)],
where f(6) is a function of 8 which can be expressed as

F()=" B,9,(¢), where Gn(Q)=[Pn-2()-Pu()V

(2m-1), =cos(0) in which Py(¢) is the Legendre func-
tion of the first kind. 9,(¢) is the Gegenbauer function
of the first kind of order m and degree —1/2 (Happel and
Brenner, 1965). For small £, ’s we refer to this body as
an approximate sphere. If all 4, are zero, the approxi-
mate sphere reduces to a sphere of radius a.

Consider the slow steady rotation of a porous ap-
proximate spherical particle located at the center of an
approximate spherical vessel containing an incompress-
ible Newtonian viscous fluid (see Fig.1). Assume that
the approximate spherical particle is rotating slowly
with angular speed Q about the axis of symmetry 6=0.
Let the equation of the porous approximate spherical
particle be r = a[ 1+ Zzzzﬂmgm ) ]E r, and that of
r=b[ 1+

approximate vessel  be

Z::Z 7/m‘9m (C;) ]E rb '

spherical
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Figure 1: The physical situation and the coordinate system
(m=20, b=1, a=0.6).

Assume that the flow within the approximate spheri-
cal container (i.e. r,<r<ry) is governed by the Stokes’
approximation to Navier-Stokes equations,

v-g¥ =0, D

vp® = 4v3g®. 2)

and the flow inside the porous approximate sphere (i.e.,
r<r,) is governed by Brinkman’s equations,

v-G? =0, 3)

~Vp@ + uv2G®? :gqm_ (4)

where g is the volumetric average of the velocity, i is

the coefficient of viscosity, p® is the average of the
pressure and k is the permeability of the porous medi-
um.

Since flow is axially symmetric about the axis of ro-
tation, all the physical quantities are independent of ¢.
Hence, we assume that the velocity vectors g® and
g® in the form

q¥ =w"(r,0),, i=12. (5)
Substituting (5) in (2) and (4) and after simplifica-
tion, we get the following dimensionless equations
E*(rsinow®)=0, (6)
(E2—a?)rsinow®)=o0. (7)
where a’=a’/k and E*= &%or*+ (1-C3)Ir* &%/or’ is the
Stokesian stream function operator.

I1l. BOUNDARY CONDITIONS
The boundary conditions are
(i) Continuity of velocity component on the boundary
of the porous approximate sphere, i.e.,

wh(r,0)=w?(r,0) on r=r,, (8)
(if) Ochoa-Tapia’s stress jump boundary condition for
tangential stress, i.e.,
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ow?  ow® o
=—w? on r=r, (9)

or or Ak :
where o is the stress jump coefficient.
(iii) on the cell surface
w® =-Qrsin@ on r=r,, (10)
The boundary conditions from Egs. (8) to (10) in di-
mensionless form are

WO — W@

}on r=1+ iﬂmsm(g), (11)

w? —w® = gow®

w®(r,8) =-rsing on r:l{l+iyml9m(§)] (12)
77 m=2

where 5 = a/b.

IV. SOLUTION OF THE PROBLEM
The solution of (6) is

rsinow® = [A2r2 + Bzr‘l].slz(g’) +

. (13)
+y[Ar 8o
and the solution of (7) is
rsinaw® =C,/rl,, (ar)9,(&) +
(14)

£ 30 (a8,

where I,_»(ar) denote the modified Bessel function of
the first kind of order n — 1/2.

V. DETERMINATION OF ARBITRARY
CONSTANTS

We first develop the solution corresponding to the
boundaries r=1+,9,(0) and r=(1/n)[1+ynIn(0)]. As-
suming that the coefficients 8, and y, are sufficiently
small that squares and higher powers may be neglected
(Happel and Brenner, 1965). Comparison of the above
solution with those obtained in case of motion of porous
sphere in a spherical container (Srinivasacharya, 2005),
indicates that the terms involving A,, B, and C,, for n>2
are the extra terms here which are not present in the
case of sphere. The body that we are considering now is
an approximate sphere and the flow generated is not ex-
pected to be far different from the one generated by ro-
tation of a porous sphere. Also the coefficients A, B,
and C, for n>2 are of order S, and the coefficients A,,
B, for n> 2 are of order y,,. Therefore, while imple-
menting the boundary conditions, we ignore the depar-
ture from the spherical form and set in (11) r= 1 in the
terms involving A,, B, and C, for n>2 and in (12) r=1/5
in the terms involving A, and B, for n> 2.

Using the observations made above and the bounda-
ry conditions (11) and (12) in the expressions (13) and
(14) and equating leading coefficients to zero in the re-
sulting equations, we get a system of equations in A,, B,
and C,. Solving this system of equations, we get

A, =2a(ac cosha —(a +o)sinha)/ A
B, =2(~ a(3+ ac)cosha + (3+ a(a + o))sinha)/ A (19)
C,=3V27a¥? /A
where

A :a(— a0'+773(3+a0'))cosh a+ (16)

+(-37°—a(r* ~1)(a+ o) )sinha

Using the identities given in Happel and Brenner
(1965), (p.142), we get A,=B,=C,=0 for nm—2, m, m+2
and another system of equations in A,, B, and C, for
n=m-2, m, m+2. Solving this system of equations, we
get the expressions for the arbitrary constants A,, B, and
C, for n=m—2, m, m+2. As the expressions for these
constants are lengthy, they have not presented here.
Now, we employ the same technique to the boundaries

r=1+ iﬁmsm(g) and r =1{1+ im’m(é)}
m=2 n m=2

for each value of m. The final solution appears to be a
superposition of the solutions for all m. Thus the veloci-
ty components of both flow regions are given by

rsinaw® =[Ar? +B,r9,(¢) +

A B L O A7)
L [Ar™+B,r ™9 () +
A2 4B, e}
rsinow® = [CZ\/FIS,Z(Ogr)J,92(cj)Jr
3w ol stens, O+ 0

+Co Ty (ar) 8, () +
+ Cm+2 \/FI m+3/2 (ar)‘ngrz (é/)}

VI. TORQUE ON THE BODY AND WALL
EFFECTS
The hydrodynamic couple acting on the porous approx-
imate sphere in an approximate spherical container is
obtained as

T= 27za3j0” r’)

: (19)

a2
. sin“adé
=143 " B ()

T = —4ma°1Q)

2 1 (20)
(Bz + g(AlﬂZ +4A,7,) _g (AB, + A274)]:

where
A, =6ala’o(2 + ac)cosh? a + (a + 6)(2+ ala + o) 1)
sinh? & — (26 + a1+ o(a + 0)))sinh 2a )/ .
A, = —6773(a(3+ aoc)cosha —
—~(B+a(a+o))sinha) A

If b —o0 (or #=0), the couple exerted on the rotating po-
rous approximate sphere in an unbounded medium is

(22)

T, = _4”33#(2(2A3 + EAzlﬂz - 1A4ﬂ4j (23)
5 35
where
A3:0((3+ ao) COSha—(S-I—a((Z-{.-U))Slnh(Z (24)
a(ao cosh o — (o + o) sinh &)
o s
A, = 6(a(2 +ao)cosha —(2+ ao +a”)sinh a) (25)

a(aocosha —(a +0o)sinha)

The wall correction factor W, is defined as the ratio
of the actual couple experienced by the particle in the
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enclosure and the couple on a particle in an infinite ex-
panse of fluid. With the aid of Egs. (20) and (23) this
becomes

w, =1 (26)
T

©

Note that W.=1 fory =0and W, > 1 for 0 <p < 1.

VII. SPECIAL CASES
A. Porous sphere in a spherical container
If $n=0 and y,=0 for m>2, the inner and outer approxi-
mate spheres reduces to spheres. The hydrodynamic
couple acting on the porous sphere in an spherical con-
tainer is obtained as

T =—47a°1QB, (27)
The wall correction factor W, is
! (28)

We 1_773A3
A.l. Porous sphere in a spherical container using
continuity of stresses at the porous-liquid interface
For the steady rotational motion of a porous sphere in a
spherical container with continuity of stress ¢=0, the
expression for the hydrodynamic torque becomes
T =-87a°uQ
3aosha — (3+a?)sinh
(— 3an®cosha + (3773 —a(1- 773))Sinh a)
which agrees with the result obtained by Keh and Lu
(2005), Saad (2010).
The wall correction factor W, is given by

} (24)

W, = [l— 773(1+ 3a % -3a " coth oz)T1 (30)
A.2.  Solid sphere in a spherical container
In the limiting case of a—oo(or k = 0),
3
et (31)
1-7

This is the result for the rotation of an impermeable sol-
id sphere in a cell model (Saad, 2010).
The Wall correction factor W, is given by
w,=— 1 (32)
1-7n
which is well-known result obtained in Keh and Lu
(2005), Saad (2010).

VIII. RESULTS AND DISCUSSION
The variation of wall correction factor W, with permea-
bility ki(=1/a) is plotted in Fig. 2 for different values of
o and B,=p4=p (inner deformation parameter), y,=y,=y
(outer deformation parameter), separation parameter #
are fixed . The validity of ¢ values (Ochoa-Tapia and
Whitaker, 1995 a, b; Kuznetsov, 1996, 1998) is exam-
ined so that the wall correction factor gives a physical
significance. It is observed that increasing permeability
parameter k; decreases the wall correction factor or
torque. Further, the wall correction factor or torque is
decreasing for increasing values of the stress jump coef-
ficient. For positive values of stress jump coefficient o,
there is a change in the behavior of W, at a particular
value of permeability. Beyond the value of this permea-
bility, W, < 1 which is not physically possible. There-
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Figure 2: Variation of wall correction factor W, with permea-
bility k; for different values of the stress jump coefficient o;
inner deformation parameter $=0.15, outer deformation pa-
rameter y=0.1, separation parameter #=0.6.
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Figure 3: Variation of wall correction factor W, with permea-
bility k, for different values of inner deformation parameter f;
stress jump coefficient =0, outer deformation parameter
y=0.1, separation parameter #=0.6.
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Figure 4: Variation of wall correction factor W, with permea-
bility k; for different values of inner deformation parameter f;
stress jump coefficient 6=—0.3, outer deformation parameter
y=0.1, separation parameter #=0.6.

fore, the positive values of ¢ can not be considered be-
yond that particular permeability. If negative ¢ is con-
sidered in the stress jump condition (9), the shear stress
shows an increase at the external (liquid) flow region
than that of the internal (porous) flow region. Due to
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Figure 5: Variation of wall correction factor W, with permea-
bility k, for different values of the separation parameter #; in-
ner deformation parameter =0.15, outer deformation parame-
ter y=0.1, stress jump coefficient c=—0.5.

this, a significant torque force is generated on the po-
rous surface for any permeability. But, for positive val-
ues of o, although the shear stress of the external region
becomes low, for a particular range of permeability a
significant torque exerts on the surface. It seen that the
wall correction factor or torque is more effective for
negative values of stress jump coefficient.

The variation of wall correction factor W, with per-
meability k; for various values of $,=84=8 (inner defor-
mation parameter) and y,=y,=y (outer deformation pa-
rameter) are shown in Fig. 3 and Fig. 4 respectively, for
fixed values of stress jump coefficient o and separation
parameter 7. It can be noticed that there is an increase in
the wall correction factor or torque as the deformation
of the inner sphere £ is increasing. It is interesting to
note that the torque on the porous sphere is less than
that of the torque on the porous approximate sphere in
presence of cavity wall. It is observed from Fig. 4 that
the correction factor W, decreases as the stress jump co-
efficient increases.

The effect of the separation parameter 5 on wall cor-
rection factor W, with permeability k; is shown in Fig.
5. It is seen that the wall correction factor increases
monotonically with an increase in the value of #. The
boundary effect on the correction factor (or hydrody-
namic torque) of the permeable particle is stronger when
the permeability k; is smaller. For k;<<1, the value of
the correction factor of the porous sphere is close to that
of a solid particle (with k;—0 and W is given by the Eq.
32) when 7 is small, while the difference is more signif-
icant as #—1. When the porous particle is in contact
with the cavity wall (#=1), its correction factor does not
vanish for cases with a finite value of a. Thus, the
stress jump condition (9) can have a significant influ-
ence on the mobility of a particle. It is seen that W, or
torque not only depends on the separation parameter z
and permeability k; but also on the stress jump coeffi-
cient o.

IX. CONCLUSIONS
An exact solution for the problem of steady rotation of a

porous approximate sphere in an approximate spherical
container is obtained by considering the Brinkman’s law
in the porous region and Stokes’ equation in the liquid
region. At the porous-liquid interface Ochoa -Tapia and
Whitaker’s stress jump condition, continuity of the ve-
locity components have been used. An expression for
the hydrodynamic torque acting on the porous sphere in
the presence of the cavity and wall correction factor are
obtained. The torque acting on the porous sphere is de-
creasing as the permeability k; is increasing as well as
the stress jump coefficient is increasing. Wall correction
factor W, increases as the separation parameter # in-
creases.
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