
Special Topics & Reviews in Porous Media — An International Journal, 5 (1): 27–39 (2014)

VISCOUS DISSIPATION AND MAGNETIC FIELD
EFFECTS IN A NON-DARCY POROUS MEDIUM
SATURATED WITH A NANOFLUID UNDER
CONVECTIVE BOUNDARY CONDITION

A. J. Chamkha,1 A. M. Rashad,2,∗ Ch. RamReddy,3 & P. V. S. N. Murthy 4

1Manufacturing Engineering Department, Public Authority for Applied Education and Training,
Shuweikh, 70654, Kuwait

2Department of Mathematics, Aswan University, Faculty of Science, 81528, Egypt
3Department of Mathematics, National Institute of Technology Warangal-506004, India
4Department of Mathematics, Indian Institute of Technology, Kharagpur-721 302, India

∗Address all correspondence to A. M. Rashad E-mail: am rashad@yahoo.com

Original Manuscript Submitted: 2/28/2013; Final Draft Received: 12/4/2013

This paper investigates the influence of viscous dissipation and magnetic field on natural convection from a vertical plate
in a non-Darcy porous medium saturated with a nanofluid. In addition, a convective boundary condition is incorporated
in the nanofluid model. A nonsimilarity transformation is used to reduce the mass, momentum, thermal energy, and the
nanoparticle concentration equations into a set of nonlinear partial differential equations. The obtained equations are
solved numerically by an accurate implicit finite-difference method. The accuracy of the numerical results is validated
by a quantitative comparison of the heat transfer rates with previously published results for a special case and the results
are found to be in good agreement. The effects of magnetic field, viscous dissipation, and non-Darcy and the convection
parameters on the velocity, temperature, nanoparticle volume fraction, and heat and nanoparticle mass transfer rates
are illustrated graphically.
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1. INTRODUCTION

In recent years, the flow analysis of nanofluids has been
the topic of extensive research due to its characteristic in
increasing thermal conductivity in heat transfer process.
Several ordinary fluids, including water, toluene, ethylene
glycol, and mineral oils, etc., in heat transfer processes
have rather low thermal conductivity. The nanofluid [ini-
tially introduced by Choi (1995)] is an advanced type
of fluid containing nanometer-sized particles (diameter
less than 100 nm) or fibers suspended in the ordinary
fluid. Undoubtedly, the nanofluids are advantageous in

the sense that they are more stable and have acceptable
viscosity and better wetting, spreading, and dispersion
properties on solid surfaces. Nanofluids are used in differ-
ent engineering applications such as microelectronics, mi-
crofluidics, transportation, biomedical, solid-state light-
ing, and manufacturing. In particular, nanofluids are sus-
pensions of nanoparticles in fluids that show significant
enhancement of their properties at modest nanoparticle
concentrations. Nanofluids have been demonstrated to be
able to handle this role in some instances as a smart fluid.
The research on heat transfer in nanofluids has been re-
ceiving increased attention worldwide. Many researchers
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have found unexpected thermal properties of nanoflu-
ids, and have proposed new mechanisms behind the en-
hanced thermal properties of nanofluids. For details and
methodologies of convective heat transfer in nanofluids,
the reader is referred to the book by Das et al. (2007) and
in the review papers by Buongiorno (2006) and Kakac and
Pramuanjaroenkij (2009).

In view of these applications, many researchers
have begun research in this field. Nield and Kuznetsov
(2009a,b) analyzed the free convective boundary layer
flows in a porous medium saturated by nanofluid by tak-
ing Brownian motion and thermophoresis effects into
consideration. Chamkha et al. (2011) carried out a bound-
ary layer analysis for the natural convection past an
isothermal sphere in a Darcy porous medium saturated
with a nanofluid. Nield and Kuznetsov (2011) inves-
tigated the cross diffusion in nanofluids. Recently, a
boundary layer analysis for the natural convection past
a horizontal plate in a porous medium saturated with
a nanofluid is analyzed by Gorla and Chamkha (2011).
Many problems of magnetohydrodynamics (MHD) flows
of porous media (Darcian and non-Darcian) saturated
with Newtonian as well as non-Newtonian fluids [see
Chamkha and Aly (2010); Hamada et al. (2011)] have
been analyzed and reported in the literature due to its
importance in the various fields. Some of the authors
[e.g., Uddin (2012a); Ferdows et al. (2012)] have explored
the importance of MHD in the nanofluids. As has been
pointed out by others, magnetic nanofluids have many
applications: magnetofluidic leakage-free rotating seals,
magnetogravimetric separations acceleration/inclinations
sensors, aerodynamic sensors (differential pressure, vo-
lumic flow), nano-/micro-structured magnetorheological
fluids for semiactive vibration dampers, and biomedical
applications in plant genetics and veterinary medicine.

The viscous dissipation effect, that is, a local produc-
tion of thermal energy through the mechanism of vis-
cous stresses, serves to modify, sometimes greatly, free,
forced, and mixed convection flows in both clear viscous
fluids and in fluid-saturated porous media. Several re-
searchers (Gebhart, 1962; Takhar and Beg, 1997; Murthy
and Singh, 1997; Rees et al., 2003; Nield, 2007) have
focused their efforts on the effect of viscous dissipation
in porous media in regular fluids/fluid-saturated porous
medium, but there is very limited literature available on
the study of viscous dissipation in nanofluids about dif-
ferent surface geometries. Uddin et al. (2012b) analyzed
the influences of viscous dissipation on the free convec-
tive boundary layer flow of a non-Newtonian power-law
nanofluid over an isothermal vertical flat plate embedded

in a porous medium. The effects of suction, viscous dis-
sipation, thermal radiation, and thermal diffusion numer-
ically studied on a boundary layer flow of nanofluids over
a moving flat plate have been discussed by Motsumi and
Makinde (2012). Kameswaran et al. (2012) investigated
the convective heat and mass transfer in nanofluid flow
over a stretching sheet subject to hydromagnetic, viscous
dissipation, chemical reaction, and Soret effects.

There is a more common practical situation, where
heat transfer occurs at the boundary surface to or from
a fluid flowing on the surface at a known temperature and
a known heat transfer coefficient, e.g., in heat exchangers,
condensers, reboilers, etc. In view of the above said appli-
cation, the aim of the present paper is to further contribute
to this open research field by describing surprising effects
of viscous dissipation and MHD on the mechanism of
nanoparticles onto a vertical plate in a non-Darcy porous
medium saturated with a nanofluid. The implicit, iterative
finite-difference method discussed by Blottner (1970) is
employed to solve the nonlinear system of this particu-
lar problem. The effects of magnetic, viscous dissipation,
non-Darcy, and Biot parameters are examined and are dis-
played through graphs. Based on the author’s knowledge,
the present model has not been reported in the literature.

2. MATHEMATICAL FORMULATION

Consider the steady two-dimensional free convection flow
of an electrically conducting fluid from the vertical flat
plate in a nanofluid-saturated non-Darcy porous medium.
The coordinate system is chosen such that thex-axis
is along the vertical plate and they-axis is normal to
the plate. The physical model and coordinate system are
shown in Fig. 1. A uniform magnetic field is applied nor-
mal to the plate. The magnetic Reynolds number is as-
sumed to be small so that the induced magnetic field can
be neglected. The fluid and the porous structure are every-
where in local thermodynamic equilibrium and the porous
medium is assumed to be transparent. The fluid flow is
moderate, so the pressure drop is proportional to the lin-
ear combination of fluid velocity and the square of ve-
locity (Forchheimer flow model is considered). At this
boundary, the temperatureTw, to be determined later, is
the result of a convective heating process which is charac-
terized by a temperatureTf and a heat transfer coefficient
hf . The nanoparticle volume fractionφ at the wall isφw.
The ambient values, attained asy tends to infinity, ofT
andφ are denoted byT∞ andφ∞, respectively. In addi-
tion, the viscous dissipation and the convective boundary
condition are incorporated.
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FIG. 1: Physical model and coordinate system.

By employing the Oberbeck-Boussinesq and the stan-
dard boundary layer approximations, and making use
of the above assumptions and the Darcy-Forchheimer
model, the governing equations for the nanofluid flow
problem under investigation are given by
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whereu andv are the Darcy velocity components in thex
andy directions, respectively,T is the temperature,φ is
the nanoparticle concentration,g is the acceleration due to

gravity,K is the permeability,c is the empirical constant
associated with the Forchheimer porous inertia term,σ is
the electrical conductivity of the fluid,µe is the magnetic
permeability,B0 is the strength of the magnetic field,ϕ

is the porosity,αm = km/(ρc)f is the thermal diffusiv-
ity of the fluid, ν = µ/ρf∞ is the kinematic viscosity
coefficient, andJ = ϕ(ρc)p/(ρc)f . Further,ρf∞ is the
density of the base fluid andρ,µ, km, andβ are the den-
sity, viscosity, thermal conductivity, and volumetric ther-
mal expansion coefficients of the nanofluid, whileρp is
the density of the nanoparticles,(ρc)f is the heat capac-
ity of the fluid, and(ρc)p is the effective heat capacity
of the nanoparticle material. The coefficients that appear
in Eqs. (3) and (4) are the Brownian diffusion coefficient
DB , the thermophoretic diffusion coefficientDT , and the
last term in Eq. (3) is the viscous dissipation term, which
can be approximated as the work done by the surface and
the body forces acting on the pore [see Murthy and Singh
(1997)]. For detailed derivation of Eqs. (1)–(4), one can
refer to the papers by Buongiorno (2006) and Nield and
Kuznetsov (2009a,b).

The associated boundary conditions are

v = 0, −km
∂T

∂y
= hf (Tf − T ) ,φ = φw

at y = 0, (5a)

u = 0, T = T∞, φ = φ∞ as y →∞, (5b)

where the subscriptsw and∞ indicate the conditions at
the wall, and at the outer edge of the boundary layer, re-
spectively, wherekm is the thermal conductivity of the
fluid.

We introduce the following nondimensional transfor-
mations,

η =
y

x
Ra1/2x , ψ (x, η) = αmRa1/2x f (x, η) ,

θ (x, η) =
T − T∞
Tf − T∞

, S (x, η) =
φ− φ∞
φw − φ∞

, (6)

where Rax = [(1 − φ∞)ρf∞gKβ(Tf − T∞)x]/[µαm]
is the local Rayleigh number.

In view of the continuity equation (1), we introduce the
stream functionψ by

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (7)

Substituting Eq. (7) into Eqs. (2)–(4) and then using the
nondimensional transformations (6), we get the following
system of nondimensional equations:

(1 + Ha) f ′ + Grf ′2 = θ− Nr S, (8)
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where the primes indicate partial differentiation with re-
spect toη alone, Gr = [(c

√
K)/v][(αm)/x]Rax is the

non-Darcy parameter, Le= (αm)/(ϕDB) is the Lewis
number, Nr = [(ρp − ρf∞)(φw − φ∞)]/[ρf∞β(1 −
φ∞)(Tf − T∞)] is the buoyancy parameter, Nb=
[JDB(φw−φ∞)]/[αm] is the Brownian motion parame-
ter, Nt= [JDT ]/[αmT∞(Tf − T∞)] is the thermophore-
sis parameter, Ha= (σµ2

eB
2
0K)/µ is the magnetic field

parameter, andε = [(1 − φ∞)gβx]/Cp is the viscous
dissipation parameter (i.e., Eckert number). For most sit-
uations the Darcy number is small, so viscous dissipation
is important at even modest values of the Eckert number.
The circumstances in which viscous dissipation is impor-
tant are those involving flows of relatively large velocity.
The author believes that the results in this paper are likely
to be applicable in the context of particle bed nuclear re-
actors.

The boundary conditions (5) in terms off , θ, andS
become

η = 0 : f (ε, 0) = −2ε
∂f

∂ε
, θ′ (ε, 0) = −Biε1/2

× [1− θ (ε, 0)] , S (ε, 0) = 1, (11a)

η →∞ : f ′ (ε, ∞) → 0, θ (ε, ∞) → 0,

S (ε, ∞) → 0, (11b)

where Bi = {hf/km}{
√

[Cpx]/[(1− φ∞)gβRax]} is
the Biot number. It is important to note that as the con-
vective parameter Bi increases, the heat transfer rates
approaches the isothermal case. This statement is also
supported by the first thermal boundary condition of
Eq. (11a), which givesθ(ε, 0) = 1 as Bi→∞.

If ε = 0, Ha = 0, and Gr= 0, the problem reduces
to natural convective boundary-layer flow in a porous
medium saturated by a nanofluid under convective bound-
ary condition. In the limitε → 0, the governing equa-
tions (8)–(10) reduce to the corresponding equations for a
non-Darcy porous medium saturated with nanofluid under
convective boundary condition in the presence of MHD
effects. Furthermore, if Bi→ ∞, Nb→ 0, Nt = Nr = 0,
ε = 0, Ha= 0, andS(η) → 0 (i.e., for the regular New-
tonian fluid), and with the choice of boundary condition

atη = 0: f = 0, θ = 1, Eqs. (8)–(10) governing the non-
Darcy porous medium saturated with a nanofluid reduce
to the non-Darcy natural convection from vertical isother-
mal surfaces in saturated porous media in the absence of
viscous dissipation and MHD effects.

3. HEAT AND MASS TRANSFER COEFFICIENTS

The primary objective of this study is to estimate the pa-
rameters of engineering interest in fluid flow, heat, and
mass transport problems, which are the Nusselt number
Nux, and nanoparticle Sherwood number Shx. These pa-
rameters characterize the wall heat and nanoparticle mass
transfer rates, respectively.

The local heat and local nanoparticle mass fluxes from
the vertical plate can be obtained from

qw =−km
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(
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)
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. (12)

The dimensionless local Nusselt number Nux = [qwx]
/[km(Tf−T∞)] and local nanoparticle Sherwood number
Shx = [qmx]/[DB(φw − φ∞)] are given by

Nux

Ra1/2x

= −θ′ (ε, 0) and
Shx

Ra1/2x

= −S′ (ε, 0) . (13)

The effects of the various parameters involved in the in-
vestigation on these coefficients are discussed in the Re-
sults and Discussion section.

4. NUMERICAL METHOD

Equations (8)–(10) represent an initial-value problem
with ε playing the role of time. This general nonlinear
problem cannot be solved in closed form and, therefore,
a numerical solution is necessary to describe the physics
of the problem. The implicit, tridiagonal finite-difference
method similar to that discussed by Blottner (1970) has
proven to be adequate and sufficiently accurate for the so-
lution of this kind of problem. Therefore, it is adopted in
the present work. All first-order derivatives with respect
to ε are replaced by a two-point backward-difference for-
mula when marching in the positiveε direction. Then, all
second-order differential equations inη are discretized
using three-point central difference quotients. This dis-
cretization process produces a tridiagonal set of alge-
braic equations at each line of constantε which is readily
solved by the well known Thomas algorithm [see Blot-
tner (1970)]. During the solution, iteration is employed to
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deal with the nonlinearity aspect of the governing differ-
ential equations. The problem is solved line by line start-
ing with line ε = 0 where similarity equations are solved
to obtain the initial profiles of velocity, temperature, and
nanoparticles volume fraction and marching forward inε

until the desired line of constantε is reached. The initial
step size∆η1 and the growth factorK∗ employed such
that ∆ηi+1 = K∗∆ηi (where the subscripti indicates
the grid location) were 10−3 and 1.0375, respectively,
and constant step sizes in theε direction with∆ε = 0.01
are employed. These values were found (by performing
many numerical experimentations) to give accurate and
grid-independent solutions. The solution convergence cri-
terion employed in the present work was based on the dif-
ference between the values of the dependent variables at
the current and the previous iterations. When this differ-
ence reached 10−5, the solution was assumed converged
and the iteration process was terminated.

With Bi →∞, Nb→ 0, Nt = Nr = 0, ε = 0, Ha= 0,
andS(η) → 0 (i.e., for the regular Newtonian fluid), and
with the choice of boundary condition atη = 0: f = 0,
θ = 1, Eqs. (8)–(10) governing the present investigation
of nanofluid-saturated non-Darcy porous medium (with
isothermal boundary) reduce to those limiting cases of
free convection flow. Plumb and Huenefeld (1981) in-
vestigated non-Darcy natural convection from vertical
isothermal surfaces in saturated porous media in the ab-
sence of viscous dissipation and MHD effects. Also, the
results have been compared with Plumb and Huenefeld
(1981) and it is found that they are in good agreement as
shown in Table 1. Therefore, the developed code can be
used with great confidence to study the problem consid-
ered in this paper.

5. RESULTS AND DISCUSSION

We have computed the solutions for the dimensionless
velocity, temperature, and nanoparticle volume fraction
functions and heat and nanoparticle mass transfer rates as
shown graphically in Figs. 2–13. The effects of viscous
dissipation parameterε, magnetic parameter Ha, non-
Darcy parameter Gr, Biot number Bi, Brownian motion
parameter Nb, thermophoresis parameter Nt, Lewis num-
ber Le, and buoyancy ration Nr have been discussed.

The dimensionless velocity distribution for different
values of Forchheimer number Gr and Biot number Bi
with the fixed values of other parameters is depicted in
Fig. 2(a). Since Gr represents the inertial drag, thus an in-
crease in the Forchheimer number increases the resistance
to the flow and so a decrease in the fluid velocity ensues.
Here Gr= 0 represents the case where the flow is Darcian.
The velocity is maximum in this case due to the total ab-
sence of inertial drag. The reverse trend can be seen in
the case of convective parameter Bi. The dimensionless
temperature for different values of Forchheimer number
Gr Biot number Bi for the fixed values of other parame-
ters is displayed in Fig. 2(b). An increase in Forchheimer
number Gr increases temperature values, since as the fluid
is decelerated, energy is dissipated as heat and serves to
increase temperatures. As such the temperature is mini-
mized for the lowest value of Gr and maximized for the
highest value of Gr as shown in Fig. 2(b). Given that con-
vective heating increases with Biot number, Bi→∞ sim-
ulates the isothermal surface, shown in Fig. 2(b), where
θ(ε, 0) = 1− ε as Bi→ ∞. In fact, a high Biot number
indicates that the internal thermal resistance of the plate
is higher than the boundary layer thermal resistance. As a

TABLE 1: Comparison of dimensionless similarity functionsθ′(η) andf ′(η) for free convection
along a vertical flat plate in non-Darcy porous medium with Bi→∞, Nb→ 0, Nt= Nr = 0, ε = 0,
Ha = 0, andS(η) → 0; with boundary conditionsη = 0: f = 0, θ = 1 (Plumb and Huenefeld,
1981)

θ′(0) f ′(0)

Gr Plumb and Huenefeld (1981) Present Plumb and Huenefeld (1981) Present

0.00 0.44390 0.44374 1.00000 1.00000

0.01 0.44232 0.44216 0.99020 0.99019

0.10 0.42969 0.42950 0.91608 0.91608

1.00 0.36617 0.36575 0.61803 0.61803

10.00 0.25126 0.25065 0.27016 0.27016

100.00 0.15186 0.15145 0.09512 0.09512
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32 Chamkha et al.

FIG. 2: Effects of non-Darcy parameter and Biot number on (a) velocity, (b) temperature, and (c) volume fraction.

FIG. 3: Variation of nondimensional heat transfer coefficient withε for different values of non-Darcy parameter and
Biot number and fixed values of other parameters.

result, these figures illustrate that an increase in the Biot
number leads to increase of fluid temperature, efficiently.
Figure 2(c) depicts the dimensionless volume fraction for
different values of Forchheimer number Gr and Biot num-
ber Bi for fixed values of other parameters. As the param-
eter Gr increases, the volume fraction profile increases but
the opposite behavior can be seen in the case of Bi for

the specified conditions. The increase in non-Darcy pa-
rameter reduces the intensity of the flow but enhances the
thermal and nanoparticle volume fraction boundary layer
thicknesses.

In Fig. 3, the nondimensional heat transfer coefficient
is plotted against the viscous dissipation parameterε for
different values of Forchheimer number Gr and Biot num-
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FIG. 4: Variation of nondimensional nanoparticle mass transfer coefficient withε for different values of non-Darcy
parameter and Biot number and fixed values of other parameters.

FIG. 5: Effects of viscous dissipation parameter and magnetic parameter on (a) velocity, (b) temperature, and (c)
volume fraction.

ber Bi. It indicates that heat transfer rate decreases with
the viscous dissipation parameter. Also, the results indi-
cated that increases in Gr decrease the heat transfer coeffi-
cient but the reverse phenomena can be observed with the
increasing values of Bi.The nondimensional mass transfer

coefficient is plotted against the viscous dissipation pa-
rameterε for different Forchheimer number Gr and Biot
number Bi in Fig. 4. It is evident from this figure that for
increasing values of Gr the nondimensional mass transfer
coefficient decreases whereas with increasing values of
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FIG. 6: Variation of nondimensional heat transfer coefficient versusε for different values of magnetic parameter with
fixed values of other parameters.

FIG. 7: Variation of nondimensional nanoparticle mass coefficient versusε for different values of magnetic parameter
with fixed values of other parameters.

Bi the nondimensional mass transfer coefficient increases.
Finally, the nondimensional mass transfer coefficient in-
creases with increasing values ofε. Hence the non-Darcy
parameter has an important role in controlling the flow
field.

The variation of the nondimensional velocity, tem-
perature, and nanoparticle concentration for Gr= 1.0,
Nr = 0.1, Nb= 0.3, Nt = 0.1, Bi = 5.0, and Le= 10
with magnetic parameter Ha and viscous dissipation pa-
rameter (i.e., Eckert number)ε are shown in Fig. 5. It
can be observed from Fig. 5(a) that the velocity of the
fluid is decreased with increase in the value of the mag-
netic parameter. This is due to the fact that the introduc-

tion of a transverse magnetic field, normal to the flow di-
rection, has a tendency to create the drag known as the
Lorentz force which tends to resist the flow. Hence, the
horizontal velocity profiles decrease as the magnetic pa-
rameter Ha increases. It can be found from Fig. 5(b) that
increases in the value of the magnetic parameter increase
the temperature of the fluid in the medium. It can be seen
from Fig. 5(c) that the nanoparticle volume fraction of the
fluid is increased by increasing the value of the magnetic
parameter. As explained above, the transverse magnetic
field gives rise to a resistive force known as the Lorentz
force of an electrically conducting fluid. This force makes
the fluid experience resistance by increasing the friction
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FIG. 8: Effects of Brownian motion and thermophoresis parameters on (a) velocity, (b) temperature, and (c) volume
fraction.

FIG. 9: Variation of nondimensional heat transfer coefficient versusε for different values of Brownian motion and
thermophoresis parameters with fixed values of other parameters.

between its layers and thus increases its temperature and
nanoparticle volume fraction. To increase the fluid motion
we have considered the viscous dissipation term. From
this term we obtained dimensionless parameterε. This pa-
rameter is called the fluid motion controlling parameter. It
may be noted thatε = 0 corresponds to the case of the ab-

sence of viscous dissipation. Figure 5(a) shows that the
velocity field increases with the increase of Eckert num-
berε. The effect of viscous dissipationε is to increase the
temperature in the boundary layer, which is displayed in
Fig. 5(b). Figure 5(c) shows that the concentration field
decreases with the increase of Eckert numberε, because
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FIG. 10: Variation of nondimensional nanoparticle mass transfer coefficient versusε for different values of Brownian
motion and thermophoresis parameters with fixed values of other parameters.

FIG. 11: Effects of nanoparticle buoyancy ratio and Lewis number on (a) velocity, (b) temperature, and (c) volume
fraction.

the effect of viscous dissipation in the energy equation
acts as an internal distributed heat source generated due
to the action of viscous stresses. Therefore, the velocity
and temperature distributions are at a higher level when
this effect is considered (ε 6= 0) than when this effect is
neglected (ε = 0).

The effects of a magnetic field and viscous dissipa-
tion on the wall heat and mass transfer rates are shown
in Figs. 6 and 7. The influence of a magnetic field is to
reduce both the wall heat and mass transfer rates. The vis-
cous dissipation effect reduces the wall heat transfer rate
and enhances the wall mass transfer rate. The combined

Special Topics & Reviews in Porous Media — An International Journal



Viscous Dissipation and Magnetic Field Effects 37

FIG. 12: Variation of nondimensional heat transfer coefficient versusε for different values of nanoparticle buoyancy
ratio and Lewis number with fixed values of other parameters.

FIG. 13: Variation of nondimensional nanoparticle mass transfer coefficient versusε for different values of nanopar-
ticle buoyancy ratio and Lewis number with fixed values of other parameters.

effect of the magnetic field and the viscous dissipation
(see Fig. 5) is to generate more heat in the boundary layer
region and hence to reduce the wall heat transfer rate.

Figure 8 is prepared to present the effect of the Brow-
nian motion Nb and thermophoresis Nt on the veloc-
ity, temperature, and volume fraction distributions. With
Nb = 0, there is no thermal transport due to buoyancy
effects created as a result of nanoparticle concentration
gradients. It is observed that the momentum boundary
layer thickness increases with the increase of Nb and Nt.
As the parameters Nt and Nb increase, the temperature
increases for the specified conditions. As expected, the

boundary layer profile for the temperature function is es-
sentially the same form as in the case of a regular (New-
tonian) fluid. The nanoparticle volume fraction decreases
with increase in Nb but increases with Nt. It is noticed that
the nanoparticle volume fraction increases with increase
in Nb in the case of forced convection flow. We notice
that positive Nt indicates a cold surface, while negative
indicates a hot surface. For hot surfaces, thermophoresis
tends to blow the nanoparticle volume fraction boundary
layer away from the surface since a hot surface repels the
submicron-sized particles from it, thereby forming a rela-
tively particle-free layer near the surface.
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The nondimensional heat transfer coefficient decreases
with increasing values of stratification parameter as well
as with Brownian motion and thermophoresis parameters
as shown in Fig. 9. Asε increases, it can be observed from
Fig. 9 that the maximum of nondimensional heat transfer
rate decreases in amplitude. Further, it can be seen that
the values of nondimensional mass transfer coefficient in-
crease with an increase in both viscous dissipation param-
eter and Brownian motion but the reverse trend can be
seen from Fig. 10 with the thermophoresis parameter.

The variation of the nondimensional velocity, tem-
perature, and nanoparticle concentration for Ha= 2.0,
Gr = 1.0, Nb= 0.3, Nt = 0.1, Bi = 0.5, andε = 0.5
with Lewis number Le and nanoparticle buoyancy ratio
Nr is shown in Fig. 11. It is noticed from Fig. 11 that an
increase in the Lewis number Le results in an increase in
the velocity but a decrease in the temperature and volume
fraction within the boundary layer. The present analysis
shows that the flow field is appreciably influenced by the
Lewis number Le. As nanoparticle buoyancy ratio Nr in-
creases, it can be observed from Fig. 11(a) that the maxi-
mum velocity decreases in amplitude. The location of the
maximum velocity moves farther away from the wall. It
is clearly seen from Figs. 11(b) and 11(c) that increase in
Nr tends to increase the thermal and nanoparticle volume
fraction boundary layer thickness.

The nondimensional heat transfer coefficient is plot-
ted against the viscous dissipation parameterε in Fig. 12
for different values of nanoparticle buoyancy ratio Nr
and Lewis number Le. It indicates that heat transfer rate
decreases with the increasing values of Nr and Le. In
Fig. 13, the nondimensional mass transfer coefficient is
plotted against the viscous dissipation parameterε for dif-
ferent nanoparticle buoyancy ratio Nr and Lewis number
Le. It is evident from this figure that for increasing values
of Nr and Le, the nondimensional mass transfer coeffi-
cient decreases. Finally, the nondimensional heat trans-
fer rate decreases but nanoparticle mass transfer rate in-
creases with increasing values ofε.

6. CONCLUSION

In this paper, we studied the effect of viscous dissipa-
tion and magnetic field on free convection in a non-Darcy
porous medium saturated with nanofluid under convec-
tive boundary condition. Using the dimensionless vari-
ables, the governing equations were transformed into a
set of nonlinear parabolic equations where numerical so-
lution was presented using the implicit, iterative finite-
difference method discussed by Blottner (1970) for a wide

range of parameters. The following conclusions were ob-
tained:

• Increasing the magnetic field parameter Ha resulted
in lower velocity distribution and heat and nanopar-
ticle mass transfer rate but higher temperature and
nanoparticle volume fraction distributions in the
boundary layer.

• An increase in the non-Darcy parameter Gr pro-
duced decreases in the velocity distribution, heat and
nanoparticle mass transfer rates, and increases in the
temperature and nanoparticle volume fraction distri-
butions.

• An increase in the viscous dissipation parameterε

caused increases in the velocity and temperature dis-
tribution, nanoparticle mass transfer rate, and de-
creases in the nanoparticle volume fraction distribu-
tion and the heat transfer rate.

• An increase in the Brownian motion parameter Nb,
enhanced the velocity and temperature distributions
and the nanoparticle mass transfer rate but reduced
the nanoparticle volume fraction and heat transfer
rate in the boundary layer.

• An increase in the thermophoresis parameter Nt re-
sulted in increases in the velocity, temperature, and
the nanoparticle volume fraction distributions, but
decreases in the nondimensional heat and nanopar-
ticle mass transfer rates in the boundary layer.

• An increase in the Lewis number Le produced reduc-
tions in the temperature and the nanoparticle volume
fraction distributions and increases in the velocity,
heat transfer rate, and the nanoparticle mass transfer
rate in the boundary layer.

• An increase in the Biot number Bi caused enhance-
ments in the velocity, temperature, and the nondi-
mensional heat and nanoparticle mass transfer rates,
whereas it caused a reduction in the nanoparticle vol-
ume fraction in the boundary layer.

• An increase in the nanoparticle buoyancy parame-
ter Nr produced a reduction in the velocity near the
wall and an opposite behavior far away from the wall
distribution. Also, the temperature and nanoparticle
volume fraction distributions increased but the heat
and nanoparticle mass transfer rates decreased with
increases in the value of Nr.
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• The results also indicated that the presence of MHD
and viscous dissipation effects in the nanofluid-
saturated non-Darcy porous medium influenced the
flow, heat, and the nanoparticle volume fraction sig-
nificantly.
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