
IETE Journal of Research

ISSN: 0377-2063 (Print) 0974-780X (Online) Journal homepage: www.tandfonline.com/journals/tijr20

Dynamic Replication Algorithm for Data
Replication to Improve System Availability: A
Performance Engineering Approach

Sreekumar Vobugari, D. V. L. N. Somayajulu & B. M. Subaraya

To cite this article: Sreekumar Vobugari, D. V. L. N. Somayajulu & B. M. Subaraya (2015)
Dynamic Replication Algorithm for Data Replication to Improve System Availability:
A Performance Engineering Approach, IETE Journal of Research, 61:2, 132-141, DOI:
10.1080/03772063.2014.988757

To link to this article: https://doi.org/10.1080/03772063.2014.988757

Published online: 13 Jan 2015.

Submit your article to this journal

Article views: 128

View related articles

View Crossmark data

Citing articles: 4 View citing articles

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tijr20

https://www.tandfonline.com/journals/tijr20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03772063.2014.988757
https://doi.org/10.1080/03772063.2014.988757
https://www.tandfonline.com/action/authorSubmission?journalCode=tijr20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tijr20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/03772063.2014.988757?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/03772063.2014.988757?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/03772063.2014.988757&domain=pdf&date_stamp=13%20Jan%202015
http://crossmark.crossref.org/dialog/?doi=10.1080/03772063.2014.988757&domain=pdf&date_stamp=13%20Jan%202015
https://www.tandfonline.com/doi/citedby/10.1080/03772063.2014.988757?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/03772063.2014.988757?src=pdf
https://www.tandfonline.com/action/journalInformation?journalCode=tijr20

Dynamic Replication Algorithm for Data Replication
to Improve System Availability: A Performance

Engineering Approach
Sreekumar Vobugari1, D. V. L. N. Somayajulu1 and B. M. Subaraya2

1Department of Computer Science and Engineering, National Institute of Technology, Warangal, India, 2Infosys Limited, Mysore, India

ABSTRACT

Information technology systems deployed by enterprises should not only fulfil their business functionalities but also
cater to Quality of Service concerns such as Availability, Scalability, and Performance. To enhance the system perfor-
mance, the system availability is an important factor and to improve the system availability, one of the strategies is rep-
licating the frequently accessed data to multiple suitable locations which is a practical choice as the users can access
the data from a nearby site. This is, however, not the case for replicas which must have a preset number of copies on
several locations. How to decide a sensible number and right location for replicas have become an important issue in
cloud computing. In this paper, we show a dynamic data replication strategy to enhance the performance of software
system. To identify the suitable file to replicate and to decide respective number of replicas, we calculate popularity
degree and replica factor. We use the fuzzy logic system to identify the system to place the replicas and we use the
round robin method to place the replicas in the identified systems. We compare the performance of our technique
with the existing technique.

Keywords:
Cloud Computing, Data Replication, Fuzzy Logic System, Popularity Degree, Round Robin.

1. INTRODUCTION

Information technology (IT) systems are increasingly
gaining strategic importance in enterprises and have
become an integral part of business operations today.
Thus, it has become imperative that the IT systems
deployed by enterprises not only fulfil their business
functionalities but also cater to Quality of Service (QoS)
parameters such as availability, scalability, and perfor-
mance. From the end-users perspective, some of the
QoS parameters such as availability, scalability may
not be directly visible but play vital role in successful
execution of the transaction initiated by end-users
while parameters like performance and usability are
directly experienced by the end-users. It is, therefore,
important that utmost care should be taken in design-
ing the IT systems to ensure that relevant QoS parame-
ters are considered.

Availability, as discussed above has a high impact on
any IT system because the downtime of the IT systems
is harmful to the business competitiveness of an organi-
zation and it is just stating the obvious. What is not
often obvious is the different ways in which downtime
can affect the enterprises bottom line. The costs that the
enterprise can incur due to downtime (non-availability)
of the IT systems can be tangible and intangible. Hence,

availability of the IT systems play a vital role in the suc-
cess of large enterprises through successful uptime of
the IT systems. Mathematically, the availability (A) of
an IT system is defined as:

A¼MTTF=ðMTTF C MTTRÞ

where MTTF is the mean time to failure of the business
system and MTTR is mean time to repair. Performance
of software system is one of the most essential QoS
parameters for user satisfaction. It is clear that any
application system that satisfies all business require-
ments but fails to satisfy the performance quality of ser-
vice parameter will lead to greater dissatisfaction of
software application end-users. Also, degradation in
any of the above-stated QoS parameters poses high risk
to enterprises in terms of productivity, revenue, and
business continuity. With business transactions increas-
ingly going online, competition is only a click away
and hence due consideration need to be given during
architecting the software systems to address the perfor-
mance and availability aspects. A report estimates that
poorly performing IT applications is costing industrial-
ized nations almost $70 billion annually [1]. Clearly, the
impact of poorly performing applications is high on the
owners of the software application. Hence, performance

132 IETE JOURNAL OF RESEARCH | VOL 61 | NO 2 | MAR�APR 2015

aspect of any application system will be dealt in numer-
ous ways. Some of the following areas of performance
engineering techniques can be identified as the ones hav-
ing major impact on the overall performance of a soft-
ware system: (1) Data Access [2�5], (2) Networking
[6�10], (3) Replica Management [10�14], (4) Replica
Optimization, and (5) Scheduling.

Managing performance through replication demands for
additional infrastructure in terms of storage and database
servers. With the advent of cloud, customers are opting
for cloud-based infrastructure in order to cater infrastruc-
ture needs of high performing software applications and
this is true even for applications based on data replication
strategies. Cloud computing is rapidly transforming the
way organizations view their IT resources. From a sce-
nario of a single system consisting of single operating
system and single application, organizations are moving
into cloud computing where resources are available in
abundance and the user has a wide range to choose from
[15]. In cloud computing, the end-users need not know
the details of a specific technology while hosting their
application, as the service is completely managed by the
cloud service provider (CSP).

Users can consume services at a rate that is set by their
particular needs. This on-demand service can be pro-
vided any time. CSP takes care of all the necessary com-
plex operations on behalf of the user. It provides the
complete system which allocates the required resources
for execution of user applications andmanagement of the
entire system flow. Figure 1. depict the visual representa-
tion of the architecture of cloud computing [16]. With ref-
erence to Replication strategies, replica optimization is

one of the performance enhancement techniques for soft-
ware system. One of the objectives of replica optimization
is to lessen file access times by pointing access requests to
corresponding replicas and pro-actively replicating
repeatedly used files based on access statistics gathered.
Replica optimization techniques can thus be divided into
(1) replica selection, (2) replica initiation.

Replica selection: The replica selection aspect of replica
optimization intends to select the best replica corre-
sponding to network and storage access latencies. In
other words, if for a given file several replicas exist, the
optimization algorithm identifies the replica that
should be accessed from a given location. Similarly, the
algorithm may also be used to identify the best location
for new replicas, i.e. where to store additional replicas
of an existing file.

Replica initiation: The objective of replica initiation is to
trigger replication and thus the generation of new repli-
cas dynamically. The decision about when to create new
replicas can be based on the file access history in order
to optimize data locality for repeatedly requested files.
This assumes that based on historical events we can par-
tially predict future file access. By increasing the replica-
tion factor of a file, one can achieve better load balancing
of file requests to less loaded sites and also fault toler-
ance in case some sites become unavailable [15].

To achieve the dynamic data replication [17�21] we
have to solve three essential issues. The first issue is
which data should be replicated and when to replicate in
the cloud systems to satisfy the user needs which can
reduce the reduction of waiting time and speeding up
data access. The wrong selection of file to replicate and
too early replication will not satisfy the user require-
ments. The second issue is how many suitable replicas to
be created in the cloud to meet the system availability
requirement. The increasing number of replicas will
increase the system maintenance cost and too many
needless replicas will brings superfluous spending
instead of increasing system availability. The third issue
is where to place the new replicas to meet the system task
successful execution rate and bandwidth consumption.
By maintaining all replicas active, the replicas may
enhance the system task successful execution rate and
bandwidth utilization if the replicas and requests are rea-
sonably distributed. However, suitable replica placement
in ultra-large-scale, dynamically scalable and entirely vir-
tualized data centers is much more complicated [22].

In this paper, we develop a dynamic data replication
strategy to enhance the performance of software sys-
tem. We considered the mathematical model given in
[22] to develop a dynamic data replication algorithm.
In [22], the processes involved are which file should beFigure 1: Cloud computing architecture.

Vobugari S, et al.: Dynamic Replication Algorithm for Data Replication to Improve System Availability: A Performance Engineering Approach

IETE JOURNAL OF RESEARCH | VOL 61 | NO 2 | MAR�APR 2015 133

replicated, how many replicas we need to create, and
where the new replicas should be placed. We modify
the popularity degree and replica factor given in [22].
The popularity degree is modified with respect to three
factors. The first factor considers the inverse access fre-
quency and the second factor considers the table
weightage function of a file and the third factor is the
popularity degree in [22]. Thereafter, we calculate the
replica factor using the values of positive factor which
is based on popularity degree and negative factor
which is based on negative degree. We then use the
fuzzy logic system to identify the systems to place the
replicas and we use the round robin method to place
the replicas in the identified systems.

This paper is organized as follows: the second section
shows a brief review of some of the related works and
the third section shows the motivation of our work
and the fourth section explains our proposed technique
and the fifth section shows the performance of our tech-
nique and the sixth section concludes our technique.

2. RELATED WORKS: A BRIEF REVIEW

Literature presents several techniques for data replica-
tion. Here, we review some of the techniques presented.
Sun et al. [22] have developed a dynamic data replica-
tion strategy, it includes: (1) analysing and modelling
the relationship within system availability and the
number of replicas; (2) assessing and identifying the
popular data and cause a replication operation when
the popularity data passes a dynamic threshold;
(3) computing an appropriate number of copies to meet
a logical system byte effective rate (SBER) necessity and
placing replicas among data nodes in a balanced way;
(4) formulating the dynamic data duplication algorithm
in a cloud. Experimental outcomes demonstrated the
efficiency and effectiveness of the enhanced system
brought by the proposed strategy in a cloud.

Sashi and Thanamani [23] have presented a modified
bandwidth hierarchy-based replication (BHR) algorithm
to overcome the limitations of the standard BHR algo-
rithm. The algorithm was simulated using a Data Grid
simulator, OptorSim, developed by European Data Grid
projects. The performance of the algorithm was
improved by minimizing the data access time and
avoiding unnecessary replication. Lee et al. [23] have
developed an adaptive data replication algorithm, called
the Popular File Replicate First algorithm (PFRF), which
was developed on a star-topology data grid with limited
storage space based on aggregated information on previ-
ous file accesses. The PFRF periodically calculated file
access popularity to track the variation of users’ access
behaviours, and then replicates popular files to appro-
priate sites to adapt to the variation. They employed

several types of file access behaviours, including Zipf-
like, geometric, and uniform distributions, to evaluate
PFRF. The simulation results showed that PFRF has
effectively improved average job turnaround time, band-
width consumption for data delivery, and data availabil-
ity as compared with those of the tested algorithms.

Hussein and Mousa [24] have developed an adaptive
replication strategy in the cloud environment. The strat-
egy investigated the availability and efficient access of
each file in the data center, and studied how to improve
the reliability of the data files based on prediction of the
user access to the blocks of each file. The developed
adaptive replication strategy redeploys dynamically
large-scale different files replicas on different data
nodes with minimal cost using heuristic search for each
replication. The developed adaptive strategy was based
on a formal description of the problem. The strategy
identified the files which were popular files for replica-
tion based on analysing the recent history of the data
access to the files using Holt’s linear and exponential
smoothing (HLES) time series. Once a replication factor
based on the popularity of the files was less than a spe-
cific threshold, the replication signal was triggered.
Hence, the adaptive strategy identifies the best replica-
tion location based on a heuristic search for the best
replication factor of each file.

Kamali et al. [25] have considered the problem of frag-
ment allocation in lazily replicated systems and address
both placement and replication issues in an integrated
approach. While replication has improved performance
via increased locality, excessive replication can incur
extra overhead cost to maintain replicas. A comprehen-
sive model that took into account network topology,
fragment correlation, and data access patterns is pre-
sented. Based on this model, they developed an algo-
rithm to find near-optimal dynamic allocation solutions.
Zhe Wang et al. [26] have presented a dynamic data
replication strategy based on two ideas. The first one
employed historical access records which were useful
for picking up a file to replicate. The second one was a
proactive deletion method, which was applied to con-
trol the replica number to reach an optimal balance
between the read access time and the write update over-
head. A unified cost model was used as a means to
measure and compare the performance of their data
replication algorithm and other existing algorithms.

Ruay-Shiung Chang and Hui-Ping Chang [27] have
developed a dynamic data replication mechanism called
Latest Access Largest Weight (LALW). LALW selects a
popular file for replication and calculated a suitable num-
ber of copies and grid sites for replication. By associating
a different weight to each historical data access record,
the importance of each record was differentiated. A more

Vobugari S, et al.: Dynamic Replication Algorithm for Data Replication to Improve System Availability: A Performance Engineering Approach

134 IETE JOURNAL OF RESEARCH | VOL 61 | NO 2 | MAR�APR 2015

recent data access record had a larger weight. It indicated
that the record was more pertinent to the current situa-
tion of data access. A Grid simulator, OptorSim, was
used to evaluate the performance of that dynamic replica-
tion strategy. The simulation results showed that LALW
successfully increases the effective network usage.

Najme Mansouri [28] has presented a dynamic data rep-
lication strategy, called Modified Latest Access Largest
Weight (MLALW). This strategy was an enhanced ver-
sion of LALW strategy. MLALW deletes files by consid-
ering three important factors: least frequently used
replicas, least recently used replicas, and the size of the
replica. MLALW stores each replica in an appropriate
site, i.e. appropriate site in the region that has the high-
est number of access in future for that particular replica.
The algorithm was simulated using a Data Grid simula-
tor, OptorSim, developed by European Data Grid proj-
ects. The experiment results showed that MLALW
strategy gave better performance compared to the other
algorithms and prevent unnecessary creation of replica
which leads to efficient storage usage.

The advantages of our technique compared to the
aforementioned techniques are as follows: In [22],
they had considered only one factor which is based
on access frequency to calculate the popularity
degree. In our technique, we consider two more fac-
tors which are based on inverse access frequency and
table weightage function to improve the performance
and also we use the fuzzy logic system to identify the
exact systems to replicate the files. In [23], they store
the replicated data in a particular location. It would
increase the response time to the end-user. Because if
a user gives a query, the system would search for the
available data which is required to process the query
and if the data is not in the nearer system of the end-
user, it would increase the response time. But in our
technique, we use the fuzzy logic system to find
where to place the replicas and the replicas would
be placed in the necessary system and it would
reduce the response time. In [23], they only consid-
ered the access frequency of the files for replication
and the replicas are only within the user’s local clus-
ter. In our technique, we additionally consider the
inverse access frequency and table weightage function
to calculate the popularity degree which impacts the
replica factor and the replicas is within user’s local
sites. In [24,27], they did not use any model to place
the replicas equally to the systems. In our technique,
we use the fuzzy logic system which identifies where
to place the replicas and also we use round robin
method which equally allocates the replicas in the
required systems. In [25,28], they use some mathe-
matical functions to place the replicas. In our tech-
nique, we calculate mathematical functions and we

give the solution to the fuzzy logic system to decide
where to place the replicas. Because fuzzy logic can
deal with reasoning that is approximate rather than
fixed and exact.

3. MOTIVATION OF OUR WORK

To develop a dynamic data replication algorithm, we
have taken the mathematical model given in [22] as
motivation for our research. There, they have considered
the SBER as the primary issue and they developed a
mathematical formula to identify which file needs to
replicate, the number of replica needed, and where to
place the new replicas by considering the popularity
degree. While examining their work [22], they have
given that further study is needed to reduce the user
waiting time, speeding up data access, and enhancing
the data availability. By considering these facts, we mod-
ify the popularity degree of [22] with respect to three
factors. The first factor is based on inverse access fre-
quency and the second factor is based on table weight-
age function and the third factor is based on access
frequency that is in [22]. We then evaluate the replica
factor based on the positive and negative factor. Thereaf-
ter, we use the fuzzy logic system to identify the systems
to replicate the files, and for allocating the replicas in the
systems, we use the round robin technique.

4. PROPOSED TECHNIQUE TO ENHANCE THE
PERFORMANCE OF SOFTWARE SYSTEM

This section delineates our proposed dynamic data rep-
lication strategy to enhance the performance of soft-
ware system. To enhance the performance, we modify
the calculation of popularity degree in [22] and we use
the fuzzy logic to identify in which system we have to
modify and we also use round robin technique for rep-
lica allocation. The process involved in our proposed
technique is shown in Figure 2.

4.1 Popularity Degree Calculation

This section shows the calculation of the popularity
degree of our proposed technique. The popularity
degree is used to calculate the replica factor. The

Figure 2: Process of our proposed dynamic data
replication.

Vobugari S, et al.: Dynamic Replication Algorithm for Data Replication to Improve System Availability: A Performance Engineering Approach

IETE JOURNAL OF RESEARCH | VOL 61 | NO 2 | MAR�APR 2015 135

calculation is based on three factors and the formula to
calculate the popularity degree is shown below:

PD ¼ P1 C P2 C P3

where, PD denotes the popularity degree of a file; P1
denotes the first factor; P2 denotes the second factor;
and P3 denotes the third factor. The equation to calcu-
late P1 is given below:

P1 ¼
Xtp
ti¼ts

AFðti;tiC 1Þ � log
nu
nr

� �
ðti;tiC 1Þ

In the above equation, AF denotes the access frequency
between ti and tiC 1; and nu denotes the number of
unique users between ti and ti C 1; and nr denotes the
number of repeated users between ti and tiC 1; and ts is
the start time; and tp is the present time. The first factor is
calculated by taking the product of access frequency and
the inverse access frequency. The inverse access fre-
quency is used to identify the importance to replicate a
file by considering the number of unique users who used
a file, i.e. the logarithmic ratio of number of unique users
nu to the number of repeated users nr used a file in a
time interval. If the number of unique users is high, then
that file has more importance to replicate. Therefore, the
inverse access frequency is the term that gives more
importance to the number of unique users from the total
number of users who used a file in a time interval. The
formula to calculate the second factor is given below:

P2 ¼
Xtp
ti¼ts

AFðti;tiC 1Þ �Wtf

where W is total weight of tables in a file. The second
factor is calculated by taking the product value of the
access frequency in a time interval and the total weight
value of each table in a file. We then sum the values
obtained on each interval to calculate the value for the
second factor. In each file, there are a number of tables
and each table has weight values. The total weight
value is adding the weight values of each table in a file.
The third factor is the same that used to calculate the
popularity degree in [22]. It is shown by an equation
below:

P3 ¼
Xtp
ti¼ts

ankðti; tiC 1Þ£vðti; tpÞ

After calculating the first factor P1, second factor P2,
and the third factor P3 of a file, the popularity degree

PD of a file can be calculated. Similarly, we have to find
the popularity degree for each file.

4.2 Replication Factor Calculation

The replica factor calculation is used to find whether the
data file should be replicated or not. We calculate the
replica factor by calculating the positive factor ðPFÞ and
negative factor NF. The purpose of positive factor is to
identify how important is a file for replication. The for-
mula to calculate the positive factor PF is given below:

PF ¼ PDcurrent ¡PDmin

PDmax ¡PDmin

In the above equation, PF represents positive factor;
and PDcurrent represents the popularity degree of the
current file; and PDmin represents minimum popularity
degree; and PDmax represents maximum popularity
degree. The positive factor PF is calculated by identify-
ing the difference between the popularity degree of the
current file PDcurrent and the minimum popularity
degree value PDmin and dividing the solution by
the difference between the maximum popularity degree
value PDmax and the minimum popularity degree value
PDmin. The positive factor is calculated to find
the importance of the file to replicate. Thereafter, we
have to evaluate the negative degree (ND) for each file.
The negative degree calculation is used to find the neg-
ative factor (NF).

NF of a file specifies if a file should not be replicated.
The equation to evaluate negative degree ND for each
file is given below:

ND ¼ M£ R£QRT

where, ND denotes negative degree; and M denotes the
memory size of a file; and R denotes the number of rep-
lica exists; and QRT denotes query response time. The
negative degree ND is then used to calculate the nega-
tive factor NF of a file. The formula to calculate the neg-
ative factor NF is as follows:

NF ¼ NDcurrent ¡NDmin

NDmax ¡ NDmin

In the above equation, NF represents negative factor;
NDcurrent represents negative degree value of current
file; NDmin represents minimum negative degree value;
and NDmax represents maximum negative degree
value. The negative factor NF value is calculated by
taking the difference amid the negative degree value of
the current file NDcurrent and the minimum negative

Vobugari S, et al.: Dynamic Replication Algorithm for Data Replication to Improve System Availability: A Performance Engineering Approach

136 IETE JOURNAL OF RESEARCH | VOL 61 | NO 2 | MAR�APR 2015

degree value NDmin and dividing the solution with the
difference amid the maximum negative degree NDmax

and the minimum negative degree NDmin. The negative
factor is calculated to find the importance of not to rep-
licate the file. The replica factor is then calculated using
the equation given below:

RF ¼ aPF C bð1 ¡ NFÞ
a C b

Here, RF denotes replica factor; PF denotes the positive
factor of a file; NF denotes negative factor of a file; and
a, b are the constant values which we assigned as 1 by
checking performance with different values. The num-
ber of replica is then generated by the following
condition:

no: of Replica ¼
�
RFt C 2 �RFt¡ 1; if RFt >RFt¡ 1

0 ; if RFt <RFt¡ 1

where, RFt denotes Replica factor at a time interval and
RFt-1 denotes Replica factor at previous time interval.

4.3 Fuzzy Logic for System Selection

This section shows the system selection of our technique
based on fuzzy logic. To identify the systems to replicate
the files, we have to calculate the SBER for each system
and effective factor for each system. Figure 3 shows the
model system architecture and explanation.

When the user gives task to access a file, the system
manager will check the traffic free system that has the
file requested by the user and directs the path to the
user. Here, we calculate the SBER [22] and we have to
calculate the effective factor for each system. The effec-
tive factor for each system is calculated as follows:

EF ¼ 1
F

Xk

i¼1

RFi

Here, EF is the effective factor for a system; F denotes the
number of files in a system; and RFi is the replica factor
of each file in the system. In the above equation, we find
the number of files exists in a system andwe sum the rep-
lica factor value for each file in that system. From Figure 3,
we can see that each system has number of files. After cal-
culating the SBER and effective factor values for each sys-
tem, we give the values to the fuzzy logic system as input
to identify the systems to replicate files. Figure 4 shows
the process of identifying systems to replicate files.

The input variables in fuzzy logic system are mapped
by set of membership functions. The fuzzification is
the process that determines the percentage level of
input membership in overlapping sets. The rules we
give determine the outputs based on inputs. The
defuzzification is the process that combines all fuzzy
actions into a single fuzzy action and converts the
single fuzzy action into a crisp, executable system
output. In Figure 4, we give the SBER and effective
factor for each system as input to the fuzzy logic sys-
tem and it would give the output as score values. We
can set any number of memberships for the inputs
we give. For instance, if we set the memberships for

Figure 3: Model system architecture.

Figure 4: Process of fuzzy logic system.

Vobugari S, et al.: Dynamic Replication Algorithm for Data Replication to Improve System Availability: A Performance Engineering Approach

IETE JOURNAL OF RESEARCH | VOL 61 | NO 2 | MAR�APR 2015 137

SBER and effective factor as low and high, we will set
the rules based on low and high memberships. The
low and high memberships are based on the values
of SBER and effective factor. If the values are from 0
to 10, we take the values from 0 to 5 as low and from
6 to 10 as high. An example for rule formation is, if
the SBER is high and the effective factor is high, the
fuzzy score would be high. Similarly, we would form
different rules to get the score value based on the
membership functions. Thereafter, we set a threshold
for the score value to identify the systems to replicate
the files. So, the systems that have the score values
above the threshold would get selected to replicate
the files.

4.4 Round Robin Method for Replica Allocation

This section explains the allocation of replicas in the
identified systems. Consider we have identified the first
system and the second system to replicate the files
using fuzzy logic system based on Figure 3. The files
we need to replicate are third and fourth files and the
number of replicas we need to generate are two for the
third file and three for the fourth file. While considering
the third file, the round robin technique first replicates
the first copy in the first system and the second copy in the
second system; and while considering the fourth file,
the round robin technique replicates the first replica in
the first system and the second replica in the second
system and the third replica in the first system. Figure 5
shows the algorithm of the entire process of our pro-
posed technique.

5. RESULTS AND DISCUSSION

This section explains the results we obtained for our
technique and we compare the performance of our

technique with the performance of the existing tech-
nique [22].

5.1 Experimental Setup

Our proposed technique is implemented using Java
(jdk 1.6) which is installed in a system that has follow-
ing configuration: i5 processor with 3.20GHZ clock
speed, 4GB RAM. We used three different datasets
which are Financial, Medical, and RDB to process our
proposed technique. Figure 6 shows the dataset “Finan-
cial” and the tables in it.

In Figure 6, the terms “account”, “card”, “client”, etc.
denote the tables in the financial dataset (file). Similarly,
we have two other datasets which are “Medical” and
“RDB”with its respective table contents.

Algorithm of our technique:

5.2 Experimental Setup

We compared the performance of our proposed tech-
nique with the existing technique in terms of SBER
and execution time. The SBER is calculated for dif-
ferent time intervals. For each time intervals, first
we identify the replica numbers generated and after
identifying the replica numbers we calculate the
SBER, because if the replica generated is for the right
file which the users requested a lot, the system per-
formance would get improve. If the replica

Figure 5: Algorithm of our proposed dynamic replication
strategy.

Figure 6: Sample dataset with tables.

138 IETE JOURNAL OF RESEARCH | VOL 61 | NO 2 | MAR�APR 2015

Vobugari S, et al.: Dynamic Replication Algorithm for Data Replication to Improve System Availability: A Performance Engineering Approach

generated is not for the right file, the system perfor-
mance will not get improved because the wrongly
selected file and too early selected file will not
reduce the waiting time or speed up data access. To
check the execution time, we give different number
of tasks and evaluate the time taken to complete it.
The tasks are number of queries and the queries are
given by different users. Figure 7 shows the queries
we give to process.

In Figure 7, the “Query1.txt” in the text box of “Select
Query” contains different queries of different users.
Based on the queries, the system would decide to gen-
erate replica or not to improve the performance of the
system.

5.2 Performance Analysis

The performance of our proposed technique is ana-
lysed with the existing work [22] in terms of SBER
and execution time. Graph 1 shows the performance
of SBER of our proposed technique and the existing
work.

The performance improvement is based on the
SBER. If the replica generated is for the right file,
the SBER will get improved and it would enhance
the system availability. In Graph 1, we evaluated the
SBER for our proposed technique and for the

existing technique in different time intervals. While
comparing the SBER for our proposed technique and
the existing technique, our proposed technique
achieved higher SBER compared to the existing
work. This implies that our proposed technique has
higher system availability and the performance is
improved compared to the existing technique.

Graph 2 shows the performance comparison of our
technique and the existing technique based on execu-
tion time. The execution time is calculated for our tech-
nique and the existing technique by varying the
number of queries. From this graph, we can understand
that the execution time of our technique is less com-
pared to the existing technique for different number of
queries we give.

6. Conclusion

In this paper, we proposed a dynamic data replication
strategy to improve the performance of software system.
The processes involved in our technique are identifying
which file to replicate, how many numbers to replicate,
and where to place it. The file to replicate and the number
of files to replicate were identified by calculating the pop-
ularity degree and the replica factor which we designed
by modifying the existing technique. Thereafter, we used
fuzzy logic system to identify the system to place the rep-
licas and we used the round robin method to place the
replicas in the identified system. We also compared the
performance of our technique with the existing technique
in terms of SBER and execution time. From the perfor-
mancemeasure, we showed that our technique improved
the performance compared to the existing technique.

Acknowledgements

The work is solely done by us at NITW and hence no need of
acknowledging any entity or person.

Figure 7: Queries we give to process.

Graph 1: Performance of SBER.

Graph 2: Performance of SBER.

IETE JOURNAL OF RESEARCH | VOL 61 | NO 2 | MAR�APR 2015 139

Vobugari S, et al.: Dynamic Replication Algorithm for Data Replication to Improve System Availability: A Performance Engineering Approach

REFERENCES

1. The Cost Benefit of Monitoring Applications, Butler Group May
2005. Available: http://www.wilytech.com/solutions/resource/
index.php.

2. C. Mayr, U. Zdun, and S. Dustdar, “View-based model-driven architec-
ture for enhancing maintainability of data access services”, Data
Knowl. Eng., Vol. 70, pp. 794�819, May 2011.

3. S. Arslan, A. Yazıcı, A. Saçan, I. H. Toroslu, and E. Acar, “Comparison
of feature-based and image registration-based retrieval of image
data using multidimensional data access methods,” Data Knowl.
Eng., Vol. 86, pp. 124�45, Jul. 2013.

4. M. Akon, M. T. Islam, X. (Sherman) Shen, and A. Singh, “A bandwidth
and effective hit optimal cache scheme for wireless data access net-
works with client injected updates,” Comput. Netw., Vol. 56, pp.
2080�95, May 2012.

5. H. Chen, Y. Xiao, and S. V. Vrbsky, “An update-based step-wise opti-
mal cache replacement for wireless data access,” Comput. Netw.,
Vol. 57, pp. 197�212, Sept. 2013.

6. B. Tagger, D. Trossen, A. Kostopoulos, S. Porter, and G. Parisis, “Real-
ising an application environment for information-centric network-
ing,” Comput. Netw., Vol. 57, pp. 3249�66, Aug. 2013.

7. E. Talipov, J. Yin, Y. Chon, and H. Cha, “A context-rich and extensible
framework for spontaneous smartphone networking,” Comput.
Commun., Vol. 37, pp. 25�39, Jan. 2014.

8. G. Floros, and K. Siomos, “The relationship between optimal parent-
ing, Internet addiction and motives for social networking in adoles-
cence,” Psychiatry Res., Vol. 209, pp. 529�34, Feb. 2013.

9. Y. Xu, Y. Li, T. Lin, Z. Wang,W. Niu, H. Tang, and S. Ci, “A novel cache
size optimization scheme based on manifold learning in Content
Centric Networking,” J. Netw. Comput. Appl., Vol. 37, pp. 273�81,
Mar. 2014.

10. R. M. Almuttairi, R. Wankar, A. Negi, C. R. Rao, A. Agarwal, and R. Buyya,
“A two phased service oriented Broker for replica selection in data
grids,” Future Gener. Comput. Syst., Vol. 29, pp. 953�72, Sept. 2013.

11. R. Kingsy Grace, and R. Manimegalai, “Dynamic replica placement
and selection strategies in data grids � A comprehensive survey,” J.
Parallel Distrib. Comput., Vol. 74, pp. 2099�108, Nov. 2013.

12. T. Ma, Q. Yan, W. Tian, D. Guan, and S. Lee, “Replica creation strat-
egy based on quantum evolutionary algorithm in data gird,” Knowl.-
Based Syst., Vol. 42, pp. 85�96, Apr. 2013.

13. N. Mansouri, and G. H. Dastghaibyfard, “A dynamic replica manage-
ment strategy in data grid,” J. Netw. Comput. Appl., Vol. 35,
pp. 1297�303, Feb. 2012.

14. V. S. Agneeswaran, and D. Janakiram, “Node-capability-aware replica
management for peer-to-peer grids,” IEEE Trans. Syst. Man Cybern.,
Vol. 39, no. 4, pp. 807�18, Jul. 2009.

15. E. Laure, H. Stockinger, and K. Stockinger, “Performance engineering
in data grids,” J. Concurrency Comput.: Pract. Exp. - Grid Perform.,
Vol. 17, no. 2�4, pp. 171�91, Feb. 2005.

16. S. Vobugari, D. V. L. N. Somayajulu, B. M. Subaya, and M. K. Sriniva-
san, “A roadmap on improved performance-centric cloud storage
estimation approach for database system deployment in cloud envi-
ronment,” in IEEE 14th International Conference on Mobile Data
Management, 2013, pp. 182�7.

17. A. Do�gan, “A study on performance of dynamic file replication algo-
rithms for real-time file access in Data Grids,” Future Gener. Comput.
Syst., Vol. 25, pp. 829�39, Feb. 2009.

18. K. Sashi, and A. S. Thanamani, “Dynamic replication in a data grid
using a modified BHR region based algorithm,” Future Gener. Com-
put. Syst., Vol. 27, pp. 202�10, Feb. 2011.

19. L. M. Khanli, A. Isazadeh, and T. N. Shishavan, “PHFS: A dynamic rep-
lication method, to decrease access latency in the multi-tier data
grid,” Future Gener. Comput. Syst., Vol. 27, pp. 233�44, Mar. 2011.

20. V. Andronikou, K. Mamouras, K. Tserpes, D. Kyriazis, and T. Varvari-
gou, “Dynamic QoS-aware data replication in grid environments
based on data ‘‘importance’’,” Future Gener. Comput. Syst., Vol. 28,
pp. 544�53, Mar. 2012.

21. T. Amjad, M. Sher, and A. Daud, “A survey of dynamic replication
strategies for improving data availability in data grids,” Future Gener.
Comput. Syst., Vol. 28, pp. 337�49, Feb. 2012.

22. D. W. Sun, G. R. Chang, and S. Gao, “Modeling a dynamic data repli-
cation strategy to increase system availability in cloud computing
environments,” J. Comput. Sci. Technol., Vol. 27, no. 2, pp. 256�72
Mar. 2012.

23. M. -C. Lee, F. -Y. Leub, and Y. -P. Chen, “PFRF: An adaptive data repli-
cation algorithm based on star-topology data grids,” Future Gener.
Comput. Syst., Vol. 28, no. 7, pp. 1045�57, Jul. 2012.

24. M. -K. Hussein, and M. -H. Mousa, “A light-weight data replication for
cloud data centers environment,” International Journal of Engineer-
ing and Innovative Technology (IJEIT), Vol. 1, no. 6, Jun. 2012.

25. S. Kamali, P. Ghodsnia, and K. Daudjee, “Dynamic data allocation
with replication in distributed systems,” IEEE 30th International Per-
formance Computing and Communications Conference (IPCCC),
2011, pp. 1�8.

26. Z. Wang, T. Li, N. Xiong, and Y. Pan, “A novel dynamic network data
replication scheme based on historical access record and proactive
deletion,” J. Supercomput., Vol. 62, no. 1, pp. 227�50, Oct. 2012.

27. R. -S. Chang, and H.-P. Chang, “A dynamic data replication strategy
using access-weights in data grids,” J. Supercomput., Vol. 45, no. 3,
pp. 277�95, Sept. 2008.

28. N. Mansouri, “An effective weighted data replication strategy for
data grid,” Australian J. Basic Appl. Sci., Vol. 6, no. 10, pp. 336�46,
Oct. 2012.

140 IETE JOURNAL OF RESEARCH | VOL 61 | NO 2 | MAR�APR 2015

Vobugari S, et al.: Dynamic Replication Algorithm for Data Replication to Improve System Availability: A Performance Engineering Approach

http://www.wilytech.com/solutions/resource/index.php
http://www.wilytech.com/solutions/resource/index.php

Authors
Sreekumar Vobugari is currently pursuing a PhD
program in the Department of Computer Science
and Engineering at the National Institute of Tech-
nology, Warangal, AP, India. He holds a Master of
Engineering degree in computer science from
Jadavpur University, Kolkata, 1998 and a Bachelor
of Engineering in computer science and engineer-
ing from Gulbarga University, 1992. He has over
21 years of IT industry experience and has played

various roles such as programmer, module lead, database architect, project
manager, etc. for various global customers during his stint working for
some of the major Software consulting companies in India. He has pub-
lished a conference paper titled “An approach for Database Size Estima-
tion” in IEEE-International Advance Computing Conference, 2009 Patiala
India, “Index Tuning through Query Evaluation Mechanism Based on Indi-
rect Domain Knowledge” in UKSim 14th International Conference on Com-
puter Modeling and Simulation, 2012, Cambridge, UK, “A Roadmap on
Improved Performance-centric Cloud Storage Estimation Approach for
Database System Deployment in Cloud Environment” in MDM 14th Inter-
national Conference on Mobile Data Management, 2013, Milan, Italy. He
has filed a defensive publication on “System and Method for defect track-
ing in software projects”. His research interest is around Performance Engi-
neering, Software Architectures and Large scale distributed data
processing.

E-mail: Sreekumar_vobugari@nitw.ac.in

D. V. L. N. Somayajulu is a professor in Depart-
ment of Computer Science and Engineering at the
National Institute of Technology (NIT), Warangal,
AP, India. He holds a PhD in computer science and
engineering from the Indian Institute of Technol-
ogy, Delhi, India. He has over 28 years of academic
and industry experience. He headed the Computer
Center at NIT Warangal and has been head,
Department of Computer Science for over four

years. He has been awarded the Best Engineer of the Year in 2007. He is
the “Dean Academics”, National Institute of Technology, Warangal, AP. His
area of interest is around Database Performance, Data mining, and eLearn-
ing. He has carried out various Software projects sponsored by Government
of India and has organized various conferences and workshops. Currently
he is guiding and mentoring six PhD students in various fields of databases.
Some of his publications are “Ontology Matching schema integration using
node ranking” at International Conference on Semantic Web and Web Serv-
ices, June, 2006, “Sentiment Classification of text reviews using novel fea-
ture selection with reduced over-fitting” at International Conference on
Internet Technologies and Secured Transactions, November, 2010.

E-mail: somadvln@nitw.ac.in

B. M. Subaraya is a vice president at the Educa-
tion and Research Unit of Infosys Limited, India.
He holds a PhD degree in computer science and
engineering from the Indian Institute of Technol-
ogy, Delhi, India. He has over 28 years of experi-
ence in academic and research areas. He has
spearheaded the inception of the foundation pro-
gram for the fresh engineers entering into Infosys
at their Global Education Center at Mysore. He

has several International publications to his credit and has authored a
booked titled An Integrated Approach to Web Performance Testing, A Prac-
titioner’s Guide.

E-mail: Subaya@gmail.com

DOI: 10.1080/03772063.2014.988757; Copyright © 2015 by the IETE

IETE JOURNAL OF RESEARCH | VOL 61 | NO 2 | MAR�APR 2015 141

Vobugari S, et al.: Dynamic Replication Algorithm for Data Replication to Improve System Availability: A Performance Engineering Approach

mailto:
mailto:
mailto:

	Abstract
	1. INTRODUCTION
	2. RELATED WORKS: A BRIEF REVIEW
	3. MOTIVATION OF OUR WORK
	4. PROPOSED TECHNIQUE TO ENHANCE THE PERFORMANCE OF SOFTWARE SYSTEM
	4.1. Popularity Degree Calculation
	4.2. Replication Factor Calculation
	4.3. Fuzzy Logic for System Selection
	4.4. Round Robin Method for Replica Allocation

	5. RESULTS AND DISCUSSION
	5.1. Experimental Setup
	5.2. Experimental Setup
	5.2. Performance Analysis

	6. Conclusion
	Acknowledgements
	References
	Notes on contributors

