
Implementations of Sunar-Koc Multiplier using

FPGA platform and WSN node

Ravi Kishore Kodali, Prasanth Gomatam and Lakshmi Boppana

Department of Electronics and Communication Engineering

National Institute of Technology, Warangal, 506004,INDIA

E-mail: ravikkodali@gmail.com

Abstract—In elliptic curve cryptography (ECC), multiplication
operations are used frequently. In order to realize an efficient
ECC implementation for large key lengths, it is necessary to
choose an algorithm using which it is possible to compute these
multiplication operations at higher speeds. This work presents
two different implementations of Sunar-Koc multiplier, using
FPGA device and a WSN node. This work considered the key
lengths 173- bit, 194- bit and 233- bit in both the FPGA and
WSN node implementations of the multiplier. A MEMSIC IRIS
WSN node has been used during the implementation and a
resource comparison, comprising of storage requirements, energy
consumption and clock cycles for different key lengths, is made.
The obtained FPGA synthesis results have also been compared.

key words- Sunar-Koc multiplier, WSN, ECC, FPGA

I. INTRODUCTION

Elliptic curve cryptography(ECC) requires various elliptic

curve (EC) operations, like point addition, scalar and point

multiplications, and inversion. Among these operations, scalar

and point multiplications play a major role in an efficient

implementation of ECC, as this multiplication operation

is performed many times. The computational speed of this

operation and power consumed are of utmost importance. This

work highlights the implementations of Sunar-Koc algorithm

[1] using both FPGA device and Wireless sensor network

(WSN) device. In certain WSN applications requiring security,

especially using ECC, efficient multiplication algorithms are

needed. However, timing and energy constraints decide the

algorithm that is to be used in practical situations [2].

The Karatsuba algorithm consumes less hardware and con-

sumes more time, whereas another one, the Sunar-Koc algo-

rithm requires more hardware but consumes less computational

time. In the Karatsuba algorithm, the multiplication of a large

key lengths is subdivided till the bottom most level of the key

length, at which multipliers are readily available to perform

the required operations. Another multiplication algorithm,

Massey-Omura multiplier, whose time complexities are almost

similar to those of the Sunar-Koc multiplier. However, the

Massey-Omura multiplier requires 2(m2
− m) X-or gates,

whereas Sunar-Koc multiplier requires 1.5(m2
− m) X-or

gates. The rest of the paper is organized as follows: Section II

provides literature survey, section III presents an overview of

Sunar-Koc multiplier, section IV gives scheme of experimen-

tation, section V presents simulation and experimental results

and section VI concludes the work.

II. LITERATURE REVIEW

Point addition and point doubling constitute important op-

erations in ECC. These operations can be carried out by a

sequence of finite field (FF) operations, like addition, squar-

ing, multiplication and inversion. The multiplication, using

Montgomery algorithm [3] over the prime field, (GF (2m),
consumes (m/w) + c clock cycles, where w is the key

length. The number of clock cycles, c, can be reduced by not

pushing multiplier into an idle state. In Montgomery algorithm,

(6m + 3a + 5s) number of clock cycles are used, where m,

a, and s are the clock signals used for multiplication,addition

and squaring, respectively. In order to reduce the number of

clock cycles, it is assumed that multiplication takes more

time in comparison to addition and squaring. It facilitates

parallel execution of addition and squaring operations, so that

the number of clock cycles required becomes 6m + a. Also

comparison in terms of clock cycles and throughput per LUT’s

is given in [3].

Traditional double and add algorithm (DAA) requires eval-

uation of point addition(add) and point doubling(double) op-

erations. Another operation, point quadruple(quad) has been

introduced [4] and this operation comprises of various finite

field (FF) operations, like multiplication,division squaring and

addition.

Three instructions, multiplication and addition (MULAD),

multiplication and squaring (MUSQ), and repeated squaring

(RESQ) are introduced in [5]. A sequence of nine arithmetic

instructions have been developed to perform point addition

and point doubling operations, using these instructions. The

multiplier block in the data path alone accounted for 95 % of

the area.

The costs of point doubling and point addition operations

for various coordinate systems are compared in [6]. Various

separate multiplier blocks have been used for point addition

and point doubling operations so that complications related to

timing, placement and routing can be reduced [7]. Wireless

sensor networks(WSN’s) consist of a base station (BS) and

number of nodes. There are various parameters like encryption,

decryption, signature verification in public key cryptography

(PKC). In ECC based scheme [8], two scalar multiplications

are required for encryption and signature verification, whereas

only one multiplication is required for decryption and sig-

nature generation [8]. The hybrid key establishment protocol

978-1-4799-2827-9/13/$31.00 ©2013 IEEE
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 16,2025 at 04:56:23 UTC from IEEE Xplore.  Restrictions apply. 



presented in[9] uses ECC based key calculations. The protocol

demands exchange of 6 messages between sensor and a

security manager. There are two kinds of optimal normal basis

[10] multipliers: λ based and conversion based multipliers.

The λ matrices used in these multipliers are constructed

for GF(2m). In conversion based multipliers, the basis of

multipliers is converted from canonical basis to normal basis,

which simplifies the computation. The conversion multipliers

are more efficient than λ based multipliers, since λ multipliers

need to store the λ matrix.

The optimal normal basis of type II is used in Sunar-Koc

multiplier [11]. The Sunar-Koc multiplier [12], is a parallel

architecture, whose time complexities are almost similar to

those of Massey-Omura, consuming less hardware. Various

multipliers like hybrid Karatsuba, Sunar-Koc and Massey-

Omura multipliers [13] are compared in terms of speed and

device utilization. In many applications of ECC, the scalar

multiplication [14] along with inversion are used. Itoh-Tshuji

algorithm for inversion is difficult to implement on hardware.

III. AN OVERVIEW OF SUNAR-KOC MULTIPLIER

The arithmetic field GF(2m) is an m- dimensional vector

space, in which m linearly independent vectors are chosen to

serve the basis notation. There are two kinds of basis:

1) Canonical basis: The ordered set, (1, β, β2, ........., βm−1)
in which β ∈ GF (2m).

2) Normal basis: It is the set, M given in equation 1 and β
is its normal element.

M = β, β2, β4, ......., β2m−1

(1)

The optimal normal basis of type II can be constructed using

a normal element, β, such that, β = γ + γ−1 [1]. The γ is to

be selected in such a way that it is a primitive root of unity

i.e. γ2m+1 = 1. The construction of optimal normal basis of

type II is possible only if p = 2m+1, is a prime number and

the following two conditions are met: a) 2 = a primitive root

mod p; and b) The multiplicative order of 2 mod p = m.

Figure 1 shows the following three phases of the Sunar-Koc

algorithm: i) permutation (perm); ii) multiplication (mult) and

iii) reverse permutation (reperm)

A. Phase-1: Permutation of the key words

The operation of Phase-1 in Figure 1 is as follows:

i =

{

k, k ∈ [1,m]

(2m+ 1)− k, k ∈ [m+ 1, 2m]

k = 2j−1 mod (2m+ 1)

B. Phase-2: Multiplication Algorithm

The key words after the permutation are:

A =
∑m

i=1(aiβi) and B =
∑m

i=1(biβi).
And the product of the two keywords, A and B is C = A.B

The product, C, can be further divided into three sub-

products: D, E and F , which are given by equation (2).

a1 a2 a3             am b1 b2 b3             bm

PERMUTATION
(PHASE−1)

a

SUB
PRODUCT

REVERSE PERMUTATION (PHASE 3)

RESULTANT PRODUCT

NORMAL BASIS

CANONICAL BASIS
CANONICAL BASIS

m m
m m m m

m m m

(CANONICAL BASIS)

SUB
PRODUCT
   

m

M
U

L
T

IP
L

IC
A

T
IO

N
(P

H
A

S
E

−
2
)XOR OPERATION

NORMAL BASIS

1 2
3

PRODUCT
SUB

c1 cm

NORMAL BASIS

b

PERMUTATION
(PHASE−1)

Fig. 1: Block Diagram of Sunar-Koc multiplier

D =

m
∑

i=1

m
∑

j=1

aibj(γ
i−j + γ−(i−j)) (2a)

E =

m
∑

i=1

m−i
∑

j=1

aibj(γ
i+j + γ−(i+j)) (2b)

F =
m
∑

i=1

m
∑

j=m−i+1

aibj(γ
i+j + γ−(i+j)) (2c)

By summing all these three sub-products, C is obtained. In

phase-3 as given in Figure 1, the resultant product, C, which is

in Normal basis form and it is converted by using the reverse

permutation, similar to permutation phase.

IV. SCHEME OF EXPERIMENTATION

The scalar multiplication operation plays a major role in

ECC. This work makes use of Sunar-Koc algorithm to carry

out scalar multiplication. An implementation and performance

analysis of the Sunar-Koc algorithm has been carried out using

WSN node and FPGA device.

A. Hardware Implementation

In the FPGA prototyping of the Sunar-Koc algorithm has

been carried out on Xilinx Virtex-6 family device, xc6vlx240t-

2ff1156 using Xilinx design suite 13.2. Three modules for

permutation, multiplication, reverse permutation phases have

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 16,2025 at 04:56:23 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Algorithm for Permutation Phase

INPUT:Input in canonical basis before permutation

OUTPUT:Output in normal basis after permutation

for i = 1 to m do

if temp > m then

index(i) := (2m+ 1)− temp
else

index(i) := temp
end if

end for

been developed using VHDL. Algorithm 1 gives the steps used

during the permutation phase.

Algorithm 2 provides the steps to be carried out during the

multiplication phase. The resultant product from the multipli-

Algorithm 2 Multiplication Algorithm

INPUT: Input in normal basis

OUTPUT: Output in normal basis

for i = 1 to m do

for j = 1 to m− i do

c(i) := (a(j)andb(j+i))xor(a(j+i)andb(j))xorc(i)
end for

end for

for i = 2 to m do

for l = 1 to k − 1 do

d(k) := (a(l) and b(k − l)) xor d(k)
end for

end for

for i = 1 to m do

for j = m− i+ 1 to m do

e(m) := (a(n) and b(m− n+ 1)) xor e(m)
end for

end for

for i = 1 to m do

p(u) := c(u) xor d(u) xor e(u)
end for

cation phase is mapped from normal basis to canonical basis,

during the reperm phase of the algorithm.

B. WSN Implementation

Our aim is to implement scalar multiplication using a WSN

node. The nesC code consists of three functions called perm(),

mult(), reperm(). During the application development in the

implementation of the algorithm using nesC, the constraints of

the IRIS node have been considered. The interfaces required

for communication between the nodes have been modified.

The nodes have been programmed using the Moteworks in-

terface. As soon as the node completes execution it starts

transmitting the result. The received data by another node is

captured using Xsniffer software.

In order to improve the performance, m (where m is key

length) number of variables are not used, while developing the

nesC code. Instead, m/w (where w is the size of variable’s

data type in terms of bits) number of variables are being used.

A separate function, based on the data type of a variable,

is used to retrieve bits from the variable. The algorithm 3

illustrates this function.

Algorithm 3 Algorithm for extracting a bit from a variable

power=1

temp1 = e%w
temp = e/16
if temp1! = 1 then

for i = 1 to temp1− 1 do

power = power ∗ 2
end for

else

power=1

end if

result=result and e

return result

Three different data sets for each of the key lengths, 173- bit,

194- bit and 233- bit, have been used to verify the consistency

of the result.

V. RESULTS AND SIMULATION

The simulation results for three key lengths, 173- bit, 194-

bit, and 233- bit, are given in Figure 2. The synthesis results

for the key lengths have been obtained.

A. FPGA Implementation Results

1) SYNTHESIS RESULTS ON HARDWARE: The Sunar-

Koc algorithm is synthesized using Xilinx tool on Virtex-

6 device and synthesis results of various key lengths are

summarised in Table I. Due to the requirement of higher

number of X-or, And, Or gates for increased key lengths,

the amount of resources(LUT’s) required by the multiplier

has also increased. The number of IOB’s does not effect the

performance of the multiplier. In the case of 233- bit multiplier

number of IOB’s crossed the resource capability of the device.

Nearly 90% of the delay in the three multipliers(173 bit,194-

bit and 233 bit)is due to routing within the FPGA device.

TABLE I: FPGA Synthesis results for different Key lengths

Parameter
Key length

173- bits 194- bits 233- bits

Logic Avail- Used Used Used
Utilization able

No. of Slice-LUT’s 150720 42142 52829 76055

No. of Slices-FF pairs 76055 0 0 0

No. of IOB’s 600 520 583 700

B. Implementation Results on WSN node

The parameters that have been taken into consideration are

memory occupied with interfaces, without interfaces, number

of clock cycles completed in executing the multiplication and

transmitting it and power consumed by processor. With an

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 16,2025 at 04:56:23 UTC from IEEE Xplore.  Restrictions apply. 



(a) Key length = 174

(b) Key length = 194

(c) Key length = 233

Fig. 2: Simulation results for three different key lengths

increase in key length the memory requirements (both ROM

and RAM) of node, the number of clock cycles has also

increased. The power consumed is constant due to the mode

of the WSN node.

TABLE II: Implementation results on WSN node for different

Key lengths

Parameter
Key length

173- bits 194- bits 233- bits

Memory w/o interfaces
ROM 2350B 2390B 2424B
RAM 151B 155B 163B

Memory with interfaces
ROM 55310B 55350B 56714B
RAM 2015B 2023B 1983B

Number of Clock cycles 163 203 291

Time Taken 0.6367 s 0.7929 s 1.136 s

Energy (mJ) 24 24 24

VI. CONCLUSIONS

The Sunar-Koc algorithm is implemented on a WSN device,

which has an 8- bit processor. The work has demonstrated

the implementation of Sunar-Koc multiplier on a resource

constrained WSN node for higher key lengths and based

on the results this algorithm can be used during the ECC

implementations in WSN applications providing security. An

FPGA implementation of the algorithm has been carried out

for different key lengths.

REFERENCES

[1] B. Sunar and C. Koc, “An efficient optimal normal basis type ii
multiplier,” Computers, IEEE Transactions on, vol. 50, no. 1, pp. 83–87,
2001.

[2] N. Gura, A. Patel, A. Wander, H. Eberle, and S. Shantz, “Comparing
elliptic curve cryptography and rsa on 8-bit cpus,” Cryptographic

Hardware and Embedded Systems-CHES 2004, pp. 925–943, 2004.

[3] B. Ansari and M. A. Hasan, “High-performance architecture of elliptic
curve scalar multiplication,” Computers, IEEE Transactions on, vol. 57,
no. 11, pp. 1443–1453, 2008.

[4] S. Moon, “A binary redundant scalar point multiplication in secure
elliptic curve cryptosystems.” IJ Network Security, vol. 3, no. 2, pp.
132–137, 2006.

[5] W. N. Chelton and M. Benaissa, “Fast elliptic curve cryptography on
fpga,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions

on, vol. 16, no. 2, pp. 198–205, 2008.
[6] M. Bednara, M. Daldrup, J. Teich, J. von zur Gathen, and J. Shokrollahi,

“Tradeoff analysis of fpga based elliptic curve cryptography,” in Circuits

and Systems, 2002. ISCAS 2002. IEEE International Symposium on,
vol. 5. IEEE, 2002, pp. V–797.

[7] C. Shu, K. Gaj, and T. El-Ghazawi, “Low latency elliptic curve
cryptography accelerators for nist curves over binary fields,” in Field-

Programmable Technology, 2005. Proceedings. 2005 IEEE International

Conference on. IEEE, 2005, pp. 309–310.
[8] G. Gaubatz, J.-P. Kaps, E. Ozturk, and B. Sunar, “State of the art in

ultra-low power public key cryptography for wireless sensor networks,”
in Pervasive Computing and Communications Workshops, 2005. PerCom

2005 Workshops. Third IEEE International Conference on. IEEE, 2005,
pp. 146–150.

[9] Q. Huang, J. Cukier, H. Kobayashi, B. Liu, and J. Zhang, “Fast
authenticated key establishment protocols for self-organizing sensor
networks,” in Proceedings of the 2nd ACM international conference on

Wireless sensor networks and applications. ACM, 2003, pp. 141–150.
[10] T. F. Al-Somani and A. Amin, “Hardware implementations of gf (2m)

arithmetic using normal basis,” Journal of Applied Sciences, vol. 6, no. 6,
pp. 1362–1372, 2006.

[11] C.-Y. Lee and C.-J. Chang, “Low-complexity linear array multiplier for
normal basis of type-ii,” in Multimedia and Expo, 2004. ICME’04. 2004

IEEE International Conference on, vol. 3. IEEE, 2004, pp. 1515–1518.
[12] B. Sunar and C. K. Koç, “An efficient optimal normal basis type ii

multiplier,” Computers, IEEE Transactions on, vol. 50, no. 1, pp. 83–
87, 2001.

[13] C. Grabbe, M. Bednara, J. Teich, J. von zur Gathen, and J. Shokrol-
lahi, “Fpga designs of parallel high performance gf (2) multipliers
[cryptographic applications],” in Circuits and Systems, 2003. ISCAS’03.

Proceedings of the 2003 International Symposium on, vol. 2. IEEE,
2003, pp. II–268.

[14] Q. Deng, X. Bai, L. Guo, and Y. Wang, “A fast hardware implementation
of multiplicative inversion in gf (2),” in Microelectronics & Electron-

ics, 2009. PrimeAsia 2009. Asia Pacific Conference on Postgraduate

Research in. IEEE, 2009, pp. 472–475.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 16,2025 at 04:56:23 UTC from IEEE Xplore.  Restrictions apply. 


