
MODIFIED FULL SEARCH BLOCK
MATCHING ALGORITHM

 Madhuri Bamankar P.Muralidhar C.B.Ramarao
 bamankarmadhuri@gmail.com pmurali@nitw.ac.in cbrr@nitw.ac.in

National Institute of Technology, Warangal-506004, India

Abstract: Full search block matching algorithm (FSBMA) is most
popular motion estimation algorithm. But high computational
complexity is the major challenge of FSBM. This makes FSBM to
be very difficult to use for real time video processing with the low
power batteries. The proposed algorithm i.e. modified full search
block matching algorithm (MFSBMA) reduces the computational
complexity by keeping the PSNR same as of FSBMA. MFSBMA
skips the SAD calculations for a current background microblock
and it does SAD calculations for foreground current microblock.
This method reduces SAD calculations drastically. The proposed
architecture of MFSBMA is pipelined architecture which can
work on real time video processing. The proposed algorithm
reduces computational complexity by 50% by keeping PSNR
same with the tolerance of +3% to -3%.

Keywords: Full Search Block Matching algorithm, Block
matching algorithm and Motion Estimation, H.264/AVC

I. INTRODUCTION

In H.264 video compression standard motion estimation
(ME) is major block. Block Matching algorithms (BMA) are
used for ME [11]. BMA works on temporal and spatial
redundancies present in a video. In block matching algorithm
each frame of video is divided into NxN blocks. The motion
of each block from current frame to reference frame is
represented by Motion Vectors (MV). Motion vector gives the
movement of NxN block from reference frame to current
frame.

II. MOTION ESTIMATION ALGORITHMS

In Video compression standards Motion Estimation (ES)
block uses block matching algorithms such as full search
block matching (FSBM), Three step search (TSS), four step
search (FSS),etc. FSBM gives best PSNR among all
mentioned algorithms.

FSBM is an exhaustive search of NxN current frame block
in previous frame search region. Apart from advantage of
good quality video compression in FSBM it requires large
number of computations. This makes FSBM very difficult for
hardware implementation.
Another block matching algorithm is Three step search (TSS)
algorithm [1]. It selects centre of search region and calculates
sum of absolute difference (SAD) for locations which are 4
positions apart from centre.

Thus, it calculates SAD at 8 locations in first step. In next
step, it repeats the procedure by reducing the step size by 2. In
third step, it reduces step size by 1. This reduces number of
computations but it is prone to missing small motions.

Four step search (FSS) is same as TSS. Instead of 3 steps 4
steps are required in FSS. First stage of FSS requires 5x5
window instead of 9x9 window in TSS [2].

Diamond search method selects center and calculates
SAD at 9 locations in first stage. The 8 points around center
makes shape of diamond. In next stage 5 checkpoints around
center makes diamond shape. At every stage it converges to
minimum SAD checkpoint and next step proceeds from
SADmin checkpoint.

These algorithms suffer from irregular data flow and does
not guarantee about the optimum solution.
The proposed algorithm separates the background pixels from
foreground pixels. It calculates SAD for foreground blocks
only. As in video frame minimum 50% area is background
area, so number of SAD calculations required reduces
drastically. SAD is block matching criteria to find best match
for current microblock in search region.

There are many block matching criteria such as, Mean
squared error (MSE), Sum of absolute difference (SAD), etc.
SAD is computationally more simpler than MSE.

SAD(S, C(m))=෍ ∑ |ே௬=1 C(x, y) − R(x − mx, y − my)|ெ
௫=1

 (1)
Where, C(x,y) current block pixel
 R(x-mx, y-my) reference block pixel.

For every reference block in search region SAD is
calculated with same current block. Minimum SAD block
defines the best match of current block.

The rest of the paper is arranged as follows. Section III
explains about background elimination algorithms. Section IV
defines proposed algorithm and section VI explains
architecture design of proposed algorithm. Simulation results
are given in section V and Conclusion in section VIII.

III BACKGROUND ELIMINATION ALGORITHMS

In any video movement of object from one frame to next
frame is very small and rest of the background remains same.
There is no need of calculating motion vectors (MVs) for

IEEE - 31661

4th ICCCNT - 2013
July 4-6, 2013, Tiruchengode, India Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 16,2025 at 04:53:33 UTC from IEEE Xplore. Restrictions apply.

background blocks. background elimination algorithm
segregates background blocks from foreground blocks.

Background subtraction is used in many emerging video
applications, such as video surveillance, traffic monitoring,
and gesture recognition for human-machine interfaces. There
are many background elimination methods present [6]. First
method is frame differencing which has less complexity.
Second is approximate median method which has medium
complexity and third has high complexity mixture of Gaussian
method [6].

In Frame differencing the current frame is subtracted from
the previous frame, and if the difference is greater than a
threshold Ts, the pixel is considered part of the foreground.

 |framei – framei-1|>T (2)

A challenge with this method is determining the threshold
value. In median filtering, the previous N frames of video are
buffered, and the background is calculated as the median of
buffered frames. Main disadvantage is storage requirement. It
has a little trouble with quickly changing light levels, but
handled them better than mixture of Gaussians.

This paper uses frame differencing method as, main aim of
this paper is to reduce computational complexity.

IV PROPOSED ALGORITHM: FAST FSBM

We designed the proposed motion estimation algorithm to
decrease the computation complexity of the full search
algorithm and also to tracking one object. First we read a
frame after a frame from the video.

The algorithms works as follow:

1. Read first frame name it as reference frame (RF).
2. Read second frame name it as current frame (CF).
3. Take the difference of CF and RF, it gives background

frame (BF).
4. Threshold (T) each background pixel value i.e. if BF

pixel value is less than threshold T then replace CF
pixel to zero. It means that pixel is background pixel.

5. If BF pixel is greater than T, it means it is foreground
pixel.

6. Calculate motion vectors for foreground pixels.
7. Repeat same procedure for all frames.

In a video, frame to frame pixel movement is very less.
Background area is than foreground area. This reduces the
number of computations required for full search block
matching algorithms significantly. The threshold value will be
different for different type of video.

V SIMULATION RESULTS

The proposed algorithm is simulated in MATLAB. The
experiments were conducted on five different video clips. The
video clips used are Coastguard (qcif) 176x 144 300 frames,

akiyo (qcif), foreman (qcif), mobile (qcif), Highway (cif)
352x288.

The quality of recovered video clips was verified by
calculating PSNR. Computational complexity (CC) was also
calculated for every video.

 PSNR(It,It+1) = 10 log(2552 / MSE) (3)

MSE((It,It+1))=(1/MN)෍ ෌ It(m, n) − Itି1(m, n)N
୬=1

M
୫=1

 (4)

The Fast full search block matching algorithm (FFSBMA)
results are compared with Full search block matching
algorithm (FSBMA) results. Comparison shows that
computational complexity of FFSBMA is 50% less than
FSBM, while PSNR is almost same.

Fig.1 Mobile

Fig. 2 Highway

Fig. 3 Foreman

For mobile fig(1) video input qcif (172 x 144) threshold
was 10. For Foreman fig(3) video input qcif of size (172 x144)
threshold was 25. For third input video highway cif fig(2) of
size (352x 288) threshold was 25.

IEEE - 31661

4th ICCCNT - 2013
July 4-6, 2013, Tiruchengode, India Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 16,2025 at 04:53:33 UTC from IEEE Xplore. Restrictions apply.

TABLE 1: PSNR for FS an MFS method

Method

PSNR

Video Input

Coastguard Akiyo Foreman Mobile

FS 30.24 38.04 30.5 24.82

MFS 29.22 40.63 29.8 26.81

TABLE 2: CC for FS an MFS methods

Method

Computational Complexity

Video Input

Coastguard Akiyo Foreman Mobile

FS 184.5 184.5 184.5 184.5

MFS 66.58 19.36 73.07 115.38

VI. ARCHITECTURE

The main blocks of architecture are Background
elimination, Processing element array (PEA), Adder tree and
motion vector calculation (MV). The block diagram of
FFSBMA is given below.

Fig. 4: Functional block diagram of FFSBMA

A. Processing element array (PEA)

PEA is array of 16 PEs, which are processing parallel.
Four PEs (PE0, PE4, PE8, PE12) give one 4x4 SAD
calculation. All 16 PEs give four 4x4 SADs.
gives four pixels at a time. Input current RAM data is constant
for four clock cycles. Input Reference data is constant for 3

Mobile Highway

24.82 33.82

26.81 30.7

Computational Complexity

Mobile Highway

184.5 184.55

115.38 14.54

The main blocks of architecture are Background
elimination, Processing element array (PEA), Adder tree and

calculation (MV). The block diagram of

: Functional block diagram of FFSBMA

PEA is array of 16 PEs, which are processing parallel.
give one 4x4 SAD

Current RAM
gives four pixels at a time. Input current RAM data is constant
for four clock cycles. Input Reference data is constant for 3

clock cycles.
Current data flows horizontally through

PE8, PE12 forward current data to PE1, PE5, PE9, PE13
respectively and so on. Reference data flows vertically i.e
from PE1 to PE4, PE2 to PE5, PE3 to PE6 and so on. PE7,
PE11, PE15 require extra 3 reference pixels.
PE utilization by employing a preload register and a search
data buffer.

Fig.5 2D systolic array of Processing element array

Such 16 PEAS should be connected in pipelined manner.
The vertical data of one PEA comes from horizontal data of
above PEA. Top most PEAs get vertical data from reference
RAM. 16 PEAs work on 4 microblock SAD calculation in
pipelined manner.

B. Processing Element (PE)

A PE plays a vital role in processing three different tasks
in this design. PE computes the absolute difference between
the CMD and the SRD. It Propagates the CMD and SRD
values to the next PE (PCMD and PSRD).
sums up the difference values (DV) of the current and the
previous data.

Fig. 6 Processing element

Current data flows horizontally through PEA. PE0, PE4,
PE8, PE12 forward current data to PE1, PE5, PE9, PE13

and so on. Reference data flows vertically i.e
from PE1 to PE4, PE2 to PE5, PE3 to PE6 and so on. PE7,
PE11, PE15 require extra 3 reference pixels. It achieves 100%

ation by employing a preload register and a search

Processing element array

Such 16 PEAS should be connected in pipelined manner.
The vertical data of one PEA comes from horizontal data of

EAs get vertical data from reference
RAM. 16 PEAs work on 4 microblock SAD calculation in

A PE plays a vital role in processing three different tasks
PE computes the absolute difference between

Propagates the CMD and SRD
values to the next PE (PCMD and PSRD). Finally the PE
sums up the difference values (DV) of the current and the

Processing element.

IEEE - 31661

4th ICCCNT - 2013
July 4-6, 2013, Tiruchengode, India Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 16,2025 at 04:53:33 UTC from IEEE Xplore. Restrictions apply.

VII. SYNTHESIS REPORT

This proposed architecture is synthesized on Xilinx ISE
14.2 simulator. Device used for synthesis is (family Vertex 6)
xc6vlx75t-3ff484. The source utilization is given below.

Slice Logic Utilization:
Number of Slice Registers: 13265 out of 93120 14%
Number of Slice LUTs: 17354 out of 46560 37%
Number used as Logic: 13130 out of 46560 28%
Number used as Memory: 4224 out of 16720 25%
Number used as SRL: 4224

Slice Logic Distribution:
Number of LUT Flip Flop pairs used: 23519
Number with an unused Flip Flop: 10254 out of 23519 43%
Number with an unused LUT: 6165 out of 23519 26%
Number of fully used LUT-FF pairs: 7100 out of 23519

 30%
Clock period: 7.496ns (frequency: 133.396MHz)

VIII. CONCLUSION

Modified full search block matching algorithm (FFSBMA)
reduced the computation complexity significantly compare to
full search block matching algorithm. Number of SAD
calculations has reduced by applying background elimination
method. This gives the moved block and removes the constant
block in current frame. FFSBMA had achieved the goal by
keeping the quality of video same.

REFERENCES

[1]. C. Thou-Ho, "A cost-effective three-step hierarchical search
block matching chip for motion estimation," Solid-State
Circuits, IEEE Journal of, vol. 33, pp. 1253-1258, 1998.

[2]. Lai-Man Po ; Wing-Chung Ma “A novel four-
step search algorithm for fast blockmotion estimation.” Circuits
and Systems for Video Technology, IEEE Transactions
on Volume:6, Digital Object Identifier: 10.1109/76.499840
Publication Year: 1996 , Page(s): 313 – 317.

[3]. Yeong-Kang and C. Lien-Fei, "A performance-driven
configurable motion estimator for full-search block-matching
algorithm," in Circuits and Systems, 2004. ISCAS '04.
Proceedings of the 2004 International Symposium on, 2004, pp.
II-233-6 Vol.2.

[4]. M. Panovic and A. Demosthenous, "A low power block-
matching analog motion estimation processor," in Circuits and
Systems, 2005. ISCAS 2005. IEEE International Symposium on,
2005, pp. 4827-4830 Vol. 5.

[5]. M. Ghanbari and I. o. E. Engineers, Standard Codecs: Image
Compression to Advanced Video Coding: Institution of
Electrical Engineers, 2003.

[6]. Seth Benton , Background subtraction, part1:
MATLABmodels,
http://www.eetimes.com/design/militaryerospace
design/4017685/Background subtraction-part-1- MATLAB-
models.

[7]. N.-n. Sun, C. Fan, and X. Xia, "An effective three-step search

algorithm for motion estimation," in IT in Medicine &
Education, 2009. ITIME '09. IEEE International Symposium
on, 2009, pp. 400-403.

[8]. W. Tsung-Yi, C. Kuang-Yao, H. Shi-Yi, L. Tai-Lun, and L.
How-Rern, "A VLSI design with built-in SRAM arrays for
implementing Full Search Block Matching Algorithm," in
Consumer Electronics, 2009. ISCE '09. IEEE 13th
International Symposium on, 2009, pp. 619-621.

[9]. L. Kexiang, Q. Qingshun, and Z. Zhenzhong, "A novel fast
motion estimation algorithm based on block-matching," in
Cross Strait Quad- Regional Radio Science and Wireless
Technology -Conference (CSQRWC), 2011, 2011, pp. 1402-
1405.

[10]. “An Improved Full Search Block Matching Algorithm for
Imaging Applications”. An International Conference on
Computer and Communication Engineering (ICCCE) 3-5 july-
2012, Malaysia.

[11]. Performance comparison of the emerging H.264video
coding standard with the existing standards Kamaci,
N. ; Altunbasak, Y. Multimedia and Expo, 2003. ICME '03.
Proceedings.2003 International Conference on
Volume:1Digital Object
Identifier: 10.1109/ICME.2003.1220925 Publication Year:
2003 , Page(s): I - 345-8 vol.1

IEEE - 31661

4th ICCCNT - 2013
July 4-6, 2013, Tiruchengode, India Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 16,2025 at 04:53:33 UTC from IEEE Xplore. Restrictions apply.

