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The flow visualization has been made using the heat function concept for the conjugate heat transfer effects on
the transient free convective couple stress fluid flow over a vertical slender hollow circular cylinder with the
inner surface kept at a constant temperature. The governing non-linear equations are solved numerically by
using an unconditionally stable implicit method. Numerical results show that the deviations of flow variables
of couple stress fluid from those of the Newtonian fluid turn out to be considerable. Boundary layer flow
visualization indicates that the streamlines exist starting from the leading edge to the far downstream, while
the heatlines terminate at a finite distance from the cylinder wall. It is noticed that the steady-state values of
average skin-friction and heat transfer rate decrease as the conjugate-conduction parameter increases.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Unsteady natural convective flow of a viscous incompressible fluid is
an important problem relevant tomany engineering applications. In the
glass and polymer industries, hot filaments are considered as vertical
cylinders and cooled as they pass through the surrounding environ-
ment. In most of these situations, the temperature distribution in the
fluid is mutually coupled with the temperature distribution in the
solid body over which the fluid flows. These types of problems are
studied in-depth in the literature. It can be observed that in the previous
investigations the wall conduction resistance in the case of convective
heat transfer between a solid cylinder wall and a fluid flow is generally
neglected i.e. the wall is assumed to be very thin [1,2]. But in many
practical problems the information on the interfacial temperature is es-
sential because the heat transfer characteristics are mainly determined
by the temperature differences between the bulk flow and the interface.
In order to take the account of physical reality, there has been a procliv-
ity to move away from considering idealized mathematical problems in
which the bounding wall is considered to be infinitesimally thin. Thus
the conduction in solid wall and the convection in the fluid should be
determined simultaneously. This type of convective heat transfer is
referred to as a conjugate heat transfer (CHT) process and it arises due
to the finite thickness of the wall. These types of problems have many
practical applications, particularly those related to energy conservation
in buildings, cold storage installations and cryogenic applications, such
as medical and space technology and are studied extensively [3–5].
ghts reserved.
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Also, with the growing importance of non-Newtonian fluids in
modern technology and industries, the investigations on such fluids
are desirable. Stokes [6] generalized the classical Newtonian model to
include the effect of couple stresses in a way different from that of
Eringen [7]. This is one among the several non-Newtonianfluid theories
that are developed in the twentieth century. In his theory Stokes consid-
ered a body enclosing a volume without considering the microstruc-
tures of the infinitesimal fluid volume element. The set of all forces
acting on an infinitesimal volume element is, in general, assumed to
be equivalent to a single resultant force togetherwith a resultant couple.
Themoment of the couple is assumed to be of non-zero value.With this
assumption Stokes has proposed the theory of couple stress fluids
allowing for the sustenance of couple stresses in addition to the usual
stresses. Also, in his theory, curvature twist rate tensor is proposed
based on the pure kinematic aspects of rotation vector and couple stress
is defined in terms of this curvature twist rate tensor. Accordingly, in the
balance of linear momentum of the couple stress flow model, fourth
order derivatives of velocities are involved and, hence, separate angular
momentum equation need not be considered. These fluids can also sus-
tain the existence of body forces as usual and in addition to the body
couples as well. The stress tensor is no longer symmetric in this theory.
The fluids consisting of rigid, randomly oriented particles suspended in
a viscous medium, such as blood, lubricants containing small amount of
polymer additive, electro-rheological fluids and synthetic fluids are
some of the examples for these couple stress fluids. This couple stress
model has been widely used because of its great mathematical simplic-
ity compared to that of the other models developed for the polar fluids.
Recently, the study of couple stress fluid flows has been the subject of
great interest, due to its widespread industrial and scientific applica-
tions as in the case of micropolar fluids. Important field where couple
stress fluids have applications includes squeezing and lubrication [8],



Nomenclature

C f dimensionless average skin-friction coefficient
cp specific heat at constant pressure
dij rate of deformation tensor
g acceleration due to gravity
Gr Grashof number
kf, ks thermal conductivity of the fluid and the solid cylinder,

respectively
l length of the cylinder
m trace of couple stress tensor
mij couple stress tensor
Nu average Nusselt number
P conjugate-conduction parameter
p fluid pressure
Pr Prandtl number
r radial coordinate
ri, r0 inner and outer radii of the hollow cylinder, respectively
R dimensionless radial coordinate
t′ time
t dimensionless time
tij force stress tensor
T0 temperature at the inside surface of the cylinder
T′ temperature of the fluid
u, v velocity components in x, r directions, respectively
U, V dimensionless velocity components in X, R directions,

respectively
U velocity vector
x axial coordinate
X dimensionless axial coordinate

Greek Letters
α thermal diffusivity
β volumetric coefficient of thermal expansion
δij Kronecker delta
εijk Levi-Civita symbol
η, η′ couple stress viscosity coefficients
μ, λ viscosity coefficients
ωi,j spin tensor
ω spin vector
Π′ heat function
Π dimensionless heat function
ψ dimensionless stream function
ρ density
θ dimensionless temperature of the fluid
ν kinematic viscosity

Subscripts
w conditions on the wall
∞ free stream conditions
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bio-fluid mechanics [9], MHD flows and synthesis and plasticity of
chemical compounds.

From the literature survey, it can be noted that the CHT on the un-
steady natural convective flow of a viscous incompressible couple stress
fluid past a vertical cylinder has received very scant attention in the
literature. Hence, in the present investigation our attention is focused
on the CHT problem of transient free convection over the outside sur-
face of a vertical slender hollow cylinder. In general, studies on natural
convection have been carried out with streamlines and isotherms.
Note that, isotherms are generally used to illustrate the temperature
distribution in a domain respectively, however, isotherms may not be
suitable to visualize the direction and intensity of heat transfer particu-
larly in convection problems in which the path of heat flux is not
perpendicular to isotherms due to convection effect. When dealing
with two-dimensional fluid flows, it is not the isobars but the stream-
lines that are the best tools for visualization and analysis, as fluid
flows are not in the direction perpendicular to the isobars [10]. Similar-
ly, when dealing with the two-dimensional convective heat transfer, it
is not the isotherms but the heatlines that are the best tools for
visualization and analysis. The main use of heatlines is to find the flow
intensity in the region which is not observed in the other contours
such as velocity and temperature. The heatlines are the more adequate
tools for visualization and analysis of heat transfer process, giving well
defined corridors where energy transfer occurs from the hot wall to
the cold wall. The heatlines are mathematically represented by heat
functions and the proper dimensionless forms of heat functions are
closely related to the overall Nusselt numbers. The heatline concept
wasfirst introduced byKimura and Bejan [11] and Bejan [12]. A detailed
review on applications of heatlines and masslines was also performed
by Costa [10]. The use of heatlines in the unsteady problems was first
studied by Aggarwal and Manhapra [13,14] to analyze the unsteady
heat transfer process in cylindrical enclosures subjected to natural
convection. Recently, Basak et al. [15] studied the analysis of heatlines
within triangular cavities. Till date, the heatline concept has been paid
less attention for analyzing convective heat transfer processes except
for very few applications. Based on this literature survey, an attempt is
made for the first time to study the concept of heatlines for the present
investigated problem.

In Section 2, description of the problem is given and the correspond-
ing governing equations are derived. The details about the numerical
method and the grid generation are explained. The average skin-
friction and average heat transfer rate are also derived. In addition,
heat function has been derived and non-dimensionalized based on the
overall average Nusselt number on the hot wall. In Section 3, the
comparison between the couple stress fluid flow and Newtonian fluid
flow is analyzed. The average values of skin-friction and heat transfer
rate with respect to time are shown graphically and discussed. Also
the visualization of streamlines, isotherms and heatlines is shown.
Finally, the concluding remarks are made in Section 4.

2. Mathematical formulation and simulation

A natural convective couple stress fluid flow past a vertical slender
hollow cylinder of length l and the outer radius r0 (l N N r0) is consid-
ered as shown in Fig. 1. The x-axis is measured vertically upward
along the axis of the cylinder. The origin of x is taken to be at the leading
edge of the cylinder, where the boundary layer thickness is zero. The ra-
dial coordinate, r, is measured perpendicular to the axis of the cylinder.
It is assumed that thefluid has constant physical properties and thefluid
flow is unsteady, laminar and two-dimensional. The surrounding sta-
tionary fluid temperature is assumed to be of ambient temperature

T ′
∞

� �
. The temperature of the inside surface of the cylinder is

maintained at a constant temperature of T ′
0 , where T ′

0NT
′
∞ . Initially,

i.e., at time t′ = 0 it is assumed that the outer surface of the cylinder
and the fluid are of the same temperature T ′

∞ . As time increases
(t′ N 0), the temperature of the outer surface of the cylinder is raised
to the solid-fluid interface temperature T ′

w and maintained at the
same level for all time t′ N 0. It is assumed that the effect of viscous
dissipation is negligible in the energy equation.

2.1. Governing equations

Based on the above assumptions and Boussinesq's approximation,
the flow of an incompressible couple stress fluid in the absence of
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Fig. 1. Schematic of the investigated problem.
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body force and body couple, the boundary layer equations along with
the energy equation are as follows:

∂ ruð Þ
∂x þ ∂ rvð Þ

∂r ¼ 0 ð1Þ

ρ
∂u
∂t′

þ u
∂u
∂x þ v

∂u
∂r

� �
¼ ρgβ T ′−T ′

∞

� �
þ μ

r
∂
∂r r

∂u
∂r

� �
−η∇4u ð2Þ
0.
37

0.
33

0.
27

0.
20

0.
14

0.
06

0.
02

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
b

1

0.2
8

0.
24

0.
21

0.
17

0.
13

0.
09

0.
06

0.02

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
a

1

Fig. 2. Steady-state velocity (U) and temperature (θ) contours with Pr =
∂T ′

∂t′
þ u

∂T ′

∂x þ v
∂T ′

∂r ¼ α
r
∂
∂r r

∂T ′

∂r

 !
: ð3Þ

The constitutive equations concerning the force stress tensor tij and
the couple stress tensormij that arise in the theory of couple stress fluids
are given by [6]

tij ¼ −pþ λ∇:Uð Þδij þ 2μdij−
1
2
εijk m;k þ 4ηωk;rr þ ρck
h i

ð4Þ

mij ¼
1
3
mδij þ 4η′ω j;i þ 4ηωi; j: ð5Þ

In the above Eqs. (4)–(5),U is the velocity vector,ω ¼ 1
2∇� U

� �
is the

spin vector, ωi,j is the spin tensor, dij is the rate of deformation tensor,
m(=m11 + m22 + m33) is the trace of the couple stress tensor mij, p
is the fluid pressure, δij is the Kronecker delta, εijk is the Levi-Civita
symbol and ρck is the body couple vector. Comma in the suffixes denotes
covariant differentiation and ωk,rr stands for ωk,11 + ωk,22 + ωk,33.

The quantities λ and μ are the viscosity coefficients and η, η′ are the
couple stress viscosity coefficients. These material constants are
constrained by the following inequalities as,

μ ≥ 0;3λþ 2μ ≥ 0;η≥0; jη′j≤η: ð6Þ

Usually, the ratio ofmaterial constants η and μ has the dimensions of
length square i.e. r20 ¼ η

μ

� �
(see Stokes [16]).

The initial and boundary conditions are given by:

t′ ¼ 0 : u ¼ 0; v ¼ 0; T ′ ¼ T ′
∞ for all x and r

t′N0 : u ¼ 0; v ¼ 0; T ′ ¼ T ′
w at r ¼ r0

u ¼ 0; v ¼ 0; T ′ ¼ T ′
∞ at x ¼ 0

u→0; v→0; T ′→T ′
∞ as r→∞

ð7Þ
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0.71 and P = 0.5 for (a) couple stress fluid; (b) Newtonian fluid.



Table 1
Comparison between the (i) couple stress fluid and (ii) Newtonian fluid flows for different
values of Pr and P in terms of the (a) flow variables (U, θ) and (b) average values of Cf and
Nu.

Pr P Temporal
maximum (t) of

Steady-state
time (t)

Maximum velocity
(U) at X = 1.0

U θ

a(i)
0.71 0.5 8.05 8.09 14.03 0.3043
1.0 0.5 8.96 9.10 14.81 0.2678
2.0 0.5 11.42 11.86 15.18 0.2038
3.0 0.5 13.35 14.09 16.79 0.1722
0.71 0.1 7.00 6.97 13.31 0.3382
0.71 1.0 9.11 9.21 14.74 0.2749
0.71 2.0 10.81 10.96 15.79 0.2371

a(ii)
0.71 0.5 6.01 5.77 14.87 0.4013
1.0 0.5 6.27 6.04 14.53 0.3785
2.0 0.5 7.04 6.85 14.00 0.3242
3.0 0.5 7.68 7.52 13.93 0.2896
0.71 0.1 4.94 4.68 13.97 0.4706
0.71 1.0 7.05 6.81 15.66 0.3491
0.71 2.0 8.68 8.39 16.78 0.2892

Pr P C f Nu

b(i)
0.71 0.5 0.1606 0.6988
1.0 0.5 0.1461 0.7359
2.0 0.5 0.1194 0.8140
3.0 0.5 0.1054 0.8621
0.71 0.1 0.1882 0.7131
0.71 1.0 0.1380 0.6843
0.71 2.0 0.1109 0.6627

b(ii)
0.71 0.5 1.0481 1.0491
1.0 0.5 1.0031 1.0931
2.0 0.5 0.8932 1.2107
3.0 0.5 0.8209 1.2979
0.71 0.1 1.3106 1.0876
0.71 1.0 0.8657 1.0111
0.71 2.0 0.6714 0.9585
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where T ′
w is the unknown solid-fluid interface temperature and is given

by (Chang [17])

T ′
w ¼ T ′ x; r0ð Þ ¼ r0

kf

ks
ln

r0
ri

� � ∂T ′ x; r0ð Þ
∂r þ T ′

0 at r ¼ r0: ð8Þ

It can be noted that for couple stress fluids, the vorticity of the fluid
on the boundary is equal to the rotational velocity of the boundary [16]
i.e., Curl U ¼ 0⇒ ∂u

∂r ¼ ∂v
∂x at r = r0 and as r → ∞.

By introducing the following non-dimensional quantities

X ¼ Gr−1 x
r0

; R ¼ r
r0

; U ¼ Gr−1 ur0
ν

; V ¼ vr0
ν

; t ¼ νt′

r20
; θ ¼ T ′−T ′

∞
T ′

0−T ′
∞
;

Gr ¼
gβr30 T ′

0−T ′
∞

� �
ν2 ; Pr ¼ ν

α
; α ¼ kf

ρcp
; P ¼ kf

ks
ln

r0
ri

� �

ð9Þ

(the symbols are explained in the nomenclature) in Eqs. (1)–(3), they
were reduced to the following form:

∂U
∂X þ ∂V

∂R þ V
R
¼ 0 ð10Þ

∂U
∂t þ U

∂U
∂X þ V

∂U
∂R ¼ θþ ∂U

∂R
1
R
− 1

R3

� �
þ ∂2U

∂R2 1þ 1
R2

� �
−2

R
∂3U
∂R3 −

∂4U
∂R4

ð11Þ

∂θ
∂t þ U

∂θ
∂X þ V

∂θ
∂R ¼ 1

Pr
∂2θ
∂R2 þ

1
R
∂θ
∂R

 !
: ð12Þ

The corresponding initial and boundary conditions are given by

t ¼ 0 : U ¼ 0; V ¼ 0; θ ¼ 0 for all X and R

tN0 : U ¼ 0; V ¼ 0; θ−1 ¼ P
∂θ
∂R at R ¼ 1

U ¼ 0; V ¼ 0; θ ¼ 0 at X ¼ 0
U→0; V→0; θ→0 as R→∞

ð13Þ

∂U
∂R ¼ 1

Gr2
∂V
∂X at R ¼ 1 and as R→∞ :

In order to solve the unsteady coupled non-linear governing
Eqs. (10)–(12) an implicit finite difference scheme of Crank–Nicolson
type has been employed. The region of integration is considered as a
rectangle composed of the lines indicating Xmin = 0, Xmax = 1,
Rmin = 1 and Rmax = 20 = 20, where Rmax corresponds to R = ∞
which lies very far from the momentum and energy boundary layers.
The steady-state velocity and temperature values obtained with the
grid system of 100 × 500 differ in the second decimal place from
those with the grid system of 50 × 250, and differ in the fifth decimal
place from those with the grid system of 200 × 1000. Hence, the grid
system of 100 × 500 has been selected for all subsequent analyses,
with themesh sizes in X and R directions taken as 0.01 and 0.04, respec-
tively. Also, the time step size dependency has been tested from which
the step size 0.01 yielded a reliable result. The steady-state solution is
assumed to have been reached when the absolute difference between
the values of velocity as well as temperature at two consecutive time
steps is less than 10−6 at all grid points.

2.2. Average skin-friction coefficient and heat transfer rate

Knowing the unsteady behavior of velocity and temperature profiles
from the solution of Eqs. (10)–(12) along with the initial and boundary
conditions in Eq. (13), it is worth to study the average skin-friction
coefficient and the average heat transfer rate (Nusselt number). In-
creased skin-friction is generally a disadvantage in technical applica-
tions, while the increased heat transfer can be exploited in some
applications such as heat exchangers, but should be avoided in others
such as gas turbine applications, for instance. The non-dimensional av-

erage skin-friction coefficient andNusselt number are given by C f ¼ ∫
1

0

∂U
∂R

� �
R¼1

dX andNu¼ −∫
1

0

∂θ
∂R

� �
R¼1

dX, respectively. The derivatives are

evaluated by using a five-point approximation formula and then the in-
tegrals are evaluated by using the Newton–Cotes closed integration
formula.

2.3. Stream and heat functions

The relationships between the stream function, ψ and velocity
components for two-dimensional flows are U ¼ 1

R
∂ψ
∂R and V ¼ − 1

R
∂ψ
∂X.

The heat functionΠ′ is defined through its first-order derivatives as

∂Π′

∂x ¼ ρrvcp T ′−T ′
∞

� �
−kf r

∂T ′

∂r ð14aÞ

−1
r
∂Π′

∂r ¼ ρucp T ′−T ′
∞

� �
: ð14bÞ

Introducing the non-dimensional heat function Π ¼ Π′

k f T ′
0−T ′

∞ð Þr0Gr, to
make the heat function as dimensionless so that its maximum value
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equals the overall Nusselt number on the hot wall (see Refs. [11,13])
and Eqs. (14a) and (14b) rewritten as

∂Π
∂X ¼ Pr RVθð Þ−R

∂θ
∂R ð15aÞ

−∂Π
∂R ¼ Pr RUθð Þ: ð15bÞ

Note that the functionsΠ′ andΠ, identically satisfy the steady-state
form of the dimensional and non-dimensional energy equations
(Eqs. (3) and (12)), respectively. The boundary conditions of Π are
taken fromEqs. (15a) and (15b). Further details can be found elsewhere
[11,13].

3. Results and discussion

The steady-state velocity (U) and temperature (θ) profiles in the
case of Newtonian fluids are compared with the existing results of Lee
et al. [2] and found to be in good agreement. Fig. 2 illustrates the
steady-state U and θ contours for couple stress and Newtonian fluid
flows with fixed Pr = 0.71 and P = 0.5. It can be noticed that from
Fig. 2a and b, the velocity of the couple stress fluid flow is much less
compared to that of the Newtonian fluid flow, while the opposite
trend is observed for the temperature. This is due to the fact that in
couple stress fluid flow there are additive diffusion terms (biharmonic
term) compared with that of the Newtonian fluid flow (refer
Eq. (11)). Also, from Fig. 2a and b it is observed that the steady-state
temperature contours for the couple stressfluid are somewhat different,
with thicker temperature layer, from those of the Newtonian fluid.
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Fig. 3. The simulated average (a) skin-friction C f

� �
and (b
Table 1 explains the variation between the couple stress fluid and
Newtonianfluid flows in terms of theflowvariables to reach the tempo-
ralmaximum and the steady-statewith different Pr and P values. Also, it
explains the variation with respect to C f and Nu. Table 1a(i) and a(ii)
tabulates values for the times to reach the temporal maxima and
steady-state, respectively. It is observed that for all values of Pr and P
the times needed for all the flow variables to reach the temporal
maxima for the couple stress fluid flow are larger than those of the
Newtonian fluid flow. It is also noticed that with the increasing values
of P, the times required for all the flow variables to reach the steady-
state for the couple stress fluid flow are rather smaller than those for
the Newtonian fluid flow. This implies that the transient periods, after
the temporal maxima, are quite longer for the Newtonian fluid flow
compared to those for the couple stress fluid flow. While the opposite
trend is observed for Pr. Also, for all values of Pr and P, the velocity of
a couple stress fluid flow is decreased in comparison with that of the
Newtonian fluid flow. From Table 1b(i) and b(ii), it is noticed that the
average values of skin-friction coefficient decrease as Prandtl number
(Pr) and conjugate-conduction parameter (P) increase. On the other
hand it can be observed that an increase in the P is associated with a
decrease in the local rate of heat transfer i.e., for poor conductive wall,
the average Nusselt number has low values. This is a logical result
since reducing the thermal conductivity of thewall leads to the increase
in thermal resistance of the overall system and therefore reducing the
Nusselt number. Natural convection in the fluid part is very slow and
conduction heat transfer dominates in this case as shown in Fig. 3b (i)
and(ii). Also, thus, from Table 1b(i) and b(ii), it is observed that the C f

and Nu of a couple stress fluid flow are smaller than that of the Newto-
nian fluid flow for all values of Pr and P. In summary, Table 1b reveals
that the wall shear stress and heat transfer rate of a couple stress fluid
flow differ from those of the Newtonian fluid flow.
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for variation of (i) Pr and (ii) P.
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The effects of Pr and P on the simulated C f andNu are shown graph-
ically in Fig. 3a and b, respectively. From Fig. 3a(i) and a(ii) it is observed
that for all values of Pr and P the C f increases at first with time, attains
the peak values and, after slight decreasing, reaches the steady-state
asymptotically. For increasing values of Pr the values of C f decrease.
Similar trend is observed for P. It is related to the fact that the increased
value of P decreases the velocity of the fluid within the boundary layer
and decreases the viscosity of thefluid. During the initial period, the var-
iation of C f with respect to P is larger than Pr. This implies that the C f is
more strongly affected by P in comparison to Pr. From Fig. 3b(i) and b(ii)
it is observed that after t = 0, for short period of time, theNu is almost the
same for all values of Pr and P. This shows that initially heat conduction is
Fig. 4. Simulated steady-state stream function (ψ), temperature (θ) and heat function (Π)
dominating in comparison with the convection. Fig. 3b(i) reveals that an
increase in the value of Pr leads to an increase in the values of the Nu.
Increasing Pr speeds up the spatial decay of the temperature near the
heated surface together with increased flow velocity near the wall,
yielding an increase in the rate of heat transfer. With the increasing
values of P i.e. with lower wall conductance (ks), initially, t ≤ 5.57, the
Nu is almost the same with an increasing trend. Later it decreases
with increasing values of P and attains the steady-state.

Fig. 4 illustrates the streamlines, isotherms and heatlines at the
steady-state for different values of Pr and P. It is observed that the vari-
ation in heatlines and isotherms occurs very close to the hot wall in
comparison to that of streamlines. The streamlines are denser near the
contours for (a) Pr = 0.71, P = 0.5; (b) Pr = 2.0, P = 0.5; and (c) Pr = 2.0, P = 2.0.



Fig. 4 (continued).
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leading edge of the cylinder. The intensity of the heat transfer from the
hot wall to the fluid is maximum for increasing values of X, and it
decreases as X decreases. The heatlines near the wall being straighter
for higher X values. It is also noticed that the relevant heat transfer
phenomena occur inside the thermal boundary layer, as assumed by
the boundary layer hypothesis. From Fig. 4a and b it is observed that
as Pr increases, the maximum value of Π increases since Nu increases
on the hot wall as shown in Table 1b(i). Also the deviation of heatlines
from the hot wall is more, while the reverse trend is observed for the
case of isotherms. Fig. 4b and c shows that as P increases, the maximum
value of Π decreases since Nu decreases with P. It is noticed that the
heatlines tend to move away from the hot wall for higher values of P,
but there is no such variation in the case of isotherms. This is due to
the reason that the isotherms are identified by the temperature levels
in the domain, but they are poor and inadequate tools for heat transfer
visualization and analysis.
4. Conclusions

Extensive heat flow visualization is employed to study the conjugate
heat transfer effects for an unsteady natural convective couple
stress fluid flow over a vertical slender hollow cylinder. The non-
dimensional governing equations are derived and solved numerically.
When properly made dimensionless, the numerical values of the heat
function are closely related to the overall Nusselt number, which
characterize the overall heat transfer process. The flow visualization in-
cludes the plots of streamlines, isotherms and heatlines. The basic char-
acteristics of heat lines are useful for perceiving the visualization results
and also it has been shown that the level of heatlines is a directmeasure
of the heat transfer. The computations are carried out for different
values of Pr and conjugate-conduction parameter P. It is observed that
the average skin-friction coefficient decreases with the increasing
values of Pr and P. It is also noticed that the steady-state values of aver-
age heat transfer rate decrease with increasing P and decreasing Pr.
Boundary layer flow visualization indicates that the heatlines occur in
the vicinity of the hot wall. Also, it is observed that as Pr and P increase,
the deviations of heatlines from the hot wall increase. Particularly, this
study reveals that the deviations of velocity and temperature profiles
of couple stress fluid flow from those of the Newtonian fluid flow turn
out to be considerable.
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