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In the present study the theoretical and numerical results of Rayleigh-Bérnard convection in an electri-
cally conducing fluid in the presence of a vertical external magnetic field is reported. The effect of mean
flow at the onset of stationary convection and close to the bifurcation is analyzed. The coefficients of the
corresponding amplitude equations are analytically calculated and numerical simulations are performed.
Finally, the secondary instabilities, such as Eckhaus, zig-zag and skew-varicose at the onset of stationary
convection, associated to the roll solution are studied. It is observed that most of the critical modes
appear close to the zig-zag instability.
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1. Introduction

Magneto-convection is the study of thermal convection within a
conducting liquid under the influence of an external magnetic field.
This type of study was primarily motivated by the geophysical and
astrophysical applications, in particular, by the observation of sun-
spots in the imposed magnetic field conditions and by the mag-
netic fields on other planets [1-4].

In this context, it is important to understand how the Lorentz
force affects the convective motion in many astrophysical and geo-
physical problems. Whenever thermal convection takes place in an
electrically and thermally conducting fluid of planetary or stellar
dimensions, it is always associated with the presence of magnetic
fields. The presence of strong magnetic fields modifies the thermal
convection of the outer layers of Sun and other late type stars. An-
other reason to study the influence of magnetic field on the ther-
mal convection is that it produces a narrowing of convective rolls
that suppresses the amplitude of convection and gives rise to a
variety of patterns, which are typical to nonlinear systems.

Theoretical studies of convection within the framework of the
Boussinesq approximation have been inspired mainly by the exis-
tence of sunspots. The linear problem at the onset of convection in
the presence of homogenous magnetic field can be found in Refs.
[5,6]. Similar experimental studies have been carried out by Nakag-
awa [7]. This application has motivated several other authors to
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investigate the suppression of convection and the occurrence of
different patterns by strong magnetic fields [8-12].

More complicated convection patterns mix the transverse and
the longitudinal modes, in contrast to zig-zag stripes that leads
to a mean flow. This long wavelength instability generates skew-
varicose instabilities. The instability of rolls specific to stress-free
boundaries, which depend on the existence of a slowly decaying
large scale mode in the absence of magnetic field and at the onset
for Rayleigh-Benard model, were first studied by Zipplieus and
Siggia [13,14]. The authors have obtained the sufficient conditions
for the secondary instabilities such as Eckhaus, zig-zag, cross-roll
and skew-varicose instabilities near the onset using the amplitude
equations. The authors have shown that no stable rolls exist for a
thermal Prandtl number (P,) less than 0.728. Also, Busse and Bolton
[15] obtained the marginal instability of rolls by the direct calcula-
tion of unstable mode and claimed that for P, <0.543, no stable
rolls exist. This result was confirmed by Bernoff [16], who studied
the instability of the rolls using the Ginzburg-Landau equation.
Milke [17] showed that the difference in stability thresholds with
those of Zipplieus and Siggia [14] and Busse and Bolton [15], is
due to the difference in the assumption of asymptotic relations be-
tween the parameters that characterize the problem, and hence
corresponds to two different unstable modes. Podivigina [18] stud-
ied the stability of the rolls without these prior assumptions and
claimed that a new stability threshold also exist for 0.543 < P, <
0.782.

In recent years, several authors have discussed the possibility
that slowly varying long-wavelength quantities can significantly
affect the convective cells by changing their stability properties
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Nomenclature

A amplitude

By the contribution of mean flow generated by a vertical
vorticity component

G the contribution of mean flow generated by a vertical

magnetic current component

d depth of the convection zone
g gravitational field
H external magnetic field
Ho external magnetic field along z-axis
Hy H,,H, components of magnetic field
] current
k wave number
ksc critical wave number
linear operator
N nonlinear operator
Def effective pressure
P magnetic Prandtl number
P thermal Prandtl number
qx qy wave numbers along X,Y direction
Q Chandrasekar Number
Ra Rayleigh number
Rag stationary Rayleigh number
Ra,, critical Rayleigh number
T slow time scale

t time coordinate
\' velocity
VxVy,V;  velocity components

XY,z cartesian coordinates
XY horizontal and vertical spatial scales
NWS Newell-Whitehead-Segel

Greek symbols

T temperature

AT temperature difference between upper and lower layers
0 perturbed temperature

B adverse temperature gradient

0o reference mass density

K coefficients of thermal diffusivity
v viscosity

n magnetic diffusivity

o coefficients of thermal expansion
Lm magnetic permeability

10} vorticity

Superscript
! variables with dimension

at the onset [19-22]. Cox and Matthews [23] showed that the
inclusion of large scale modes of magnetic flux is essential to ob-
tain correct determination of stability of convective rolls. They
have derived an amplitude equation for magneto-convection and
anticipated that this model will have application for a wide range
of pattern formation problems. Furthermore, they suggested that
their nonlinear analysis for convection under the influence of mag-
netic field confines to a stationary bifurcation. Using their ampli-
tude equation, they have also shown the regions, where the rolls
become unstable, stable and subcritical. They have obtained the
conditions of instability for new convective rolls under the influ-
ence of magnetic field and discussed that this new instability of
convective rolls is quite different from that of the Eckhaus instabil-
ity (a phase instability). This new type of instability is amplitude
driven, leading to a stable pattern of rolls in which the amplitude
changes on long spatial scales. Other important works about the
magneto-convection can be found in Refs. [24-30].

In the present study the problem of nonlinear magneto-convec-
tion in the presence of a magnetic field along with the Boussinesq
approximation for idealized boundary conditions is analyzed. Fol-
lowing the Zipplieus and Siggia [14] approach a set of amplitude
equations were derived by taking into account of the mean flow ef-
fects. The corresponding secondary instabilities such as Eckhaus,
zig-zag and skew-varicose at the onset of stationary convection
are studied. The paper is organized as follows: In Section 2, the ba-
sic hydrodynamic equations are presented. In Section 3, a set of
two dimensional amplitude equations at the onset of stationary
convection is derived and some numerical simulations are per-
formed. In Section 4 the secondary instabilities are analyzed. Final-
ly, the conclusions are presented in Section 5.

2. Theoretical model
A layer of incompressible electrically and thermally conducting

fluid, of thickness d, parallel to the xy-plane, with large horizontal
extension in a gravitational field g and subjected to a vertical tem-

perature gradient is considered. The external magnetic field Hy is
assumed to be oriented in a direction parallel to the z axis. The z-
axis is chosen such that g = —gz and the layer has its interfaces at
the coordinates z =0 and d. A static temperature difference across
the layer is imposed i.e.,1(z=0) =19+ At and t(z =d) = 7o. Under
the Boussinesq approximation, the dimensionless equations for
the perturbations of the conductive rest state can be written as [5]

V-v=0, (1)
1 QP,, _ 2 oH .

P—rdtv— P, H-V)H=-Vpy +V V—I—QE—&-RGHL (2)
d:0 = V20 + v, 3)
PnoH _, o Pn

P—rafv H+V><(VXZ)+P—rV><V><H, 4)
V-H=0, (5)

where v =(vyV,,v,)" denotes the fluid velocity perturbation,
H = (H,,H,,H,)" is the magnetic field perturbation and ¢ is the per-
turbed temperature. In Appendix A, we have given the details of
the occurrence of perturbed, dimensionless Eqs. (1)-(5) from the
basic governing equations. Here the time derivative df{=0,f + v - Vf)
indicates the total derivative and pis the effective pressure which
contains both the hydrodynamic and the magnetic contributions. In
Egs. (1)-(5), the following groups of dimensionless numbers have
been introduced: (a) (pure fluids) The Rayleigh number,
Ra = agatd?[icv, accounting for the buoyancy effects and the ther-
mal Prandtl number, P, = v/x, relates the viscous and thermal diffu-
sion time scales. (b) (magnetic fluids) The magnetic Prandtl number
P, = v/ measuring the ratio of magnetic to thermal diffusivity and
the Chandrasekhar number is Q = u,,H2d’ /47 p,vn. In these dimen-
sionless numbers the different physical quantities represent o as
the thermal expansion coefficient, k¥ the thermal diffusivity, v the
viscosity, 11 the magnetic diffusivity, p,, the magnetic permeability
and po the reference mass density. With these non-dimensional
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quantities, the effective pressure is given by pegs= (p + Q(PH, + Pp,-
IHP/[2))/P,.

In the present analysis the following numerical values for the
parameters were considered: the Ra can be usually changed by
several orders of magnitude by varying the applied temperature
gradient and in the present study, Ra ~ 102-103. A typical value
for P, in fluids is P, ~ 10~ '-103 and in the earth mantle it is around
10%° [31]. The P,, can be relatively small in liquid metals of labora-
tory experiments [32] or very large (P, > 1) in case of astrophys-
ical situations [33] and in liquid metal laboratory dynamos. Similar
to the Ra, the values of Q can be changed by several orders of mag-
nitude by varying the applied magnetic field.

The following balance equation of the linear momentum with-
out the effective pressure term is written by taking the curl oper-
ator twice on the Eq. (2) and combining it with the Eq. (1).

10 2\ezo ~o20H s 00
QP,

+%v X TI(V,0) ~ 5" x T(H J), (6)

where o =V x v denotes the vorticity, ] = V x H is the current and
II(a,b)=(a-V)b— (b-V)a.
Egs. (3)-(6) can be written in a compact form as

Lu+ N(uju) =0, (7)

in whichu= (vyv,,v,H,, Hy,HZ,e)T and £ and WV stand for the linear
and the nonlinear operators of the corresponding equations,
respectively.

The idealized boundary conditions were imposed on both the
boundaries, z=0 and 1 [5]. Hence, the boundaries are stress free,
maintained at a fixed temperature and a vertical magnetic field
is imposed on the boundaries as

Ovy _ 0vy
oz oz
Also, the periodic boundary conditions are assumed along the hor-
izontal directions. These conditions implies that the z-dependence
is entirely given in terms of the trigonometric functions. In the next
section, a weakly nonlinear analysis of the system (7) in the case of
a stationary bifurcation is presented.

=v,=H,=H,=0=0. (8)

3. Effects of mean flow at the onset of stationary convection

As the linear instability at the threshold of the conducting state
had been studied by many authors in different situations, only the
main results of the linear analysis for the stationary case [5,6] are
presented here. The stationary Ra obtained from the eigenvalue of
the linear part of system (7) and is given by [5]:

o2 4 2
Ra, = £ +2Q7f), ()

k

where (? =k?+nn? is the augmented dimensionless wavenumber
and in the present study n=1 is considered. The minimum of the
marginal curve (dxRas = 0) gives the critical wavenumber kg, and
the associated critical Rayleigh number, Ray.. The explicit expres-
sion of Ras is [28]

9r* 1 2
where
3_ 4Q  8Q’ T2
N=TtgStoa(1+1+5)

Moreover, the k. can be calculated from the Ras. as

2 5
K = <¥> - (11)

It is observed that the threshold value increases when Q increases.
Thus it can be inferred that the magnetic field has a stabilizing ef-
fect on the convective threshold. In addition from Eq. (9) it can be
observed that the stationary threshold value is independent of both
Prandtl numbers.

The control parameter, Ras is close to its threshold value Ray. if
the bifurcation parameter is €?=(Ra; — Ras)/Ras.. All functions
were expanded in terms of € and it is assumed that all variations
of the linearized solutions were incorporated in the amplitude
function, A and the fields, By and C,. If these amplitudes are of size
€ (i.e. O(€)) then the interaction of the convective cell with itself
forces a second harmonic and a mean state of correction of size
0(€3/?), which in turn drives an O(€?) correction to the fundamental
component of the imposed roll, and so on. A solvability criterion for
the last correction yields a set of equations for {A(X,Y,T),
B(X,Y,T),CX,Y,T)} of the imposed disturbances [14]. Therefore,

u — €(Ug + €'%u3; + €y + €%us ), + O(e7/2)) (12)

and consequently £ — Lo + €'2L3 + €L, + €2 L5, + O(€%/?) and
N — €PNy + N3y + €2N 5 + ©(€7/?) where the expansions in
the derivatives represent 9, — dy + €dx, 9, — dy+ €29y and 9, —
9: + €20y, because A is a function of the slow time scale T = €%t and
the slow spatial scales X = ex and Y = €'/%y. Inserting these expan-
sions in Eq. (7), for each power of ¢, a hierarchy of equations was
obtained by and is given by

Louy =0, (13)
Loz, = No — L3, (14)
Loty = N3, — Lollg — L35U3)7, (15)
Lous;; = N3 — Lsplg — Loz — L35, (16)

These relationships were solved subsequently by fulfilling the solv-
ability condition at each order. The following general non-linear
equation was considered for further analysis.

(uf|r.hs.) =0, (17)

where uj) denotes the solution of the linear adjoint problem
(£*u' = 0). The notation r.h.s corresponds to right hand side term
of the perturbation and ( o) denotes the inner product which is de-
fined as a suitable volume integration. The solvability condition at
0(€°?) leads to a set of equations for {A,B,,C,} and are given by

gi;sz (;i;;)zAMZAiABxASACZ, (18)
VA 0{;/;2 = <;—;+5;%>wz+g1% [A* <%—iaa—;2>f\+c.c. , (19)
%?;Z = (({f‘;Jré;;)Bx, (20)
7~ (%-%6%)&4—& <§+5§> (A*g—é-%c.c.)} 21)
%: ’s (86—;+586—);>C2, (22)

where 1=V Z]/lz/(PrkSC}.o), 0=+ ;.26/(41(35@), g1 = 14/16/(131‘13)-
Y, = 71Pmv€ and g, = esziéb/(Pr/lgzs). The explicit expressions
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Fig. 1. Coefficients ), (left) and y, (right) as a function of Q and P,, for P, =10 and € = 0.01

100" 0-0

Fig. 2. For P, = 10 the coefficient ¢ (left) as a function of Q and €; and coefficient g; (right) as a function of Q and Py,.
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Fig. 3. Phase diagram of g; = 0 as a function of Q and P,, for P, =10.

for the coefficients 2, j = 0 to 7, are given in the Appendix B, never-
theless /5 < Q.

The shape of the coefficients, y4, 7, 6 and g; that appear in the
amplitude Egs. (18)-(22) is analyzed with the aid of Figs. 1 and 2.
Fig. 1 shows the dependence of Q and P,, on y; and 7, coefficients.
It can be observed that these coefficients are small in a wide range
of parameters and increase when Q and P,, increase. For P, =10,
the coefficients 6 and g; are plotted in 2. From Fig. 2 it can be ob-
served that the coefficient § remained small for all range of both
parameters Q and € and this coefficient increases when € increases
while it decreases when Q increases. Also Fig. 2 shows when Q in-
creases, the coefficient g; decreases and changes its sign. Fig. 3 show
the phase diagram of Q and P,, when g; becomes zero and P, = 10.
From this figure it can be observed that P, decays almost exponen-
tially as a function of Q.

The set of Egs. (18)-(22) have complex dynamical behaviors, as is
shown in Fig. 4. In this figure we can observe multiple patterns tran-
sition, which continues changing dynamically. We solve numeri-
cally Egs. (18)-(22) using the fourth order Runge-Kutta method
with AT = 0.001. A standard pseudo-spectral method was employed
for the spatial discretization. Also, we impose periodic boundary
conditions. The calculations were carried out in Mathematica 8.
The initial conditions A, = By = C, = 0 and A; = —0.1 were employed.

It can be noted that in the absence of magnetic field (Q —» 0),
J5 — 0. Then, the Eqgs. (18)-(22) are reduced to

2
oA 9 .7 2,
ar = (a_x"-aY2> A AT >
N 0|0 O
ot - <0Y2+58X2 0 + 815y X o2 A+cc.|, (24)
ow, (& L&
Y _<8Y2+58X2 B )

where the coefficients {J;,6 and g;} are calculated as follows: Let
f = f(Q — 0), then these coefficients can be explicitly written in com-
pactformas: j; = v3/(P; +1),6 = v3€/4and & = 2(P, + 1)/P?. The
last Egs. (23)-(25) are similar to those derived by Zippelius and Siggia
[14]. Further, in the infinite Prandtl number limit, the contribution of
B, can be neglected and the standard nonlinear two dimensional Lan-
dau-Ginzburg equation was recovered and is given as:

2
oA a .0 )
W_AJr(W—IW)A—MA. (26)

This equation is similar to that obtained by Newell and Whitehead
[34] and by Segel [35] independently; and this equation is called as
Newell-Whitehead-Segel (NWS) equation. One of the common solu-
tion of the NWS equation is a stationary roll solution and is given by
A(X) = Rexp(i k.X), where R and k, are constants. The stability of this
solution was studied by including the mean field contributions. The
value of C, was renormalized as C, —» C,//s.
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Fig. 4. Density plots of |A| (left), By (center) and C, (right) as a function of both spatial coordinates X and Y at three different times. The fixed parameters are: P, = 10, P, = 0.5

and Q=10% and €=0.1.
4. Patterns selection

In this section, the pattern selection based on the set of ampli-
tude Eqgs. (18)-(22) derived in the previous section is developed. In
order to understand how a non-optimal pattern wave length can
lead to instability, a perfect roll pattern slightly above the critical
wavenumber was considered and it is given by

A=A"(X) = Roexp(ikX), B,=BY =0, C,=CY =0, (27)

where Ry and K are constants. Substituting (27) into Eq. (18), we ob-
tain that Ry = v/1 — K2. Since R, must to be real, we have imposed a
condition that K? < 1. Therefore, the marginal stability exist when
K=1. To examine the pattern stability, small perturbations in the
roll amplitude and in the phase are added. Hence, the complex func-
tion A(X,Y,T) can be written as:

A = Ro(1 + u) exp(i(KX + ¢)), (28)

where u=u(X,Y,T), ¢ =$(X,Y,T) and are chosen such that |u| <« 1
and |¢| < 1. Substituting the envelope Eq. (28) in Eq. (18), then lin-
earizing u, By, C, and the gradients of ¢, the amplitude Eqs. (18)-(22)
were reduced to the following equations.

u ) > ? o o
>
+2 -G, 29
oxoy? 29)

ap [ ? o ou 2*u
8T_<ax2+2KayZay4 P+ 2 Gp =2 =B (30)
¢\ (2
v o) ar o T Oax
o (ou &
Bx:2g1(1l<zayz<8x ade)> (31)
¢ NG (Y
T\ 02 ) ar T \av ook
N AR

Cz:2g2(ll<)<8x+ayz o (32)

Define the vector field U as (u, ¢, By, Cy)", that contains the important
variables for the linear analysis. Using the standard techniques, the
spatial and temporal dependencies of U are separated by using the
normal mode expansion and are given by

UX,Y,T) =Upexpli(qxX + qyY) + oT] (33)
where (gyx,qy) are wavenumbers along the (X,Y) directions, respec-
tively; and o = g, + io; denotes the complex eigenvalues in which
o, is the growth factor of the perturbation, and o; its frequency.
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Fig. 5. Existence region of the zig-zag instability as a function of K and Q at P, = 0.1 (left) and P,, = 0.5 (right) for P, = 10.

2

2

Fig. 6. Instability region as a function of g, and g, and K at P,, = 0.1 (left) and P,, = 0.5 (right) for P, =10, Q=107 and € = 0.01.

In the stationary case (o = 0), zig-zag and Eckhaus instabilities
were recovered. Apart from these two instabilities, a skew-varicose
instability was also obtained and it demands the contribution of
mean flow effects.

4.1. Zig-zag instability

The zig-zag instability occurs only along Y-direction i.e., parallel
to roll axes. By setting gx = 0 in the normal mode solutions of u and

¢ and using the resultant normal modes in Egs. (29)-(32), we get
2Kq% + g3 +2g,(1 - K*) < 0. (34)

The above inequality (34) holds when K < 0. Hence, if K = —¢?, Eq.
(34) gives

K?
— > 2g;. 35
11—k (35)
Consequently, the zig-zag instability occurs at the interval
2 K’
K*<1 and —— > 2g;. 36
1 _ K2 gl ( )

Fig. 5 shows the existence of zig-zag instability as a function of
roll wavenumber, K and Q for different values of the P,,,. From this

figure it can be observed that if P, increases the instability regime
requires lower values of Q.

4.2. Eckhaus instability

Eckhaus instability arises from the perturbation that vary only
along X-direction, i.e., gy = 0. Following a similar procedure as in
the case of zig-zag instability, the condition K? < 1/3 is obtained.
Therefore, the region for the Eckhaus instability is bounded in re-
gion 1/3 <K? < 1. It can be noted that, this condition for the Eck-
haus instability has the same form of a simple fluid.

4.3. Skew-varicose instability

After some algebra, one can obtain the general condition for the
system’s instability and it is given by

= (20K + (a3 + 2K +0f) ) (0 + 2Ka} ) + 200

(63+a30)°

) 2 &1(1-K)g 2 £0-K)g
4q; (K +qy+ (@) K+qy+o @) < 0.

37)
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min(¢)

Fig. 7. Minimum value of ¢ as a function of K for different values of Q, where {o,H, ¢
,A, ¥} depict Q={1,2,3,4,5} x 102 The inset shows the min (¢) as a function of gx
and qy. The fixed parameters are: P,= 10, K= 0.5 and € = 0.01.

Fig. 6 shows the general instability condition as a function of gx
and qy for two different values of the Py,. This figure shows that the
instability region increases when P,, increases. It can be noticed
that whenQ=0and K=0,8; >3 +2v2or P, < P; =0.78197. This
result is in agreement for instability of rolls calculated by Zipplius
and Siggia [14] for the Rayleigh-Benard model in the absence of
magnetic field.

Since the relationship (37) cannot be solved analytically, expect
for certain limiting cases such as in the case of gx =0 or of gy =0, or
in the non-magnetic case (Q=0) when K=0, the most critical
modes were calculated numerically. Fig. 7 shows the minimum va-
lue of ¢ as a function of the wavenumber of the idealized roll, K, for
different values of the Q. It is observed that minimum value of ¢ is
less when K is small. For small values of K and increasing values of
Q, ¢ value decreases but when K value is close to the unity all ¢ val-
ues merge to the same value. In addition, gx ~ 0 and gy ~ 1, when
other parameters are fixed. This result implies that the most of the
critical modes appear close to the zig-zag instability.

5. Final remarks

In the present work the Rayleigh-Benard convection in an electri-
cally conducting liquid in presence of an applied magnetic field is
studied in the case of idealized boundary conditions. The stability
threshold for the stationary convection was determined. Close to
the bifurcation, the weakly nonlinear stability analysis had been per-
formed in which the mean flow effects were included. In this ap-
proach a system of three coupled amplitude equations were derived
and their coefficients are analytically calculated. In the limit of large
Prandtl number the mean flow effect can be neglected and in this case
the standard NWS equation was recovered. Finally the region in
which the Eckhaus, zigzag and skew-varicose secondary instabilities
occur had been analyzed. The present study will be extended to ana-
lyze the oscillatory instabilities and is considered for the future work.
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Appendix A. Derivation of the dimensionless perturbed Eqs.

(1)-(5)

The dimensional equations for magnetoconvection under the
Boussinesq approximation are [5]:

V'V =0, (A1)
8‘,/ ! N4 V/P/ 2yy! ,0 lu ! U U
4+ (V.V v]:77+vv2v+— +-Em (7 xH)xH, (A2
GV : Dg i (V) <H. (A2
%+ (V. V)T = kV?7, (A.3)
a;, =V x (V xH)+nV°H, (A.4)
V' H =0 (A5)

where (V'xH) x H=—1V'|H? + (H.V)H , H = Hyz+ (H;x+H;y+
H,z) and the density p = py[1 — (7 —1)] is considered to be
independent of pressure (i.e., incompressibility is assumed) and

depends linearly on temperature.
Now we obtain Eq. (2) in the following manner. Thus, equation
(A.2) is simplified to

8‘,/ ! ~7\y ! / P/ ,u“ 12 2y gy p

—+ V.V V}:—V<—+ ™ |H >+vVV+—g

L% ( ) Po  8Tpg i Po

/Jvm / / /
+ anp, (H.V'H, (A.6)

The conduction state is characterized by

4 ! ! A‘[:/ /
V,=0,7, =17, - <T>Z’
P. =Py —gp, (z’ + %oc/fza), and H, = Hpz, (A7)

where suffix ’s’ stands for the static state, = A 7'/d and Hj, repre-
sents the externally imposed vertical magnetic field.

To study the onset of convection the small perturbations are
introduced in the conduction state solutions as V' =V, + V', 7' =
1,40, P =P, +P,and H = H; + H, where V_, ¢, P, H_ represent
the perturbed quantities. Thus, the last term of equation (A.2) in
right hand side (RHS) is modified as

l’tm U ! I Mm ! !’ ! ! !
ary, VIR = g (H -+ HO.V) (H, + HL).

(A8)

Using the conduction state solution H; = Hyz, which is given by
equation (A.7), the above equation (A.8) reduces to

Hm U ! U _ l’l‘m ! ! U ! ! !

o WOV = gl [(HLV)H. + (HLV)H (A.9)
(or)

Pn_ vy = ot B g oy (A10)

4mp, ~4mp, 9z 4mp,

Applying the similar analysis to the other terms of equation
(A.2), the dimensional perturbed momentum equation along with
the Lorentz force for the magnetoconvection model under the
Boussinesq approximation is given by:

oV,
ot

+ (v;.v’)v;} =-V <£+ Hon \H;\2> +WAV
P 8TP,
P g, Hullo OH,
* Po &t amp, oz

,um / / 7
+ arp, (H,.V')H..

(A11)

We have used a Cartesian system of coordinates whose dimension-
less vertical coordinate z’ and horizontal coordinates x',y’ are scaled
based on depth of the layer, d. The quantities V', ¢, t', P, and H, are

made dimensionless by scales «/d,At,d?[x,pox?/d*> and kH,/n,
respectively.
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Using the above scaling, the perturbed basic dimensional gov-
erning momentum equation (A.11), in non-dimensional form is gi-
ven by:

1 [oV QP
PL%(vw]-Prmvm
= v(lf +9P—|H| +QH>+VZV+Raei+Q% (A12)
(or)
1 QP,, B ) oH .
pr 0V =5 (HV)H = ~Vpyy + V2V +Q -+ Ratz. (A13)

It can be noted that in equation (A.12) or equation (A.13), for
convenient, we have omitted the asterisk.

By following the above procedure, the perturbed non-dimen-
sional Egs. (1), (3), (4) and (5) can be derived from the equations
(A.1), (A.3), (A.4) and (A.5) respectively.

Appendix B. Coefficients

The coefficients 4; which appear in the amplitude Eqgs. (18)-(22)
are given by:

1+P k PmR
Jo = Qe + 8 (14 L0 e (38)
P, P,
I = kg (6L% + m*Q — Ray), (39)
Ja = K2.C*Ray, (40)
™ , 2\ . K Rag
== (p ksc> (7 k) + 25 (41)
2 égc 4 2
74 = K Ras + P (L — T*QPy), (42)
2 4
15 = 2l (43)
P,
P m*Ra 4
g = % é?c - ;C ~ Z-v,sc ) (44)
Rasc 2k5CC5C gSC + TE2Q
TCZ
Jy = ——. (45)
kel
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