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FLOW GENERATED DUE TO LONGITUDINAL AND TORSIONAL
OSCILLATIONS OF A CIRCULAR CYLINDER WITH
SUCTION/INJECTION IN A MICROPOLAR FLUID

J. V.RAMANA MURTHY, G. NAGARAJU AND P MUTHU

Abstract. The flow generated by performing longitudinal and torsional oscillations of
a porous circular cylinder which is subjected to constant suction/injection at the sur-
face of the porous cylinder is studied. A finite difference method is proposed to analyse
the velocity components and micro-rotation components, in an infinite expanse of an
incompressible micropolar fluid. The effects of cross viscosity parameter, couple stress
parameter, Reynolds number and Gyration parameter on the axial and torsional velocity
components and on the micro-rotation components are shown graphically. Drag force
acting on the wall of the cylinder is derived and the effects of micropolar parameters and
suction parameter on the drag are shown graphically.

1. Introduction

The flow and heat transfer of certain fluids such as animal blood, real fluids with suspen-
sions, colloidal fluids and polymer solutions, could not be explained successfully on the basis
of Newtonian and non-Newtonian fluid flow theory. With this in mind, Eringen [1, 2] devel-
oped the theory of new class of fluids called as micro-fluids. This theory deals with a class of
fluids, which exhibit certain microscopic effects arising from the local structure and micro-
motions of the fluid elements. These fluids, even in the simplest case of constitutively linear
theory, contain 22 viscosity and material coefficients with a system of 19 partial differential
equations with 19 unknowns and the solving of these equations is highly difficult.

Hence Eringen [3] latter considered a subclass of these fluids called as micropolar flu-
ids. In these fluids the gyration tensor is the skew-symmetric, in addition to a condition of
micro isotropy, so that the system of 19 equations now reduces to seven equations in seven

unknowns only. This theory of micropolar fluids is the most generalization of viscous fluid
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theory. A number of micro-continuum theories have been developed for describing the pe-
culiar behavior of fluids containing substructures, which can translate, rotate, or even deform

independently [4, 5].

The motion of fluids through porous permeable surfaces at low Reynolds numbers has
been an important subject in the field of chemical, biomedical, and environmental engineer-
ing and science. This phenomenon is fundamental in nature and is of great practical impor-
tance in many diverse applications like production of oil and gas from geological structures,
the gasification of coal, the retorting of shale oil, filtration, surface catalysis of chemical reac-

tions, adsorption, coalescence, drying, ion exchange and chromatography.

Starting from Couette flows, the flow generated in fluids by the motion of surfaces have
been attracting the researchers. Among them, the study of flow longitudinal and torsional os-
cillations presents some interest in different engineering areas like Oceanography, the tech-
nology of vibrations on machinery, the process of certain polymer liquid crystals, and the off-
shore drilling of oil. There are three physical situations in which the study of the longitudinal
and torsional oscillations of the flow of micropolar fluid can be applied. The first application
is in lubrication theory. The cylindrical bearings containing a non ewtonian fluid lubricant
are subject to longitudinal and torsional vibrations on the machinery. A second application is
the flow of polymer liquid crystals made of dumbbell like molecules processed inside a circu-
lar cylinder which is subject to longitudinal and torsional oscillations. And finally, a possible
third application is the flow of mud in the drill string of an offshore oil drilling unit which is
subjected to oscillations due to oceanic waves [6].

The motion of a classical viscous fluid due to the rotation of an infinite cylindrical rod
immersed in the fluid was first described by stokes [7]. Later many flow problems due to the
motion of bodies were solved. Some flow problems related to the motion of a cylindrical rod
performing longitudinal and torsional oscillations are given below. Casarella et al.[8] stud-
ied the external flow due to longitudinal and torsional oscillations of a rod in a Newtonian
fluid and obtained an exact solution. Rajagopal [9] studied the same problem for the case of
a second grade fluid. Ramkissoon et al.[10] studied the internal flow due to longitudinal and
torsional oscillations of a viscous fluid and they derived an analytical expression for velocities,
shear stresses and drag on the cylinder. Majumdar et al.[11] obtained an exact solution for an
infinite rod undergoing both longitudinal and torsional oscillations in a polar fluid and they
have presented the effect of micropolar parameters on the microrotation and velocity fields
graphically. Calmelet-Eluhu et al.[6] studied the internal flow of a micropolar fluid inside a
circular cylinder subject to longitudinal and torsional oscillations and they have shown the
effect of micropolar fluid on two components velocity field through graphs. Owen and Rah-
man [12] studied the same type of flow with an Oldroyd-B liquid. The problem of steady flow

in a straight channel (between two parallel plates) with suction velocity at the porous walls
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was initiated by Berman [13]. Since then many problems were considered with suction veloc-
ity at the porous surfaces in different geometries and with varieties of fluid models. Kapur [14]
has studied the steady flow of a non-Newtonian fluid in an annulus between two coaxial rotat-
ing cylinders with uniform angular velocities, when there is suction at one wall and injection
at the other. Jangi Lal [15] studied the unsteady, viscous incompressible fluid flow around a
porous infinite circular cylinder oscillating harmonically with constant suction and he solved
the energy equation for the given large and small values of time. He has shown graphically
the steady part of the velocity with suction and without suction case. Pontrelli [16] has stud-
ied the axi-symmetric flow of Oldroyd-B fluid due to longitudinal and torsional oscillations
with suction or injection velocity applied at the surface and he has shown the effects on the
non-Newtonian parameters on velocity and shear stresses through graphs. Emin Erdogan et
al.[17] obtained the analytical solution in terms of confluent hyper geometric functions for
the flow of a second-grade fluid between two coaxial cylinders with porous walls and he has
shown the effect of moment-coefficient on Reynolds number, the elastic number and the ratio
of the radii of the cylinders through graphs. Rao et at.[18] studied the unsteady viscous flow
around transversely and longitudinally oscillating circular cylinder by using finite difference
simulation method and they have presented flow fields graphically for a sub-critical Reynolds
number of order 4 x 103 and 4 x 10%. Pontrelli et al.[19] studied the steady flow of an Oldroyd-
B fluid between two porous concentric circular cylinders. They found velocity by solving a
system of nonlinear ODEs obtained from the equation of motion and constitutive equations
numerically and the effects of non-Newtonian quantities on velocity and on shear stress are
shown through graphs. Lokendra Kumar et al.[20] have investigated the problem of mixed
convection on a moving vertical cylinder with suction in a micropolar fluid medium by using
finite element method. They have presented the effects of micropolar parameter, suction pa-
rameter and velocity coefficient parameter on the velocity, micro-rotation and temperature
functions graphically. Mehrdad Massoudi and Tran X. Phouc [21] studied the longitudinal
and torsional oscillations of a cylinder in a second grade fluid and they presented the results
graphically for the shear stresses at the wall.

To the extent of the knowledge of the authors, very few literatures are available on the flow due
to oscillations of a rod in micropolar fluids. The problems mentioned in [6] and [10] are some
examples in this direction. Hence, in this paper we consider the flow of micropolar fluid gen-
erated by a porous circular cylinder performing longitudinal and torsional oscillations and

subjected to suction velocity at the surface.
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Figure 1: Geometry of the problem: non dimensional form.

2. Formulation of the Problem

Consider a porous circular cylinder of radius a in an infinite expansion of a micropolar
fluid. The cylinder is subjected to longitudinal oscillations, Exp(iw;t) and torsional oscilla-
tions Exp(iw, 1), with amplitudes ggsin b,qocos b along the respective directions with w; as
the frequency of the longitudinal oscillations,w, as the frequency of the torsional oscillations,
qo as the magnitude of oscillations and b is the angle between the direction of torsional oscil-
lation and the base vector e. i.e The cylinder oscillates with velocity as given by the expression
Qr = go(sin be'®ey + cos bel“2te,). uy is a suction or injection velocity on the surface of the
porous cylinder. Cylindrical polar coordinate system is considered with the Z-axis along the
axis of the cylinder and origin on the axis. Let R,0 and Z denote the radial, azimuthal and axial
coordinates respectively of a point in the region of flow. Now we consider the flow generated
in the micropolar fluid due to the oscillations of the cylinder. The physical model illustrating
the problem under consideration is shown in figurel.

After neglecting body forces and body couples, the field equations governing the incompress-

ible microplar fluid dynamics as proposed by Eringen [3] are:

Vi-Q=0 0
0Q
p(EJrQ'VIQ):‘V1P+KV1X1—(M+K)V1xvl><Q @
ol
pJ a_r+Q'Vll):_2Kl+KV1Q‘YV1XV1X1+(“+[5+Y)V1(V1-I) 3)

where Q is velocity vector, P is fluid pressure, lis micro-rotation vector, p is density, T is time,
V1 is the dimensional gradient. The coefficients (u, k) and a, §,y are viscosity and gyro vis-
cosity coefficients.

By nature of the geometry and flow, the velocity and micro-rotation components are assumed
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to be axially symmetric and depend only on radial distance and time. Hence the velocity and

micro-rotations are taken in the form

Q=U(R)e,+V(R,T)eg+ W(R,T)e, (4)
I=AR)e; + B(R,T)eg + C(R,T)e, (5)

Let us introduce the following non dimensional scheme

— wia wa . _R -Q
O-l_qoyo- LIo’r a’ _qo
— al . = o7 — W
U—qor p—pqg; r= a’nl_qo (6)
_aB o_aC ,_U ,_V W
B_QO’ g’ u Gio’y ‘70’w qo

By the non-dimensional scheme (6) in (2) and (3), the equations for the flow are transformed

to the following non-dimensional form
oq
Re(1-c¢) E+q-Vq =—(1-c¢)ReVp+cVxv-VxVxq (7)
ov 1
£ a—t+q-VU :—25v+stq—Vxva+5V(V-v) (8)

where the non-dimensional parameters viz. Reynolds number Re, cross viscosity parameter
or coupling number c, couple stress parameters s and 6 and gyration parameter € are defined
by

Re= P04 _ K K& o quo“,a: Y
p ptx Y Y a+pf+y
Now to match with the oscillating boundary, the velocity in (4) and micro-rotation in (5) are

©)

assumed in the form
q=ume,+v(r)e%ey+ wre%e, andv=A(r)e,+B(r)e' % ey+C(r)e%te, (10)

where u = suction velocity in radial direction is taken as <! to satisfy the incompressibility
condition. Here n; is the suction parameter defined in (6).

The equation (7) will give raise to the following three scalar equations in the directions of base

vectors
2 2
ny V7 5 dp
Lz it 7 11
r3 - r ¢ dr (1D
. n(dv v dcC 5

Re(l-o)|ioc,v+ —|—+—||=—-c—+Dv (12)

r\dr r dr
Re(l—c)(z’o w+ﬂd—w)—c(@+§)+ i+l)d_w (13)

2 rdr) \dr r dr r)dr
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2_d . 1d _ 1
where D= 75+ . - —

Similarly the equation (8) will yield the following three equations along the base vectors

mdA VB ., wz)t) 1d (ld(rA))
———-—C' =—25A+—-— |- 14
t€(rdr re S+(5drrdr (14)
B A
e(iazB L mdB U—e“"l“’z)’) —_2sB-s2%  p2p (15)
r dr r dar
e(z’o C+ﬂ£)——25c+s @+3)+(i+l)£ (16)
! rodr) dr r dr r)dr

Eliminating C from (12) and (16), we get the following equation for velocity component v as

n d n
(D2—£—1—+£—1—23—i01£)

rdr r2
9 . Re(l1-cn; (d 1 9
+(D"—Re(l1-c¢)ic;,————|—+—||v+csDv=0 (17)
r ar r

We note the following relations:

D'v=v"+20"- 30"+ 50 - 3y

21y 1 1
D(FU)—FU —r—gl/

(18)
DLy =Lv" -3+ 3
%%Dzv:%v”’+%v”—%v’+%y
Using these four relations (18) in the equation (17) we get
iv, @ gy asy g, (G4 G5\ ar adgy
v +rU +(a2+r2)v +(r+r3)v+(a6+r2+r4)v—0 (19)
where
ay=2—-¢en;—Re(l1-c)m
a=—2-c)s—ioj(e+Re(1-10))
as :ERe(l—c)nf—S
as=—2—-c)s+2sRe(1-c)ny+io;(2Re(1—c)me—Re(l—c)—¢) [ 20)

as =3(1+Re(1-c)ny +eny) —eReni(l - )

ag = —U%Re(l —c)e+2iso1Re(l1-c)
a;=2-c)s+io1(e+Re(l1—c))+2sRe(l1—-c)ny
ag=—-3(1+&eny + Re(1-c)ny + Re(1—c)nie)

We assume A=0 and neglect vB in the convective term of (14) in view of smallness of v and B.
Hence equation (14) is identically satisfied. Now eliminating w from the equations (13) and
(15), we get the following equation for B:

Re(l—c)n1i+Re(l—c)n1

D? -
r dr r2

—iosRe(1—-c)
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2 €7l1 d . 2 _
+|D ———d —25—1026|B+c¢csD°B =0 21)
r dr

Using the relations (18) in terms of B in (21) we have
by

b b
—+—5)B’+(b6+—7+
73 2

bg

b
Bw+_13m+ =
r r

b
b2+—§)BH+
r

)B=O (22)

where
bi=2—-¢en;—Re(l1-¢c)m

by=—2-c)s—ios(e+Re(1-10))

b3 =en;+€eRe(1- c)nf -3
by=—-2-c)s+2sRe(l1-c)ny+io2(2Re(l—c)nie—Re(l1—c)—¢)
bs=3(1+Re(l1-c)n;)+en;) — 2£Ren%(1 -0)

bs = —05Re(1 - c)e +2isoaRe(1-c)
b;=2-c)s+ioz(e+Re(l1-c)—Re(l—c)en;)—2sRe(l—c)m
bg=-3(1+Re(1-c)ny)

; (23)

Eliminating % from (12) and (16) we get the equation for C in terms of v as below

c2s+ i0'1€)C = U”/+ 2- nlE—Re(l —C)n1 U”

r

Re(1-c)nfe—1—(Re(1-c¢) +£)n1) ,
v
2

+ (cs —iojRe(1-c¢c)+

N (cs+ ioiRe(l1-c)(en; —1) N 1+Re(l-c)n;+n e+ Re(l —c)n%e)

v

3
r r

This can be written as

a 2Re(l-c)n’e—a
c@s+io1e)C=v"+ 20"+ (cs— iociRe(1-c¢) + 3,2 1 5) v
r r

+io1Re(l1 - -1
+(cs ioiRe( - c)en;—1) B 361783) 04)
Similarly from (13) and (15) we have the equation for w as follows:
b Re(1-c)ne—b
ioosRe(1—c)w = B" + 22B" +|s(c—2) — iooe + =g
r 3r2
jooRe(l1—c)—b b
+(m2 “ - o 7—3—;) (25)

3. Boundary conditions

We solve the equations (19) and (22) for obtaining velocity and micro-rotation compo-

nents under the following conditions.
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(1) No slip condition:
Fluid velocity on the boundary is equal to velocity of the boundary
i.e., Qr=a = qo(sin be'“’eqg + cos be'“?’e,)

This equation in non dimensional form gives the equations

v(l)=cosb and w(l)=sinb (26)

(2) Hyper stick condition
Micro-rotation vector on the boundary is equal to angular velocity of the boundary. This
takes the form v = 5 v xqr

In scalar form this equation gives the two conditions

Cl)=0; and B1)=0 27

As r — oo, the flow is at rest and boundary conditions can be taken as
v(00) =0, w(oco) =0, B(c0) =0,C(c0) =0 (28)

Thus the equations (19) and (22) are to be solved under the eight conditions (26), (27) and
(28).

4. Finite difference method of solution

In view of the complicated nature of two equations (19) and (22), the analytical solution
for v and B seems to be beyond reach. The details of finite difference method used here can
be studied from Ref. [22], for obtaining the solution for v and B. We take 20 units of distance
from origin is very large represents infinity. Hence we discretise the interval [1,20] into n
subintervals with n + 1 nodes. Each node is represented by r; = 1+ i h, with h = 19/n the step
length, starting from first node ry = 1 to the last node r,, = 20. The values of the functions v,

w at r; are given by v; and w;. The symmetric derivative formulae at the i’" node are given

as below:

! _ Vin1—UVi
Vi=""2n
p, = Virl=2VitVin

i h? (29)
" Vis2=20i41+2Vi 1~ Vi
vy = 202
piv = Vitp—4Vi1+6V;—4vi_1+Vi

i h*

Substituting these derivatives given in (29), in the equation (19) we get

1,jVi—2+ lpiVi—1+ 13,V + 14iVit1+ 15;Vit2=0 (30)
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where

S
hi=r,—amr;5

3
tzyi:—4r?—alr?h+(azrl.z+a3)rl.2h2—(a4r?+a5r,~)h7
13, =61} —2(axr} + asr})h* + (agr} + a;ri + ag)h*
3,0 = I‘l- (/lzri (/131‘1- (/l(;ri a7rl. ag

3
t4,l~:—4r?—alr?h+(azrl.z+a3)rl.2h2+(a4r?+a5r,~)h7

3h

JR——— h
t5,l—l‘l- +a1ri2

We take the following boundary conditions
vo=v(l)=cosb=ny,Co=C(1)=01,v,=0 and C,=0
Evaluating (30) for different values of i we obtain

i=0: LoV-2+loV-1+laoV1 + I50V2 = —130V0
i=1: 1V-1+ 13101+ l41V2+ 15103 = —121Vp
i=2: lropV1+ 132V + I4oV3+ 5204 =—11 2V

~~

i=n-1: Nn-1Vn-3+ 1l n-1Vn-2+ B3 n-1Vn-1+15,-1Vp+1=0

I=n:lpVp2+bhpVnpa+lanVni1+I5n-1Vpt2 =0
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1)

(32)

(33)

Thus the system of equations (33) represents n + 1 equation in n + 3 unknowns. Hence we

require two more equations. These can be obtained from (24). The finite difference form of

(24), will give us the equation

—2h30(€i01 +28)C; =vi_o

2a1h 2Re(1-c)n’e—a
I ) St gy sc—Re(l-c)io+ 21 > Vi1
ri 3rl.
. 4a1h  2h%ag 2h3(sc—Reio;(1-c)(1—eny)) y
ri ?)rl.3 i !

ri 3rl.2

2a1h 2Re(1-c)n’e—a
+ 2——1—h2(sc—Re(1—c)i01+ 1 5)) Vit1— Vit2

Using the boundary conditions Cy = 01 and C,, =0 in (34), we get

Vo+hv_1+hv1—va=13 and UVpo+1lVn_1+1l5V0541— Ups2=0

where
. 2Re(1-c)n’e—
t1:—2—22—1h+h2(sc—1Re(1—c)01+W)
0 ?:r0
. 2Re(l1-c)n’e—
tzzz—%—hz(sc—lRe(l—c)01+W)
0

_ 9713 . 2a; Reio (1-¢)(1-mée)—sc |, ag
I3=-2h (col(ezol +25) + (—rohz + o + 3rg) nz)

(34)

(35)
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tg=—2— 24l p2 (sc—iRe(l—c)al+

I5=2-—

2611

'n

'n
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h_p2 (sc— iRe(1-c)o; +

2Re(1—c)nf£—a5

3r2 )

2Re(1—c)nf£—a5)
3r2

Expressing the equations (33)-(35) in matrix form as

where

1 6 -1
11,0 12,0 14,0 150

f1 131 141 I51

I2o 132 142 I52
h3l3t331l43 153

EX=D (36)

0,n-3 12,n-3 13,n-3 la,n-3 I5,n-3
0,n-2 ©2,n-2 13,n-2 la,n-2
0,n-1 12,n-1 B3,n-1 I5,n-1
tl,n t2,n t4,n tS,n
1 I 5 -1

_ T
X=[v_2,V-1,V1,V2,..., Un-2,Un—1, Vn+1, Un+2] and

D = [3,—t3,0V0, — I2,1 Vo, — 11,200,0,0,...,0] T

where vy is the known value of v on the boundary, solving the system (36) we get the solution

for v. Hence from (34) we find C;. Now we find solution for B and w using (22) and (25). The

finite difference form of (22) is as the following:

where

$1,iBi—2+$2,iBi—1+83Bj + $4,iBi+1+ 85,iBi+2=0 (37)

$1,i = r;‘ - b r?%

S2,i = —4r} —bir} h+ (byr? + b3)r2h* — (byr? + bs ri)h?3

§3, =61} —=2(byr? + b3r?)h? + (ber} + byrz + bg)h* ¢ (38)
s4,0= —4rt = birdh+ (bpr? + by)r?h? + (bar? + bsr) &0

S5,i = r;‘ + by r?%

Applying the boundary conditions

By=B(1)=0,wyg=w()=sinb=n3,B,=0 and w,=0 39)

The finite difference scheme of (25), will give us the equation

—2h3i02Re(1 —c)swi=Bj_»
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Re(1-c)n%e— bs
1 ))Bi—l

3r2

2b1h
+(—2— 12 52 (S(C—Z)—i0'2€+
ri ;

1

s ab\h s 2h3bg  2h3(Reios(1—c)—by)
ri Sr? T
Re(1-0¢) n%e —bs

2
Sri

2bih .
2——.—h s(c—2)—iose+ Bii1— B2 (40)

i

Using the boundary conditions wy=n3 and wj, =0 then From (40) we have

B ,+$1B_1+5sB1—By=s3n3 and Bj, 5+ S4B, 1+55By+1—Bpi2=0 (41)
where
. Re(1-c)n’e—b.
s1= —2—%+h2(s(c—2)—1025+%)
0

. Re(1-c)n’e—bs
52=2—2€—1h—h2(s(c—2)—mz£+e(3#)
0 rO
s3=—2h%io,Re(1—c¢)s
Re(l—c)nfs—b5)

S4=—2—2lr]—lh+h2(8(6—2)—i0'28+ 32
—onte—
S5=2— ﬂr’—lh —hz(s(c—Z)— iooe+ %ﬁlsbs)
From (37) substitutingi =0,1,2,...,n—1,n and from (41), we express in matrix form as

FY=G (42)

where

1 s1 s -1
$1,0 $2,0 $4,0 $5,0
$1,1 83,1 $4,1 S5,1
$2,2 83,2 S4,2 S5.2

$1,3 82,3 83,3 $4,3 5,3

$1,n-3 $2,n-3 $3,n-3 S4,n-3 S5,n-3
S1,n-2 $2,n-2 $3,n-2 S4,n-2
S1,n-1 $2,n-1 $3,n-1 S5,n-1

Si,n S2,n San S5

1 S4 S5 -1

Y =[B_,B_1,B1,By,...,Bn-2,Bn-1,Bns1,Bui2l”  and
G = [s3n3,0,0,0,0,...,0,0] "
where wy is the known value of w on the boundary. Solving the system (40) we get the solution
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Figure 2: Variation of ve'"with ¢. Figure 3: Variation of we'?2! with t.
for w;.

The effects of ¢, s, Re, € on velocity and micro-rotation components are shown graphically.

5. Drag on the cylinder

The drag D acting on the cylinder of length L is given by,
2m
D= aLf (To1cosb+ T318inb) dO =2almn (Toy cosb+ T3y sinb),—; (43)
0
The constitutive equation for stress tensor T;; of a micropolar fluid is given by
Tij=(P+Av-Q)b;j+u+tx)e;j+x&ijm@n —ln) (44)

where w is the vorticity vector, e; j is strain rate tensor, 6;; is Kronecker delta and ¢; j, is the

alternating symbol.
The stress components given in the equation (43), are obtained from (44) in non-dimensional
as
s U1—U_1_U()—CO'1 .
T = (=5 —— ) Expliown (45)
Ty = (wl —w-1_ cBo )Ex (i021) (46)
31 = o 1—¢c plioz
Substituting (45) and (46) in (43) we get the non-dimensional drag acting on the cylinder is
given by
V1—VU-1 Up—COy , wy—w-1 cBy) . .
D' = - cosbExp(iot) + - sinbExp(ioyt 47
( - l_c) p(l)( w l—c) plicat)  (47)

The non-dimensional drag D’ is numerically evaluated and plotted in the form of graphs for

different parameters.
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Figure 8: Variation of B with c. Figure 9: Variation of C with c.

6. Results and discussions

The analytical expressions for the non-dimensional velocity components v, w, and micro-
rotation components B, C and drag are given by the equations (19), (25), (22), (24) and (47)
respectively. These values depend on the values of b, if b = 0, we get only torsional oscillations

andif b= % , we get only axial (Longitudinal) oscillations.
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Figure 14: Variation of v with Re. Figure 15: Variation of w with Re.

The numerical results are presented in the form of graphs for s = 10,¢ = 0.4, = 0.2,
Re=0.1, 01 =025, 0, =05 b=0.7 n; =0.6, t =n. The velocities v and w and micro-
rotation components B and C at different non-dimensional times are shown in Figs 2-5. We
notice that values of w and B are of the same order and v, C are of the same order and values
of w or B are 1072 to 1073 times less than the values of v or C. From Figs.6-9, we notice that

as the cross viscosity parameter c increases, the velocities v and C increases, B decreases and
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Figure 21: Variation of C with €.

minimum values of v, B and C are shifts towards origin. The axial velocity w is not affected

by micropolarity parameter or cross viscosity parameter c. From Figs 10-13, we see that as

the couple stress parameter s increases, both the velocity and micro-rotation components

decreases. From Figs 14-17 as the Reynolds number Re increases, the values of v and C de-

creases whereas w and B increases. In the Figs.18-21, as the Gyration parameter ¢ increases

the velocities w and micro-rotation components B are increasing. But the effect of € on the
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Figure 26: Variation of D" with o7. Figure 27: Variation of D’ with n;.

values of v and C is not very significant. i.e., the variation in the values of ¢ does not result
in much variation in the values of v and C. From the figures of velocities for v and w, it is
observed that the axial or vertical velocity comes to zero very near to the cylinder where as
the toroidal or torsional velocity v dies far from the cylinder. Hence the derivatives of w are

large near the cylinder in comparison with the derivatives of v. Hence drag is more affected
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Figure 28: Variation of D’ with n;.

by axial velocity w.

The non-dimensional drag is calculated numerically for different values non-dimensional
time in multiples of Ull at fixed values of 01,07 and the results are shown in the Figs.22-24, In
the equations of motion, local acceleration term dominates if 01,0, are large. To have all
terms of LHS of the same order in equations (12), (13), (15) and (16), the frequency param-
eters 01,09 are to be small. Hence we take |01],|o2| < 1. In the calculation of drag also we
observe that if |o1]| < 1,]|02| < 1, the drag will be within reasonable values. It can be seen from
Fig.22 that as c increases, the amplitude of oscillation for drag increases to high values. From
fig.23 and fig 24, it is observed that couple stress parameter s and gyration parameter € have
very little effect on drag, when frequency parameter o, is fixed. In figs 25-26, we notice that as
frequency parameter o increase drag decreases and frequency of oscillation also decreases
and drag is not much affected by the parameter o,. From fig 27 as couple stress parameter s
increases drag increases numerically for small values of s < 5 and for large values of s drag is
almost constant. From fig 28, we note that as Reynolds number increases drag increases nu-
merically for small values of suction; but for higher values of suction rate as Reynolds number
increases, drag remains almost constant. From fig 27 and 28., we note that as suction rate r;
increases drag decreases numerically.

7. Conclusions

In this paper we observe that,

(1) The effect of couple stress parameter s on the flow is insignificant. i.e. with respect to s,
the velocities of viscous fluid and micropolar fluids are almost same and hence dragis not
effected by couple stresses

(2) The drag offered by viscous fluids is less than that of micropolar fluids

(3) suction on the cylinder decreases the drag.
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