Context Dependent Bag of Words Generation

'Swapnil Ashok Jadhav, ’D. V. L. N. Somayajulu, *S.Nagesh Bhattu, ‘R.B.V. Subramanyam
Department of Computer Science and Engineering, NIT Warangal-506004, India

Ysaj1919@hotmail.com, *soma@nitw.ac.in, *nageshbhattu@gmail.com, *rbvs66@gmail.com

P. Suresh
E-Commerce Research Lab, Education and Research

Infosys Limited India, Mysore-570018,
Suresh_PO01@infosys.com

Abstract — Query spelling correction is a crucial component in
modern text mining systems such as Question-answering systems
and Sentiment Analysis systems where noise can affect the query
matching score. In many existing query matching systems Bag of
Words (BoW) generation method is used to generate candidates for
noisy words. But in these systems candidate generation do not
depend upon context of a query sentence. BoW count for each noisy
word may vary and selecting correct candidates from such list is
not easy and may result in wrong selection. With our context
dependent BoW generation method very few but highly probable
candidates are generated which are easy for look up and process of
query spelling correction would be easier and efficient.

Keywords — text mining, sentiment analysis, noise removal,
spelling correction, faq retrieval, question answering, information
retrieval, nip.

L. INTRODUCTION

Numbers of Internet and mobile users are rapidly increasing.
Around 500 million people are accessing these services regularly.
People can communicate anytime and anywhere. Text messaging
is the prime mode of communication. It is done through
traditional SMS systems or through social media services like
Twitter and Facebook.

There is a limit for how many characters you can send during
each text communication. It is 160 for SMS services and 140 for
tweets. For other social media services like Facebook and
Googlet+ there are no such limit, but users tend to write short
messages to convey the information. To overcome this limitation
on message length users have started using slangs and short
forms for real words and sentences. These slangs can be well
defined or user generated.

Users generally leaves some characters (consonants most of
the time) from words, but phonemically they can be guessed.
Words or phrases such as “omg” (oh my god), ‘“2moro”
(tomorrow) and “thnx” (thanks) which may not be found in
standard English directory are widely used by web users. Also
there are tendencies of spelling errors due to small keypad and
small touch screens. Today communication has become
considerably secure over communication channels but in few
cases noise can alter the text message.

978-1-4673-6217-7/13/$31.00 ©2013 IEEE

All the issues stated above affect the FAQ Retrieval systems
and Web Sentiment Analysis systems in a great way. In FAQ
Retrieval (also known as Question - Answering system), question
sent by user is matched to existing questions from the dataset and
nearest matching question is found out and answers to that
question is returned to the user. If there are text errors, then
getting the nearest match could be wrong if we use conventional
BoW method. Also, in web sentiment analysis, user’s sentiments
about particular product or person or business are analyzed from
their statuses and comments. For analysis each word is
categorized in positive, negative or neutral. But if errors exist
then many words do get categorized in neutral as they are not
dictionary words. Hence, sentiment analysis score changes and it
may produce wrong analysis.

In this paper we present Context Dependent Bag of words
method which generates efficient list of candidates for each noisy
words which are context dependent to other candidate words and
also they are ranked according to their possibility of getting
selected as a correct word. These lists are then forwarded to text
matching systems to get correct form of the noisy text (In case of
Web Sentiment Analysis) or question matching system where
candidate list of questions is generated to get nearest matching
question. Our work contributes in text mining systems where
query preprocessing is required to remove spelling errors and
incompatible formatting so that mining and eventually text
analysis system works to their potential. In this paper we not
focusing on query normalization i.e. generating sentence with
few or no spelling errors but only part of this procedure, to
generate list of ranked candidates efficiently and with high recall.

The rest of the paper is organized as follows. Section II
describes the relevant prior work in the area of noise removal and
spelling error correction and also about evolution from traditional
systems to modern spelling correction systems and also about our
specific contributions. In Section III we give the problem
formulation. Section IV describes System implementation with
G2P (Grapheme to Phoneme Conversion) model and the Context
Dependent BoW Algorithm which ranks the best matching
candidates for each noisy word for a given text query. Section V
provides details about our experiments, results and their
analysis. Finally we conclude in Section VL.

1526

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 09,2025 at 04:39:20 UTC from IEEE Xplore. Restrictions apply.

II. PRIOR WORK

There has been considerable work done in area of spelling
correction [18]. But there are some types of spelling errors such
as splitting-concatenation errors and replacing abbreviations with
its correct form (from multiple possibilities like “PM” can be
corrected as “Prime Minister” or simply just as “pm” for its
“Prime Meridian” form) which never got that much attention
and not considerable research work has been done in these areas.
Traditional spellers focused on dealing with non-word errors
caused by misspelling a known word as an invalid word form.
Distance measures like LCS Distance and Levenshtein distance
[19] are used to find similarity between noisy word and correct
candidate words.

Brill and Moore in their work explained that a better
statistical error model is important for improving a speller’s
accuracy [20]. Error model and n-gram language model are
identified as two critical components as a Statistical generative
models. But building such an error model requires a large set of
word correction pairs, which is expensive to obtain as they are
built manually.

This problem was modeled to automatically discover the
misspelled or corrected word pairs over the web [21]. With the
evolution of the Web, the research on spelling correction has
received much more attention. Many research challenges are
raised, which are non-existent in traditional settings of spelling
correction. There are many more types of spelling errors in
queries, such as misspelling, concatenation - splitting of query
words, and misuse of legitimate yet inappropriate words.
Research in this area requires large web corpus and list of queries
[22, 23, 24], training phrase-based error model from click
through data [25] and developing additional features for feature
dependent spellers [26]. However, one important challenge is
under addressed in these approaches, i.e., correcting splitting and
concatenation errors.

Query alteration or refinement is a broader topic which
naturally depends upon query spelling correction. Besides
correcting the misspelled query, query alteration or refinement
also need to modify the ineffective query so that it could be more
suitable for the query matching or searching or sentiment analysis
and most importantly refinement should be done with context
dependency. For this purpose, many research topics have been
studied. Query expansion expands the query with additional
terms to enrich the query formulation [27, 28, 29]. Query
segmentation divides a query into semantically meaningful sub-
units [30, 31]. There is research attempt [33] to use a unified
model to do a broad set of query refinements such as correction,
segmentation and even stemming. It has very limited ability for
query correction. For example, it only allows one letter difference
in deletion, insertion, substitution errors. Other query
reformulation methods intend to replace the inappropriate query
terms with effective keywords to bridge the vocabulary gaps[32].

Query spelling correction task can be approached with NLP
and is similar to tasks like such as speech recognition and

2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI)

machine translation. HMM has been found very useful in these
tasks [34, 35]. A significant work has been done using
generalized HMM model for query spelling correction [36], and
all major spelling errors are approached with unified system of
spelling correction. gHMM model is very effective for the task of
query spelling correction by discrete training and discriminative
approach. Splitting-concatenation errors are removed
significantly but there is no mention of these errors on in-word
spelling errors as explained in introduction. Else it is the best
approach to normalize noisy query with multiple errors.

BoW method has been explained in detail by Langer et al.[3]
and Kothari et al.[2]. Both these papers deal with SMS based
FAQ retrieval system and explain about candidate generation
methods for noisy query. BoW generated for each noisy word
varies in length as it depends upon threshold value. For candidate
generation domain dictionary and synonym dictionary is build
from the given corpus and fuzzy matching is used to match
candidates with given noisy word using traditional Edit-Distance
and LCS distance methods.

There are many spell-checkers available in the market or
online. SpellChecker' is one of free online spelling detection and
correction tool available. Like other spell-checkers in this tool
also context is not checked while generating candidates. A simple
example to explain this deficiency is as follows. If we type “hw
are you ?”, it correctly detects that “hw” is a spelling mistake.
Candidates generated for this noise are “he”, “h”, “w”, “hew” and
“haw”. But the correct replacement should have been “how”
which is not included in above list.

A. Our contribution

We introduce Context Dependent BoW method which is
improved over BoW method explained in Langer et al. [3] and
Kothari et al. [2]. We apply BoW method to find out candidate
list for noisy words using less threshold value and then multiple
ranking method is used to rank candidates according to similarity
measures, number of occurrences in given dataset and phonemic
representations matching. Using our approach we are able to
produce short and efficient BoW lists of context dependent
candidates for noisy words in a given query for a given dataset
which can be used later for query normalization (here it means
that generating sentence without spelling errors) from sentiment
analysis or FAQ retrieval systems.

III. PROBLEM FORMULATION

We see input text S as a sequence of tokens S=s;,s,,...,5;,
. Our goal is to find the list of candidates for each s; which best
matches with it and context dependents to the candidate s;, where
j varies from 1 to n and i # j. Text message may have
misspellings, slangs and other distortions, which needs to be
taken care of while performing the match.

In the preprocessing stage, we develop a Domain dictionary
D consisting of all the terms that appear in the corpus Q. We add

http://www.spellchecker.net/spellcheck/

1527

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 09,2025 at 04:39:20 UTC from IEEE Xplore. Restrictions apply.

lemmatized (i.e. Basic forms Exm. “Make” is basic form of
“Making” and “Made”) forms of terms to the dictionary. For
each sentence S; in corpus word tokens are wi, Wy....,w,. Entry w;
and w; is added to bi-gram list where i # j. Also we prepared a
slag dictionary* Qs to match and replace possible slangs. For
slangs t' in Qs exactly matching to noisy word, we include their
full forms in BoW.

For each term t in the dictionary Q and each SMS token s;, we
define a similarity measure a(t, s;) [2, 3] that measures how
closely the term t matches the SMS token s;. Terms t are chosen if
weight function [2, 3] o(t, s;) >y, where y is the threshold value
defined for the problem.

After getting all such candidates ¢, our ranking method is
applied and new ranked BoW is generated. From this ranked
BoW such ¢' are retained if f(c', BoW(I to n)) > x, where x is a
threshold value defined for function f which finds with how
many BoW out of n, ¢' is compatible. Compatibility is counted as
1 for BoW(i) and c' if ¢' occurs with at least one term t" of
BoW(i) and x < n. After this step we get BoW for noisy words,
we term them as CD-BoW (Context Dependent BoW) which
contains fewer candidates but has high probability of having
correct candidate.

IV. SYSTEM IMPLEMENTATION

A. Building G2P model

One of the ranking method applied in CD-BoW algorithm
depends upon the Grapheme to Phoneme (G2P) translation
model. This model is built using Moses [8].

To build the model source language is taken as grapheme
words i.e. words given in CMU dictionary and target language is
taken as phonemes i.e. phonetic representation of words from
CMU dictionary. Total 133,247 English words and their phonetic
representations are used as training corpus. Following the
procedure given in Moses website [8], MosesDecoder-Master
toolkit’, IRSTLM* and GIZA++ are used to build HMM for
language translation. This model then used to predict the
phonetic representation of noisy word at runtime using moses
API, if that words is not available in CMU dictionary.

To reduce runtime of finding phonemic representation of
noisy word we binarized the language model and also applied
tuning to increase the accuracy of the model. Total 13,324 words
are used for tuning the language translation model.

B. Context Dependent Bag Of Word (CD-BoW) generation

As explained in problem formulation and in Langer et al.[3]
and Kothari et al.[2] BoW is generated for each noisy word in

http://onlineslangdictionary.com/

https://github.com/moses-smt/mosesdecoder

4 The IRST Language Modeling Toolkit
http://hlt.fbk.eu/en/irstim

GIZA++ is a statical machine translation toolkit
http://code.google.com/p/giza-pp/

1528

given noisy text. Each list may consist of >100 candidates t from
Q or t' from Qs as threshold is set low for weight function.

Now we apply ranking to each BoW separately. We apply
three rankings to the same list and each of these rankings is
added with weighted function to get final score which defines the
final rankings. First Similarity Measure Ranking (SMR) is
applied where c'(j) of list BoW(i) are ranked according to their
similarity measure i.e weight function o(t, s;). Number of
Occurrences Ranking (NOR) is used next, in which c'(j) are
ranked according to the number of its occurrences in a dataset Q.
Third and final ranking is applied on the BoW(i) is Phonemic
Similarity Ranking(PSR). In this ranking method phonemic
representation of ¢'(j) is found out from CMU dictionary and that
of's; is found out from a built language model (G2P) as explained
in section IV-A.

Algorithm: CD-BoW Generation

Input
For a text S, sequence of tokens are sy, s, ... , Sy.
BoW(i) is generated for each s;
c'(j) is candidate in BoW(i), where j = 1 to [BoW(i)|
Output
CD-BoW(i) for each s;

Start

1. for all BoW(i) giveni=1tondo

2 Rank BoW(i) with SMR. ¢'(j) gets rank r(SMR)(j)

3. Rank BoW(i) with NOR. c'(j) gets rank r(NOR)(j)

4 Rank BoW(i) with PSR. ¢'(j) gets rank r(PSR)(j)

5 Rank Score(c'(j)) = p * r(SMR)(j) + q * r(NOR)(j)
+s * r(PSR)(j)

6. Rank c'(j) by Rank Score(c'(j))

7. End for

8. for all BoW(i) giveni=1ton do
9. count(c'(j)) =0
10. for all BoW(k) givenk=1ton, k!=1do

11. if ¢'(j) and c'(l) are bi-grams then
12. - count(c'(j)) = count(c'(j)) + 1;
13. End for

14. if count (c'(j)) > G *|BoW(i)|) then
15. - ¢'(j) is added to CD-BoW(i)

16. Final Score(c'(j)) =m * Rank Score(c'(j)) + n * count(c'(j))
17. Rank c'(j) by Final_Score(c'(j)) for CD-BoW(i)

18. End for

End

Ranking score for each c'(j) is found out from the formula
given in the CD-BoW Generation Algorithm and they are ranked
according to it. To get the final list of CD-BoW(i) we check for
context dependency of candidates for noisy words within a single
noisy query i.e. if ¢'(j) from BoW(i) is occurring with at least one

2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI)

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 09,2025 at 04:39:20 UTC from IEEE Xplore. Restrictions apply.

c'(l) from BoW(k) where i # k, then as shown in CD-BoW
Generation Algorithm, we include such c'(j) to CD-BoW(i).

V. EXPERIMENTS

To validate effectiveness of the CD-BoW method over
traditional BoW we generate test cases of the noisy texts. Test
cases are generated using corpus “eng.xml” (FIREC) from FIRE
2012° — SMS Based FAQ Retrieval System. It contains 7497
English sentences. Also another corpus is prepared for similar
experiments and for verification and validity of our approach.
Using the “twitter4j” Java api 6000 English tweets are collected
on the topic “barack obama” (BOC). From these 4654 correct
tweets are separated manually and treated as training data and
remaining as a test data to analyze the effectiveness of our
approach.

Test cases are generated for single and double, character
spelling error and character missing cases programmatically from
corpus. Phonemic errors are put manually by test subjects in the
separate test case. Finally test cases having all above errors are
generated. To generate BoW we used Stanford-NLP’ Java api for
lemmatization, named entity recognition and moses API [8] to
generate phonemic representation of noisy words from G2P
model described in section IV-A.

Table 1: %Accuracy for “FIREC”

Test Cases Top1l | Top3 TopS5 Top10 | Top 15
1 character spelling errors | 79.38 ' 92.78 | 95.05 | 97.11 | 97.31

1 character missing errors | 75.67 @ 91.95 95.67 | 96.70 | 96.90

2 characters spelling errors =~ 78.76 | 90.30 | 91.75 = 93.40 | 93.40
2 characters missing errors =~ 7298 85.77 89.89 | 92.78 | 93.19
Phonemic errors 91.34 | 95.87 97.11 97.52 9752
Spelling Errors on normal = 82.88 | 91.34 93.60 | 94.43 | 9443
text (75% Errors)
Spelling Errors on phonemic 79.79 | 88.24 | 91.34 | 93.40 | 93.40
text (75% Errors)

Table 2: %Accuracy for “BOC”
Test Cases Topl Top3 TopS5 Top10 | Top 15
1 character spelling errors | 81.48 ' 95.52 96.34 | 98.46 @ 98.14

1 character missing errors | 79.53 | 9398 ' 97.37 @ 98.14 = 98.96
2 characters spelling errors = 83.67 9437 96.75 | 97.67 | 97.89

2 characters missing errors =~ 78.81 | 88.65 9233 | 95.77 | 96.29
Phonemic errors 94.77 | 97.72 98.04 @ 98.89 @ 99.37

Spelling Errors on normal 86.82 | 9588 95.58 | 96.34 | 97.07
text (75% Errors)
Spelling Errors on phonemic| 84.57 | 93.89 # 94.75 96.10 = 96.86
text (75% Errors)

In CD-BoW algorithm p, q and s values are set to 0.4285,
0.2857 and 0.2857 which maximizes the result probability. Also
G is set to 0.4. In calculation of Final Score m and n are used

http://www.isical.ac.in/~fire/2012/index.html
http://nlp.stanford.edu/index.shtml

2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI)

which set to 0.81 and 0.19 which are also experimentally found
values which maximizes resultant probability.

We calculated probabilities of occurrence of correct
candidate ¢" from CD-BoW(i) at various positions for various
test cases as given in the Table 1 and Table 2 for corresponding
corpus. In Tables, “Top I~ means getting correct candidate at
position 1. “Top 3~ means correct candidate at position 1, 2 or 3
and similarly for other column headings.

From above tables we can observe that results are 2-4%
better for “barack obama” corpus. The reason is that this corpus
is more compact and highly subjective and context dependent as
all the tweets are for only one topic, unlike FIRE-2012 corpus
where QA sentences are with varied topics. Hence, context
dependency part in the CD-BoW algorithm from line 8 to line 18
affects the resultant list of candidates positively and improves the
accuracy. Hence, our approach is applicable more in Web
Sentiment Analysis where one topic is given (For example
“nokia lumia 920" or “syria crisis”’) and users reactions about
that topic are to be studied. Also such system will be useful if it is
deployed for each topic in question-answering system.

Graph 1: CD-BoW Accuracy for 75% Spelling

Errors
100 86.18 81.85 79.79
= 20 mTop1
o 60
§ 40 BmTop3
; 28 Top 5
25% 50% 75%
%Error

Graph 2 : CD - BoW Accuracy for 75% Spelling

Errors
100 2281 9278 gygg
g T30 ETop1
g gg ETop3
b 23 Top 5
25% 50% 75%

% Error

Real time errors are analogous to phonemic errors i.e. Users
tend to write text query with words which are phonetically
similar to the actual words. E.g. “How are you?* is written as
“hw r u ?” or in slang language only “Aru”. Our approach
shows significant accuracy in “Phonemic Errors” test case and is
better than other test cases. It shows that our approach is feasible
with real time SMS queries or comments. But if phonemic errors

1529

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 09,2025 at 04:39:20 UTC from IEEE Xplore. Restrictions apply.

exist with noise in the text query or if noise is present over
phonemic errors then accuracy decreases compared to that of
only phonemic errors as seen in Graph 1 and Graph2 below.

Let us consider the example of noisy sentence, “tha cntry
knwn as land of midn8t sun”. As we can see from the Table 3 that
number of candidates for each word in noisy query is less for
CD-BoW than BoW generation method.

Count of candidates for “midn8t” is tricky. It is less in BoW
than in CD-BoW. As threshold is considerably high in BoW
(which is desired in BoW according to our implementations and
understandings) than CD-BoW, nearest matching words do not
get listed. Among such unlisted words correct word may reside.
In such cases accuracy is compromised. To avoid such cases in
CD-BoW Algorithm, less threshold value is used in BoW routine
and then CD-BoW is applied.

Table 3: Number of candidates for noisy Query

Words tha | cntry knwn | as | land of
BoW 181 167 60 183 | 416 24 5 102
CD-BoW 16 | 13 15 16 16 | 14 11 15

midn8t = sun

We continued our experiment and found out original %
accuracies for noisy dataset of another different 50 sentences
each for BOC and MC (Additional Corpus on topic “Microsoft”
comprises of ~9500 queries) . Then we can see the improvement
due to our query normalization.

Table 4: %Improvement in spelling accuracy
Without Query | With Query

Data Sets Improvement
Normalization | Normalization
BOC 78.64% 91.8% 13.16%
MC 76.74% 92.34% 15.6%

There are limitations to this BoW approach as well as CD-
BoW approach. With this approach spelling errors, use of slag
words and phonemically similar words are rectified, but some
errors such as detecting abbreviation (Exm. “PM” stands for
“Prime Minister” and also for “Prime Meridian”) and
concatenation - splitting errors (Exm. “base ball” should be
written as “baseball”) are not dealt as while modeling BoW
within CD-BoW algorithm as we have only concentrated on
technique to reduce the number of candidates for noisy words in
a given query, though these errors do affect the results in some
considerable amount, as wrong list of candidates will be
generated in these cases and matching will not be correct.

VI. CONCLUSION

In recent times SMS based Question Answering services and
web sentiment analysis are on the rise. But noise can be an
affecting factor in providing correct and efficient services to the
users. In this paper we gave an Context Dependent Bag of Words
(CD-BoW) generation algorithm which generates short and

1530

effective lists of candidates for noisy words which are ranked and
context dependent, which in effect can be used in FAQ retrieval
and Web Sentiment Analysis systems, for query normalization
where response time and accuracy matters.

ACKNOWLEDGMENT

We would like to thank our whole “Web Sentiment Analysis”
Team of NIT Warangal, CSE department and researchers from
Infosys Limited for their consistent guidance and support.

REFERENCES

[1] Kai Wang, Zhaoyan Ming and Tat-Seng Chua. A Syntactic Tree Matching
Approach to Finding Similar Questions in Community-based QA Services.
SIGIR '09 Proceedings of the 32nd international ACM SIGIR conference
on Research and development in information retrieval.

[2] Govind Kothari, Sunit Negi, Tanveer A. Faruquie, V.T. Chakaravarthy and
L.V. Subramaniam. SMS based Interface for FAQ Retrieval. ACL '09:
Proceedings of the Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP: Volume 2.

[3] Akhil Langer, Rohit Banga, Ankush Mittal and L. V. Subramaniam. Variant
Search and Syntactic Tree Similarity Based Approach to Retrieve Matching
Questions for SMS queries. AND '10: Proceedings of the fourth workshop
on Analytics for noisy unstructured text data.

[4] Lawrence R. Rabiner. A Tutorial on Hidden Markov Model and Selected
Applications in Speech Recognition. Proceedings of the IEEE, Feb 1989.

[5] Monojit Choudhury et al. Investigation and Modeling of the Structure of
Texting Language . International Journal of Document Analysis and
Recognition (IIDAR) December 2007, Volume 10.

[6] Paul Taylor. Hidden Markov Models for Grapheme to Phoneme
Conversion. Proc. Interspeech 2005

[7] Deepak P and L Venkata Subramaniam
Automatically. CSI communications, May 2012.

Correcting SMS Text

[8] Moses.(www.statmt.org/moses/)

[91 Rudy Schusteritsch, Shailendra Rao, Kerry Rodden. 2005. Mobile Search
with Text Messages: Designing the User Experience for Google SMS. CHI,
Portland, Oregon.

[10] Sunil Kumar Kopparapu, Akhilesh Srivastava and Arun Pande. 2007. SMS
based Natural Language Interface to Yellow Pages Directory, In
Proceedings of the 4th International conference on mobile technology,
applications, and systems and the 1st International symposium on
Computer human interaction in mobile technology, Singapore.

[11] Eunghyun Byun, Seung-Wook Lee, Young-In Song, Hae-Chang Rim.
2008. Two Phase Model for SMS Text Messages Refinement, Association
for the Advancement of Artificial Intelligence. AAAI Workshop on
Enhanced Messaging

[12] Aiti Aw, Min Zhang, Juan Xiao, and Jian Su. 2006. A phrase-based
statistical model for SMS text normalization, In Proceedings of
COLING/ACL, pages 33—40.

[13] Catherine Kobus, Franois Yvon and Graldine Damnati. 2008. Normalizing
SMS: are two metaphors better than one? In Proceedings of the 22nd
International Conference on Computational Linguistics, pages 441-448
Manchester.

[14] Wayne Xin Zhao, Jing Jiang, Jing He, Yang Song, Palakorn Achanauparp,
Ee-Peng Lim and Xiaoming Li. Topical keyphrase extraction from Twitter.
In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies (ACL-HLT'I 1)
(long paper), pages 379-388, 2011.

[15] Wayne Xin Zhao, Jing Jiang, Jianshu Weng, Jing He, Ee-Peng Lim,
Hongfei Yan and Xiaoming Li. Comparing Twitter and traditional media

2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI)

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 09,2025 at 04:39:20 UTC from IEEE Xplore. Restrictions apply.

[1e]

[17]

[18]
[19]

[20]

(21]

[22]
[23]

[24]

[25]

[26]

[27]

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 09,2025 at 04:39:20 UTC from IEEE Xplore. Restrictions apply.

using topic models. In Proceedings of the 33rd European Conference on
Information Retrieval (ECIR'11) (full paper), pages 338-349, 2011.

Jansen, Bernard, Zhang, Mimi, Sobel, Kate, and Chowdury, Abdur. (2009).
Twitter Power: Tweets as Electronic Word of Mouth. Journal of ASIS&T,
60(9), 1-20.

Zhang, Mimi, Jansen, B. J., & Chowdhury, A. (2011). Business
engagement on Twitter: A path analysis. Electronic Markets, 21(3), 161-
175.

K. Kukich. Techniques for automatically correcting words in text. ACM
computing surveys, 24(4), 1992.

Levenshtein, V 1. Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet Physics Doklady, 10(8), 707-710, 1966.

E. Brill and R. Moore. An improved error model for noisy channel spelling
correction. In Proceedings of the 38th Annual Meeting of the Association
for Computational Linguistics, Hong Kong, 2000.

C. Whitelaw, B. Hutchinson, G. Chung, and G. Ellis. Using the web for
language independent spellchecking and autocorrection. In EMNLP, pages
890-899. ACL, 2009.

Q. Chen, M. Li, and M. Zhou. Improving query spelling correction using
web search results. In EMNLP-CoNLL, pages 181-189. ACL, 2007.

S. Cucerzan and E. Brill. Spelling correction as an iterative process that
exploits the collective knowledge of web users. In EMNLP, 2004.

F. Ahmad and G. Kondrak. Learning a spelling error model from search
query logs. In HLT/EMNLP. The Association for Computational
Linguistics, 2005.

X. Sun, J. Gao, D. Micol, and C. Quirk. Learning phrase-based spelling
error models from clickthrough data. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, ACL *10, pages
266-274, Stroudsburg, PA, USA, 2010.

J. Gao, X. Li, D. Micol, C. Quirk, and X. Sun. A large scale ranker-based
system for search query spelling correction. In C.-R. Huang and D.
Jurafsky, editors, COLING, pages 358-366. 2010

Jinxi Xu and W. Bruce Croft. Query expansion using local and global
document analysis. In Proceedings of the 19th annual international ACM

2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI)

[28]

[29]

[30]

(311

[32]

[33]

[34]

[33]

[36]

SIGIR conference on Research and development in information retrieval,
SIGIR ’96. ACM, New York, NY.

Yonggang Qiu and Hans-Peter Frei. Concept based query expansion. In
Proceedings of the 16th annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR *93. ACM, New
York, NY, USA, 160-169.

Mandar Mitra, Amit Singhal, and Chris Buckley. Improving automatic
query expansion. In Proceedings of the 21st annual international ACM
SIGIR conference on Research and development in information retrieval,
SIGIR "98.

B. Tan and F. Peng. Unsupervised query segmentation using generative
language models and wikipedia. In Proceeding of the 17th international
conference on World Wide Web, WWW ’08, pages 347-356. 2008.

Y. Li, B.-J. P. Hsu, C. Zhai, and K. Wang. Unsupervised query
segmentation using clickthrough for information retrieval. In Proceedings
of the 34"™ international ACM SIGIR conference on Research and
development in Information Retrieval, SIGIR *11, pages 285-294. 2011.

Xuanhui Wang, ChengXiang Zhai. Mining Term Association Patterns from
Search Logs for Effective Query Reformulation. In CIKM’08. 479-488.

J. Guo, G. Xu, H. Li, and X. Cheng. A unified and discriminative model for
query refinement. In Proceedings of the 31st annual international ACM
SIGIR, SIGIR ’08, pages 379-386. 2008.

Stephan Vogel, Hermann Ney, and Christoph Tillmann. HMM-based word
alignment in statistical translation. In Proceedings of the 16th conference
on Computational linguistics, Volume 2 (COLING ’96). Stroudsburg, PA,
USA, 836-841.

B.H. Juang. Hidden Markov models for
Technometrics, Vol. 33, No. 3, Aug., 1991.

Yanen Li, Huizhong Duan, and ChengXiang Zhai. 2012. A generalized
hidden Markov model with discriminative training for query spelling
correction. In Proceedings of the 35th international ACM SIGIR
conference on Research and development in information retrieval (SIGIR
'12). ACM, New York, NY, USA, 611-620.

speech recognition. In

1531

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

