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Abstract — Query spelling correction is a crucial component in 
modern text mining systems such as Question-answering systems 
and Sentiment Analysis systems where noise can affect the query 
matching score. In many existing query matching systems Bag of 
Words (BoW) generation method is used to generate candidates for 
noisy words. But in these systems candidate generation do not 
depend upon context of a query sentence. BoW count for each noisy 
word may vary and selecting correct candidates from such list is 
not easy and may result in wrong selection. With our context 
dependent BoW generation method very few but highly probable 
candidates are generated which are easy for look up and process of 
query spelling correction would be easier and efficient. 

Keywords — text mining, sentiment analysis, noise removal, 
spelling correction, faq retrieval, question answering, information 
retrieval, nlp. 

I.  INTRODUCTION 
Numbers of Internet and mobile users are rapidly increasing. 

Around 500 million people are accessing these services regularly. 
People can communicate anytime and anywhere. Text messaging 
is the prime mode of communication. It is done through 
traditional SMS systems or through social media services like 
Twitter and Facebook. 

There is a limit for how many characters you can send during 
each text communication. It is 160 for SMS services and 140 for 
tweets. For other social media services like Facebook and 
Google+ there are no such limit, but users tend to write short 
messages to convey the information. To overcome this limitation 
on message length users have started using slangs and short 
forms for real words and sentences. These slangs can be well 
defined or user generated. 

Users generally leaves some characters (consonants most of 
the time) from words, but phonemically they can be guessed. 
Words or phrases such as “omg” (oh my god), “2moro” 
(tomorrow) and “thnx” (thanks) which may not be found in 
standard English directory are widely used by web users. Also 
there are tendencies of spelling errors due to small keypad and 
small touch screens. Today communication has become 
considerably secure over communication channels but in few 
cases noise can alter the text message.   

All the issues stated above affect the FAQ Retrieval systems 
and Web Sentiment Analysis systems in a great way. In FAQ 
Retrieval (also known as Question - Answering system), question 
sent by user is matched to existing questions from the dataset and 
nearest matching question is found out and answers to that 
question is returned to the user. If there are text errors, then 
getting the nearest match could be wrong if we use conventional 
BoW method. Also, in web sentiment analysis, user’s sentiments 
about particular product or person or business are analyzed from 
their statuses and comments. For analysis each word is 
categorized in positive, negative or neutral. But if errors exist 
then many words do get categorized in neutral as they are not 
dictionary words. Hence, sentiment analysis score changes and it 
may produce wrong analysis. 

In this paper we present Context Dependent Bag of words  
method which generates efficient list of candidates for each noisy 
words which are context dependent to other candidate words and 
also they are ranked according to their possibility of getting 
selected as a correct word. These lists are then forwarded to text 
matching systems to get correct form of the noisy text (In case of 
Web Sentiment Analysis) or question matching system where 
candidate list of questions is generated to get nearest matching 
question. Our work contributes in text mining systems where 
query preprocessing is required to remove spelling errors and 
incompatible formatting so that mining and eventually text 
analysis system works to their potential. In this paper we not 
focusing on query normalization i.e. generating sentence with 
few or no spelling errors but only part of this procedure, to 
generate list of ranked candidates efficiently and with high recall. 

      The rest of the paper is organized as follows. Section II 
describes the relevant prior work in the area of noise removal and 
spelling error correction and also about evolution from traditional 
systems to modern spelling correction systems and also about our 
specific contributions. In Section III we give the problem 
formulation. Section IV describes System implementation with 
G2P (Grapheme to Phoneme Conversion) model and the Context 
Dependent BoW Algorithm which ranks the best matching 
candidates for each noisy word for a given text query. Section V 
provides details about our experiments,   results and their 
analysis. Finally we conclude in Section VI. 
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II. PRIOR WORK 
There has been considerable work done in area of spelling 

correction [18]. But there are some types of spelling errors such 
as splitting-concatenation errors and replacing abbreviations with 
its correct form (from multiple possibilities like “PM” can be 
corrected as “Prime Minister” or simply just as “pm” for its 
“Prime Meridian” form) which never got that much attention 
and not considerable research work has been done in these areas. 
Traditional spellers focused on dealing with non-word errors 
caused by misspelling a known word as an invalid word form. 
Distance measures like LCS Distance and Levenshtein distance 
[19] are used to find similarity between noisy word and correct 
candidate words. 

Brill and Moore in their work explained that a better 
statistical error model is important for improving a speller’s 
accuracy [20]. Error model and n-gram language model are 
identified as two critical components as a Statistical generative 
models. But building such an error model requires a large set of 
word correction pairs, which is expensive to obtain as they are 
built manually. 

This problem was modeled to automatically discover the 
misspelled or corrected word pairs over the web [21]. With the 
evolution of the Web, the research on spelling correction has 
received much more attention. Many research challenges are 
raised, which are non-existent in traditional settings of spelling 
correction. There are many more types of spelling errors in 
queries, such as misspelling, concatenation - splitting of query 
words, and misuse of legitimate yet inappropriate words. 
Research in this area requires large web corpus and list of queries 
[22, 23, 24], training phrase-based error model from click 
through data [25] and developing additional features for feature 
dependent spellers [26]. However, one important challenge is 
under addressed in these approaches, i.e., correcting splitting and 
concatenation errors. 

Query alteration or refinement is a broader topic which 
naturally depends upon query spelling correction. Besides 
correcting the misspelled query, query alteration or refinement 
also need to modify the ineffective query so that it could be more 
suitable for the query matching or searching or sentiment analysis 
and most importantly refinement should be done with context 
dependency. For this purpose, many research topics have been 
studied. Query expansion expands the query with additional 
terms to enrich the query formulation [27, 28, 29]. Query 
segmentation divides a query into semantically meaningful sub-
units [30, 31].  There is research attempt [33] to use a unified 
model to do a broad set of query refinements such as correction, 
segmentation and even stemming. It has very limited ability for 
query correction. For example, it only allows one letter difference 
in deletion, insertion, substitution errors. Other query 
reformulation methods intend to replace the inappropriate query 
terms with effective keywords to bridge the vocabulary gaps[32]. 

Query spelling correction task can be approached with NLP 
and is similar to tasks like such as speech recognition and 

machine translation. HMM has been found very useful in these 
tasks [34, 35]. A significant work has been done using 
generalized HMM model for query spelling correction [36], and 
all major spelling errors are approached with unified system of 
spelling correction. gHMM model is very effective for the task of 
query spelling correction by discrete training and discriminative 
approach. Splitting-concatenation errors are removed 
significantly but there is no mention of these errors on in-word 
spelling errors as explained in introduction. Else it is the best 
approach to normalize noisy query with multiple errors. 

BoW method has been explained in detail by Langer et al.[3] 
and Kothari et al.[2]. Both these papers deal with SMS based 
FAQ retrieval system and explain about candidate generation 
methods for noisy query. BoW generated for each noisy word 
varies in length as it depends upon threshold value. For candidate 
generation domain dictionary and synonym dictionary is build 
from the given corpus and fuzzy matching is used to match 
candidates with given noisy word using traditional Edit-Distance 
and LCS distance methods.  

There are many spell-checkers available in the market or 
online. SpellChecker1  is one of free online spelling detection and 
correction tool available. Like other spell-checkers in this tool 
also context is not checked while generating candidates. A simple 
example to explain this deficiency is as follows. If we type “hw 
are you ?”, it correctly detects that “hw” is a spelling mistake. 
Candidates generated for this noise are “he”, “h”, “w”, “hew” and 
“haw”. But the correct replacement should have been “how” 
which is not included in above list. 

A. Our contribution 
We introduce Context Dependent BoW method which is 

improved over BoW method explained in Langer et al. [3] and 
Kothari et al. [2]. We apply BoW method to find out candidate 
list for noisy words using less threshold value and then multiple 
ranking method is used to rank candidates according to similarity 
measures, number of occurrences in given dataset and phonemic 
representations matching. Using our approach we are able to 
produce short and efficient BoW lists of context dependent 
candidates for noisy words in a given query for a given dataset 
which can be used later for query normalization (here it means 
that generating sentence without spelling errors) from  sentiment 
analysis or FAQ retrieval systems. 

III. PROBLEM FORMULATION 
We see input text S as a sequence of tokens S = s1 , s2 , . . . , sn 

. Our goal is to find the list of candidates for each si which best 
matches with it and context dependents to the candidate sj, where 
j varies from 1 to n and i  j. Text message may have 
misspellings, slangs and other distortions, which needs to be 
taken care of while performing the match. 

In the preprocessing stage, we develop a Domain dictionary 
D consisting of all the terms that appear in the corpus Q. We add 

1  http://www.spellchecker.net/spellcheck/ 
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lemmatized (i.e. Basic forms Exm. “Make” is basic form of 
“Making” and “Made”) forms of terms to the dictionary. For 
each sentence Si in corpus word tokens are w1, w2....,wn. Entry wi 
and wj is added to bi-gram list where i  j. Also we prepared a 
slag dictionary2 Qs to match and replace possible slangs. For 
slangs t' in Qs exactly matching to noisy word, we include their 
full forms in BoW. 

For each term t in the dictionary Q and each SMS token si, we 
define a similarity measure (t, si) [2, 3] that measures how 
closely the term t matches the SMS token si. Terms t are chosen if 
weight function [2, 3] (t, si) > y, where y is the threshold value 
defined for the problem. 

After getting all such candidates c, our ranking method is 
applied and new ranked BoW is generated. From this ranked 
BoW such c' are retained if f(c', BoW(1 to n)) > x, where x is a 
threshold value defined for function f which finds with how  
many BoW out of n, c' is compatible. Compatibility is counted as 
1 for BoW(i) and c' if c' occurs with at least one term t'' of  
BoW(i) and x < n. After this step we get BoW for noisy words, 
we term them as CD-BoW (Context Dependent BoW) which 
contains fewer candidates but has high probability of having 
correct candidate. 

IV. SYSTEM  IMPLEMENTATION 

A. Building G2P model 
One of the ranking method applied in CD-BoW algorithm 

depends upon the Grapheme to Phoneme (G2P) translation 
model. This model is built using Moses [8]. 

To build the model source language is taken as grapheme 
words i.e. words given in CMU dictionary and target language is 
taken as phonemes i.e. phonetic representation of words from 
CMU dictionary. Total 133,247 English words and their phonetic 
representations are used as training corpus. Following the 
procedure given in Moses website [8], MosesDecoder-Master 
toolkit3, IRSTLM4 and GIZA++5 are used to build HMM for 
language translation. This model then used to predict the 
phonetic representation of noisy word at runtime using moses 
API, if that words is not available in CMU dictionary. 

To reduce runtime of finding phonemic representation of 
noisy word we binarized the language model and also applied 
tuning to increase the accuracy of the model. Total 13,324 words 
are used for tuning the language translation model. 

B. Context Dependent Bag Of Word (CD-BoW) generation 
As explained in problem formulation and in Langer et al.[3] 

and Kothari et al.[2] BoW is generated for each noisy word in 

2  http://onlineslangdictionary.com/ 
3  https://github.com/moses-smt/mosesdecoder 
4  The IRST Language Modeling Toolkit   
    http://hlt.fbk.eu/en/irstlm 
5  GIZA++ is a statical machine translation toolkit   
    http://code.google.com/p/giza-pp/ 

given noisy text. Each list may consist of >100 candidates t from 
Q or t' from Qs as threshold is set low for weight function. 

Now we apply ranking to each BoW separately. We apply 
three rankings to the same list and each of these rankings is 
added with weighted function to get final score which defines the 
final rankings. First Similarity Measure Ranking (SMR) is 
applied where c'(j) of list BoW(i) are ranked according to their 
similarity measure i.e weight function (t, si). Number of 
Occurrences Ranking (NOR) is used next, in which c'(j) are 
ranked according to the number of its occurrences in a dataset Q. 
Third and final ranking is applied on the BoW(i) is Phonemic 
Similarity Ranking(PSR). In this ranking method phonemic 
representation of c'(j)  is found out from CMU dictionary and that 
of si is found out from a built language model (G2P) as explained 
in section IV-A. 

   Algorithm: CD-BoW Generation 

    Input 
     For a text S, sequence of tokens are s1, s2, ... , sn. 
     BoW(i) is generated for each si 
     c'(j) is candidate in BoW(i), where j = 1 to |BoW(i)| 
    Output 
    CD-BoW(i) for each si 
 
    Start 
    1.   for all BoW(i)  given i = 1 to n do 
    2.     Rank BoW(i) with SMR. c'(j) gets rank r(SMR)(j) 
    3.         Rank BoW(i) with NOR. c'(j) gets rank r(NOR)(j) 
    4.         Rank BoW(i) with PSR. c'(j) gets rank r(PSR)(j) 
    5.        Rank_Score(c'(j)) = p * r(SMR)(j) + q * r(NOR)(j) 
                                                + s * r(PSR)(j) 
    6.       Rank c'(j) by Rank_Score(c'(j)) 
    7.   End for 
 
    8.   for all BoW(i)  given i = 1 to n do 
    9.     count(c'(j)) = 0 
    10.    for all BoW(k)  given k = 1 to n, k != l do 
    11.          if c'(j) and c'(l) are bi-grams then 
    12.              - count(c'(j)) = count(c'(j)) + 1; 
    13.       End for 
 
    14.       if count (c'(j)) > G *|BoW(i)|) then 
    15.           - c'(j) is added to CD-BoW(i) 
 
    16.      Final_Score(c'(j)) = m * Rank_Score(c'(j)) + n * count(c'(j)) 
    17.      Rank c'(j) by Final_Score(c'(j)) for CD-BoW(i) 
    18.  End for 
    End 

 

Ranking score for each c'(j) is found out from the formula 
given in the CD-BoW Generation Algorithm and they are ranked 
according to it. To get the final list of CD-BoW(i) we check for 
context dependency of candidates for noisy words within a single 
noisy query i.e. if c'(j) from BoW(i) is occurring with at least one 
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c'(l) from BoW(k) where i  k, then as shown in CD-BoW 
Generation Algorithm, we include such c'(j) to CD-BoW(i). 

V. EXPERIMENTS 
       To validate effectiveness of the CD-BoW method over 
traditional BoW we generate test cases of the noisy texts. Test 
cases are generated using corpus “eng.xml” (FIREC) from FIRE 
20126 – SMS Based FAQ Retrieval System. It contains 7497 
English sentences. Also another corpus is prepared for similar 
experiments and for verification and validity of our approach. 
Using the “twitter4j” Java api 6000 English tweets are collected 
on the topic “barack obama” (BOC). From these 4654 correct 
tweets are separated manually and treated as training data and 
remaining as a test data to analyze the effectiveness of our 
approach. 

Test cases are generated for single and double, character 
spelling error and character missing cases programmatically from 
corpus. Phonemic errors are put manually by test subjects in the 
separate test case. Finally test cases having all above errors are 
generated. To generate BoW we used Stanford-NLP7 Java api for 
lemmatization, named entity recognition and moses API [8] to 
generate phonemic representation of noisy words from G2P 
model described in section IV-A. 

Table 1:   %Accuracy for “FIREC” 
Test Cases Top 1 Top 3 Top 5 Top 10 Top 15 

1 character spelling errors 79.38 92.78 95.05 97.11 97.31 
1 character missing errors 75.67 91.95 95.67 96.70 96.90 
2 characters spelling errors 78.76 90.30 91.75 93.40 93.40 
2 characters missing errors 72.98 85.77 89.89 92.78 93.19 

Phonemic errors 91.34 95.87 97.11 97.52 97.52 
Spelling Errors on normal 

text (75% Errors) 
82.88 91.34 93.60 94.43 94.43 

Spelling  Errors on phonemic 
text (75% Errors) 

79.79 88.24 91.34 93.40 93.40 

 

Table 2:   %Accuracy for “BOC” 
Test Cases Top 1 Top 3 Top 5 Top 10 Top 15 

1 character spelling errors 81.48 95.52 96.34 98.46 98.14 
1 character missing errors 79.53 93.98 97.37 98.14 98.96 
2 characters spelling errors 83.67 94.37 96.75 97.67 97.89 
2 characters missing errors 78.81 88.65 92.33 95.77 96.29 

Phonemic errors 94.77 97.72 98.04 98.89 99.37 
Spelling Errors on normal 

text (75% Errors) 
86.82 95.88 95.58 96.34 97.07 

Spelling  Errors on phonemic 
text (75% Errors) 

84.57 93.89 94.75 96.10 96.86 

  

       In CD-BoW algorithm p, q and s values are set to 0.4285, 
0.2857 and 0.2857 which maximizes the result probability. Also 
G is set to 0.4. In calculation of Final_Score m and n are used 

6  http://www.isical.ac.in/~fire/2012/index.html 
7  http://nlp.stanford.edu/index.shtml 

which set to 0.81 and 0.19 which are also experimentally found 
values which maximizes resultant probability. 

       We calculated probabilities of occurrence of correct 
candidate c'' from CD-BoW(i)  at various positions for various 
test cases as given in the Table 1 and Table 2 for corresponding 
corpus. In Tables, “Top 1” means getting correct candidate at 
position 1. “Top 3” means correct candidate at position 1, 2 or 3 
and similarly for other column headings.    

       From above tables we can observe that results are 2-4% 
better for “barack obama” corpus. The reason is that this corpus 
is more compact and highly subjective and context dependent as 
all the tweets are for only one topic, unlike FIRE-2012 corpus 
where QA sentences are with varied topics. Hence, context 
dependency part in the CD-BoW algorithm from line 8 to line 18 
affects the resultant list of candidates positively and improves the 
accuracy. Hence, our approach is applicable more in Web 
Sentiment Analysis where one topic is given (For example 
“nokia lumia 920” or “syria crisis”) and users reactions about 
that topic are to be studied. Also such system will be useful if it is 
deployed for each topic in question-answering system.  

 

  

 

 

 

 

 

 

       Real time errors are analogous to phonemic errors i.e. Users 
tend to write text query with words which are phonetically 
similar to the actual words. E.g. “How are you?“ is written as 
“hw r u ?” or in slang language only  “hru”. Our approach 
shows significant accuracy in “Phonemic Errors” test case and is 
better than other test cases. It shows that our approach is feasible 
with real time SMS queries or comments. But if phonemic errors 
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exist with noise in the text query or if noise is present over 
phonemic errors then accuracy decreases compared to that of 
only phonemic errors as seen in Graph 1 and Graph2 below.   

       Let us consider the example of noisy sentence, “tha cntry 
knwn as land of midn8t sun”. As we can see from the Table 3 that 
number of candidates for each word in noisy query is less for 
CD-BoW than BoW generation method. 

Count of candidates for “midn8t” is tricky. It is less in BoW 
than in CD-BoW. As threshold is considerably high in BoW 
(which is desired in BoW according to our implementations and 
understandings) than CD-BoW, nearest matching words do not 
get listed. Among such unlisted words correct word may reside. 
In such cases accuracy is compromised. To avoid such cases in 
CD-BoW Algorithm, less threshold value is used in BoW routine 
and then CD-BoW is applied. 

Table 3: Number of candidates for noisy Query 
Words tha cntry knwn as land of midn8t sun 
BoW 181 167 60 183 416 24 5 102 

CD-BoW 16 13 15 16 16 14 11 15 
   

       We continued our experiment and found out original % 
accuracies for noisy dataset of another different 50 sentences 
each for BOC and MC (Additional Corpus on topic “Microsoft” 
comprises of ~9500 queries) . Then we can see the improvement 
due to our query normalization. 

Table 4: %Improvement in spelling accuracy 

Data Sets 
Without Query 

Normalization 

With Query 

Normalization 
Improvement

BOC 78.64% 91.8% 13.16% 

MC 76.74% 92.34% 15.6% 
  

       There are limitations to this BoW approach as well as CD-
BoW approach. With this approach spelling errors, use of slag 
words and phonemically similar words are rectified, but some 
errors such as detecting abbreviation (Exm. “PM” stands for 
“Prime Minister” and also for “Prime Meridian”) and 
concatenation - splitting errors (Exm. “base ball” should be 
written as “baseball”) are not dealt as while modeling BoW 
within CD-BoW algorithm as we have only concentrated on 
technique to reduce the number of candidates for noisy words in 
a given query, though these errors do affect the results in some 
considerable amount, as wrong list of candidates will be 
generated in these cases and matching will not be correct. 

VI. CONCLUSION 
  In recent times SMS based Question Answering services and 

web sentiment analysis are on the rise.  But noise can be an 
affecting factor in providing correct and efficient services to the 
users. In this paper we gave an Context Dependent Bag of Words 
(CD-BoW) generation algorithm which generates short and 

effective lists of candidates for noisy words which are ranked and 
context dependent, which in effect can be used in FAQ retrieval 
and Web Sentiment Analysis systems, for query normalization 
where response time and accuracy matters. 
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