
ANALYSIS OF BLOCK MATCHING MOTION ESTIMATION ALGORITHMS

P. Muralidhar C.B.Rama Rao

pmurali@nitw.ac.in, cbrr@nitw.ac.in
Departments of Electronics and Communication Engineering

National Institute of Technology, Warangal

Abstract— Motion estimation is one of the most important

tasks in the current standards of video compression. In this

paper seven different block matching motion estimation

algorithms are analysed for fast motion estimation in video

coding. The simulation results of the algorithms are compared

based on PSNR, average time taken per frame, total number of

search points per macro block and time taken per macro block.

Index Terms— Block matching, SAD, motion estimation,

H.264/AVC

I. INTRODUCTION

Video compression [1] is a technology that can efficiently

reduce the bandwidth required to transmit video signals.

Most video compression is lossy compression; in the other

words it needs to retain original video quality under a few of

constraints, such as, storage constraints, encoding time,

hardware and software computation, and power consumption.

Video compression takes advantage of data redundancy

between successive video images to reduce the storage

requirement by applying computational resources. In order

to design a video compression system, it always encounters

with trade off between video qualities, speed, and storage

sizes.

 H.264/MPEG-4 AVC [2] [3] inherited the characteristic of

the block-based matching video coding standards and further

presented lots of new features that can efficiently improve

coding performance. For video coding systems, motion

estimation (ME) can remove most of temporal redundancy,

so a high compression ratio can be achieved. Among various

ME algorithms, a full-search block matching algorithm

(FSBMA) is usually adopted because of its high PSNR.

Although FSBMA provides the best quality among various

ME algorithms, it consumes the largest computation power.

For real time systems, we employ fast block matching

motion estimation algorithms, as they have reduced

computation. For these fast block matching algorithms, we

try to attain PSNR closer to Full Search. The block matching

algorithms that have been implemented are Full Search,

Three Step Search (TSS), New Three Step Search

(NTSS), Simple and Efficient TSS (SES), Four Step

Search (4SS), Diamond Search (DS) and proposed

algorithm on C. then a comparison is made among different

algorithms.

In this paper we studied and analysed the existing motion

estimation algorithms for fast block matching motion

estimation in H.264 AVC.

Section II explains different block matching algorithm in

general. In Section III we propose and describe our

algorithm in detail. In Section IV we compare different

algorithms for the Foreman sequence based on PSNR,

number of search points and the time taken along with

simulation results followed by summary and references.

Fig. 1. Macro block of 16 pixels and a search parameter of 7

 II. BLOCK MATCHING ALGORITHMS

Block matching can only be implemented for the frame

having a single object moving within that frame to form

corresponding objects in the subsequent frame. To

implement block matching current frame is to divided into a

matrix of ‘macro blocks’ that are then compared with

corresponding block in the previous frame to create a vector

that stipulates the movement of a macro block from one

location to another in the previous frame. These motion

vectors along with previous frame data are used to

reconstruct the frame at the decoder. The search area is

defined around a macro block for a search parameter of p

(which is usually taken to be 7 pixels on all four sides of the

corresponding macro block in the previous frame but can

vary as per the movement in the frames) shown in Fig. 1.

The larger the motions, the larger are search parameter p.

For each MB in the current frame (current MB), one

reference block that is the most similar to current MB is

sought in the searching range of size [-P, P] in the reference

frame. There are many cost function to compare candidate

blocks like Mean Square Error (MSE), Mean Absolute

Difference (MAD), Sum of Absolute Difference (SAD).

SAD is defined as

 () ∑ ∑ | () ()|

 1

Where a (i, j) is the pixel data in the current block of a

size N x N, () is the pixel data within the search

area of previous frame and (x, y) represents the candidate

displacement vector. (x ,y) ranges from –p to p. After all

searching candidates are examined, the candidate block that

has the smallest SAD is selected as the motion vector of the

current MB.

Peak-Signal-to-Noise-Ratio (PSNR) characterizes the

motion compensated image that is created by using motion

vectors and macro blocks from the reference frame.

()

 2

Search windows P=7

 P=7 Current

block

IEEE - 31661

4th ICCCNT 2013
July 4-6, 2013, Tiruchengode, India Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 08,2025 at 10:22:04 UTC from IEEE Xplore. Restrictions apply.

A. Exhaustive Search (ES)

This algorithm also called Full search, calculates cost

function at each possible location in the search window. ES

is the most computationally expensive block matching

algorithm of all. It finds the best possible match and gives

the highest PSNR amongst any block matching algorithm.

The obvious disadvantage to ES is that the larger the search

window gets the more computations it requires.

B. Three Step Search (TSS)

It starts with the search location at center and sets the ‘step

size’ S=4, for a usual search parameter value of 7. It then

searches at eight locations +/-S pixels around location (0, 0).

One point with the lowest cost is selected as new center and

search is performed around this point with S=S/2 and repeats

similar search for two more iterations until S=1. At this point

the location with the least cost function is found. TSS

procedure is shown in fig. 2. It gives a flat reduction in

computation by a factor of 9. It has the disadvantage of

getting stuck in local minima.

C. New Three Step Search (NTSS)

NTSS [4] is a center biased searching scheme and has

provisions for half way stop to reduce computational cost.

NTSS process is illustrated graphically in Fig. 3. In the first

step 16 points are checked in addition to the search origin. 8

locations are a distance of S = 4 away and the other 8 are at

S = 1 away from the search origin. If the lowest cost is at

the origin then the search is stopped right here and the

motion vector is set as (0, 0). If the lowest weight is at any

one of the 8 locations at S = 1, then the origin of the search

is changed to that point and check for weights adjacent to it.

Depending on which point it is we might end up checking 5

or 3 points.

If the minimum cost from the first step is found for S=4

location then normal TSS is followed. Hence in worst case

this has to check 33 points and 17 points is the minimum

point checked for each macro block.

Fig. 2. Three step search Fig. 3. New three step search

D. Simple and Efficient Search (SES)

SES [5] exploits the assumption of unimodal error surface.

The main idea behind the algorithm is that for a unimodal

surface there cannot be two minimums in opposite directions

and hence the 8 point fixed pattern search of TSS can be

changed to incorporate this and save on computations.

The algorithm still has three steps, each step has further two

phases. The search area is divided into four quadrants and

the algorithm checks three locations A, B, C as shown in Fig.

4. A is at the origin and B and C are S = 4 locations away

from A in orthogonal directions. Depending on certain

weight distribution amongst the three, the second phase

selects few additional points Fig. 4. The rules for

determining a search quadrant for seconds phase are as:

If SAD (A) ≥ SAD (B) and SAD (A) ≥ SAD (C), select (b);

If SAD (A) ≥ SAD (B) and SAD (A) ≤ SAD (C), select (c);

If SAD (A) < SAD (B) and SAD (A) < SAD (C), select (d);

If SAD (A) < SAD (B) and SAD (A) ≥ SAD (C), select (e);

Fig . 4. SES

Although it saves a lot of computational time, but the error

surface is not strictly unimodular and hence gives poor

PSNR value.

E. Four Step Search (4SS)
FSS [4] employs center biased searching and has a halfway

stop provision. 4SS sets a fixed pattern size of S=2 for the

first step. Thus it looks at 9 locations in a 5x5 window. If the

least weight is found at the center of search window the

search jumps to fourth step. If the least weight is at one of

the eight locations except the center, then we make it the

search origin and move to the second step. Depending on

where the least weight location was, we might end up

checking weights at 3 or 5 locations. The patterns are shown

in Fig. 5. Once again if the least weight location is at the

center of the 5x5 search window we jump to fourth step or

else we move on to third step. The third is exactly the same

as the second step. In the fourth step the window size is

dropped to 3x3, i.e. S = 1. The location with the least weight

is the best matching macro block and the motion vector

is set to point of that location. This search algorithm has

the best case of 17 checking points and worst case of 27

checking points.

F. Diamond Search (DS)

DS [7] uses two different types of fixed patterns, one is

Large Diamond Search Pattern (LDSP) and the other is

Small Diamond Search Pattern (SDSP). DS procedure are

illustrated in Fig. 6. Just like in FSS, the first step uses LDSP

and if the least weight is at the center location we jump to

fourth step. The consequent steps, except the last step, are

also similar and use LDSP, but the number of points where

cost function is checked are either 3 or 5 and are

illustrated in second and third steps of procedure. The

last step uses SDSP around the new search origin and the

location with the least weight is the best match.

DS has no limit on the number of steps that the algorithm

can take but the search should remain inside the defines

search range. The end result should see a PSNR close to that

of ES while computational expense should be significantly

less.

IEEE - 31661

4th ICCCNT 2013
July 4-6, 2013, Tiruchengode, India Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 08,2025 at 10:22:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Four Step search Fig. 6. Diamond search

III. Prediction Based Early Termination

DS(PBETDS)

This algorithm makes use of the fact that the general motion

in a frame is usually coherent, i.e. if the macro blocks around

the current macro block moved in a particular direction then

there is a high probability that the current macro block will

also have a similar motion vector. There are many prediction

strategies of which we use the mean of blocks on left and

above. In the fig. 7. for the current macro block E the

predicted motion vector is taken as the mean of the motion

vectors of macro blocks A and B.

Fig.7 . Prediction vector of macro block from motion vectors of block A and

block B

MVpred(E)= Mean(MVA , MVB) 3

Length of prediction is defined as

Lpred=λx√ 4

Where λ is defined as weight for optimization of Lpred.

Considering the direction of prediction, nine modes are

defined as shown in fig. 8.

Fig. 8. Different modes of prediction (1) mode 1 (2) Mode 2 (3) Mode 3 (4)

Mode 4 (5) Mode 5 (6) Mode 6 (7) Mode 7 (8) Mode 8 (9) Mode 0
*CP-Center Point & PMD-Predicted Motion Direction

Different modes are selected based on following equations.

If Xpred=0 and Ypred=0; select mode 0; 5
If |Xpred|<Ypred/4; select mode 1; 6
If Xpred /4<Ypred<4xXpred; select mode 2; 7
If |Ypred|<Xpred/4; select mode 3; 8
If -4xXpred <Ypred<-Xpred/4; select mode 4; 9

If |Xpred|<-Ypred/4; select mode 5; 10

If 4xXpred <Ypred<Xpred/4; select mode 6; 11

If |Ypred|<-Xpred/4; select mode 7; 12

If -Xpred /4<Ypred<-4xXpred; select mode 8; 13

For mode 0 shown in Fig. 8.(9) simple rood pattern is

searched on 5 search locations.

For mode 1,3,5,7 shown in Fig. 8.(1), Fig. 8.(3), Fig. 8.(5)

and Fig. 8.(7) respectively rood pattern is searched, in

addition points are searched in the direction of prediction,

where starting from the end of the rood, we search 2 more

points than the prediction length.

Similarly for mode For mode 2,4,6,8 shown in Fig. 8.(2), Fig.

8.(4), Fig. 8.(6) and Fig. 8.(8) respectively cross pattern is

searched, in addition points are searched in the direction of

prediction, where starting from the end of the cross, we

search 2 more points than the prediction length.

Minimum distortion block (MDB) among these search

points is selected as center for the large diamond search

pattern (LDSP). Now diamond search with the LDSP is

performed repeatedly until MDB comes at the center of

LDSP.

 In last step 9 point search is performe where 9 points are

searched around the MBD resulted from diamond search.

The MBD among these 9 candidate blocks gives the final

motion vector.

 Early Elimination based SAD

Instead of normal SAD calculation we use early

elimination SAD which checks if the SAD of the

present candidate block has exceeded the previously

calculated SADmin, when the number of pixels accessed

are ½ , ¾ and 7/8 of the total number of pixel in the

macro block. If the SAD comes out to be greater than

SADmin then the SAD calculation is stopped midway.

This prevents a considerable amount of time as there is

good probability that the present SAD would exceed

SADmin in the other half of the SAD calculation.

IV. SIMULATION RESULTS

In our simulation experiments, the block size is fixed at

16x16. To make a consistent comparison, block matching is

conducted within a15x15 search window (i.e., 7 pels

displacement in horizontal and vertical directions).

Elimination based Sum of absolute distance rather than

normal SAD is used to eliminate impossible candidates. The

algorithms were implemented for Foreman sequence.

During the implementation phase all of the above 7

algorithm have been implemented on C (Visual Studio

Platform) with the use of OpenCV functions. The

implementation helps us to get more clear picture of the

hardware aspect which will be a matter of consideration at

the time of architecture designing.

As is shown by Fig. 10., ES, TSS, NTSS, SES, 4SS, DS

and new algorithm have been plotted against the frame

number (frame no. is the distance of the frame under

consideration from the reference frame used for

reconstruction).

It was found that NTSS and SES perform badly whereas

our proposed algorithm gave PSNR close to the ES and

better than DS as shown in TABLE I. While the ES takes on

an average around 184 searches per MB whereas our

proposed algorithm takes 30 searches per MB which is little

greater than DS which is 28 searches per MB. However due

IEEE - 31661

4th ICCCNT 2013
July 4-6, 2013, Tiruchengode, India Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 08,2025 at 10:22:04 UTC from IEEE Xplore. Restrictions apply.

to better PSNR than DS thus our algorithm proves to be

better than DS.

 Fig. 10. PSNR vs Current Frame no. for foreman sequence

3SS has a higher probability of getting trapped in local

minima whereas the prediction technique used in our

proposed methodology gives the better approach local

minima. The time taken by our algorithm is also lesser than

ES and DS even if the search points are larger than DS as in

TABLE I. This is because we have used early elimination

based SAD which prevents lots of computational time.

The weight of optimisation λ has been found to give best

results for values in the range of 1.45 to 1.65, thus we use it

as a parameter to adjust video quality externally.

TABLE I

NUMBER OF SEARCH POINTS PER MACRO BLOCK,

AVERAGE PSNR, AVERAGE TIME TAKEN FOR

MOTION ESTIMATION PER FRAME FOR DIFFERENT

ALGORITHMS ON FOREMAN SEQUENCE

S.

No

.

Name of

Algorithm

Avg no

of SP per

MB

Avg

PSNR

Avg time

taken per

frame

(msec)

1. ES 184 23.576 99.567

3. NTSS 24 20.984 18.9

5. 4SS 20 22.836 16.233

6. DS 28 22.792 22.233

7. PETDS 30 23.018 20.167

*these time calculation have been done on intel core-2-duo

processor (2 GHz).

REFERENCES

[1] Iain E. G. Richardson, Video Codec Design, West Sussex: John
Wiley & Sons Ltd., 2002, Ch. 4, 5, & 6. S. M. Metev and V. P. Veiko,

[2] K. R. Raoand J. J. Hwang, techniques and Standards for Image,

Video and Audio Coding. Englewood Cliffs, NJ: Prentice Hall, 1996.
[3] Coding of moving pictures and audio, ISO/IEC JTC1/SC29/WG11

N2932, Oct. 1999.

[4] Renxiang Li, Bing Zeng, and Ming L. Liou, “A New Three-Step
Search Algorithm for Block Motion Estimation”, IEEE Trans.

Circuits And Systems For Video Technology, vol 4., no. 4, pp.

438-442, August 1994.
[5] Jianhua Lu, and Ming L. Liou, “A Simple and Efficent Search

Algorithm for Block-Matching Motion Estimation”, IEEE Trans.

Circuits And Systems For Video Technology, vol 7, no. 2, pp. 429-
433, April 1997.

[6] Lai-Man Po, and Wing-Chung Ma, “A Novel Four-Step Search

Algorithm for Fast Block Motion Estimation”, IEEE Trans.
Circuits And Systems For Video Technology, vol 6, no. 3, pp.

313-317, June 1996.

[7] Shan Zhu, and Kai-Kuang Ma, “ A New Diamond Search Algorithm
for Fast Block-Matching Motion Estimation”, IEEE Trans. Image

Processing, vol 9, no. 2, pp. 287-290, February 2000.

[8] J.-B. Xu, L.-M. Po, and C.-K. Cheng, “Adaptive motion tracking
block matching algorithms for video coding,” IEEE Trans. Circuits

Syst. Video Technol., vol. 97, pp. 1025–1029, Oct. 1999.

IEEE - 31661

4th ICCCNT 2013
July 4-6, 2013, Tiruchengode, India Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 08,2025 at 10:22:04 UTC from IEEE Xplore. Restrictions apply.

