IEEE - 31661

ANALYSIS OF BLOCK MATCHING MOTION ESTIMATION ALGORITHMS

P. Muralidhar

pmurali@nitw.ac.in,

C.B.Rama Rao

cbrr@nitw.ac.in

Departments of Electronics and Communication Engineering
National Institute of Technology, Warangal

Abstract— Motion estimation is one of the most important
tasks in the current standards of video compression. In this
paper seven different block matching motion estimation
algorithms are analysed for fast motion estimation in video
coding. The simulation results of the algorithms are compared
based on PSNR, average time taken per frame, total number of
search points per macro block and time taken per macro block.

Index Terms— Block matching, SAD, motion estimation,
H.264/AVC
I. INTRODUCTION

Video compression [1] is a technology that can efficiently

reduce the bandwidth required to transmit video signals.
Most video compression is lossy compression; in the other
words it needs to retain original video quality under a few of
constraints, such as, storage constraints, encoding time,

hardware and software computation, and power consumption.

Video compression takes advantage of data redundancy
between successive video images to reduce the storage
requirement by applying computational resources. In order
to design a video compression system, it always encounters
with trade off between video qualities, speed, and storage
sizes.

H.264/MPEG-4 AVC [2] [3] inherited the characteristic of
the block-based matching video coding standards and further
presented lots of new features that can efficiently improve
coding performance. For video coding systems, motion
estimation (ME) can remove most of temporal redundancy,
so a high compression ratio can be achieved. Among various
ME algorithms, a full-search block matching algorithm
(FSBMA) is usually adopted because of its high PSNR.
Although FSBMA provides the best quality among various
ME algorithms, it consumes the largest computation power.

For real time systems, we employ fast block matching
motion estimation algorithms, as they have reduced
computation. For these fast block matching algorithms, we
try to attain PSNR closer to Full Search. The block matching
algorithms that have been implemented are Full Search,
Three Step Search (TSS), New Three Step Search
(NTSS), Simple and Efficient TSS (SES), Four Step
Search (4SS), Diamond Search (DS) and proposed
algorithm on C. then a comparison is made among different
algorithms.

In this paper we studied and analysed the existing motion
estimation algorithms for fast block matching motion
estimation in H.264 AVC.

Section II explains different block matching algorithm in
general. In Section III we propose and describe our
algorithm in detail. In Section IV we compare different
algorithms for the Foreman sequence based on PSNR,

number of search points and the time taken along with
simulation results followed by summary and references.

Search vvindowsA P=7

A 4

P=7 | Current
< block

Fig. 1. Macro block of 16 pixels and a search parameter of 7
II. BLOCK MATCHING ALGORITHMS

Block matching can only be implemented for the frame
having a single object moving within that frame to form
corresponding objects in the subsequent frame. To
implement block matching current frame is to divided into a
matrix of ‘macro blocks’ that are then compared with
corresponding block in the previous frame to create a vector
that stipulates the movement of a macro block from one
location to another in the previous frame. These motion
vectors along with previous frame data are used to
reconstruct the frame at the decoder. The search area is
defined around a macro block for a search parameter of p
(which is usually taken to be 7 pixels on all four sides of the
corresponding macro block in the previous frame but can
vary as per the movement in the frames) shown in Fig. 1.
The larger the motions, the larger are search parameter p.

For each MB in the current frame (current MB), one
reference block that is the most similar to current MB is
sought in the searching range of size [-P, P] in the reference
frame. There are many cost function to compare candidate
blocks like Mean Square Error (MSE), Mean Absolute
Difference (MAD), Sum of Absolute Difference (SAD).
SAD is defined as

SAD(x,y) = Yo 20 laG,) = b +x,j+) 1

Where a (i, j) is the pixel data in the current block of a
size Nx N, b(i + x,j + y) is the pixel data within the search
area of previous frame and (x, y) represents the candidate
displacement vector. (x ,y) ranges from —p to p. After all
searching candidates are examined, the candidate block that
has the smallest SAD is selected as the motion vector of the
current MB.

Peak-Signal-to-Noise-Ratio (PSNR) characterizes the
motion compensated image that is created by using motion
vectors and macro blocks from the reference frame.

igi 2
PSNR = 10log;, [(peak to peak valll;izf original data) 1

2

4th ICCCNT 2013

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNgbR,qlY_é/}/QBQy’Gﬁ}Ua?W’dmlarljanuary 08,2025 at 10:22:04 UTC from IEEE Xplore. Restrictions apply.

IEEE - 31661

A. Exhaustive Search (ES)

This algorithm also called Full search, calculates cost
function at each possible location in the search window. ES
is the most computationally expensive block matching
algorithm of all. It finds the best possible match and gives
the highest PSNR amongst any block matching algorithm.
The obvious disadvantage to ES is that the larger the search
window gets the more computations it requires.

B. Three Step Search (TSS)

It starts with the search location at center and sets the ‘step
size’ S=4, for a usual search parameter value of 7. It then
searches at eight locations +/-S pixels around location (0, 0).
One point with the lowest cost is selected as new center and
search is performed around this point with S=S/2 and repeats
similar search for two more iterations until S=1. At this point
the location with the least cost function is found. TSS
procedure is shown in fig. 2. It gives a flat reduction in
computation by a factor of 9. It has the disadvantage of
getting stuck in local minima.

C. New Three Step Search (NTSS)

NTSS [4] is a center biased searching scheme and has
provisions for half way stop to reduce computational cost.
NTSS process is illustrated graphically in Fig. 3. In the first
step 16 points are checked in addition to the search origin. 8
locations are a distance of S = 4 away and the other 8 are at
S = 1 away from the search origin. If the lowest cost is at
the origin then the search is stopped right here and the
motion vector is set as (0, 0). If the lowest weight is at any
one of the 8 locations at S = 1, then the origin of the search
is changed to that point and check for weights adjacent to it.
Depending on which point it is we might end up checking 5
or 3 points.

If the minimum cost from the first step is found for S=4
location then normal TSS is followed. Hence in worst case
this has to check 33 points and 17 points is the minimum
point checked for each macro block.

2@ A .l] -)
- -
bl | 00 il L L L L L L L]
$ttpostd| |11 * e 4
+ e 008
- ¥ . ¢ cBOB. 0
TRl LI | ededaddad P00 T G U G S
PP EEEE | N (RS S S ... -
- . * . . L

Fig. 2. Three step search Fig. 3. New three step search
D. Simple and Efficient Search (SES)

SES [5] exploits the assumption of unimodal error surface.
The main idea behind the algorithm is that for a unimodal
surface there cannot be two minimums in opposite directions
and hence the 8 point fixed pattern search of TSS can be
changed to incorporate this and save on computations.

The algorithm still has three steps, each step has further two
phases. The search area is divided into four quadrants and

the algorithm checks three locations A, B, C as shown in Fig.

4. A is at the origin and B and C are S = 4 locations away
from A in orthogonal directions. Depending on certain
weight distribution amongst the three, the second phase
selects few additional points Fig. 4. The rules for
determining a search quadrant for seconds phase are as:

If SAD (4) > SAD (B) and SAD (4) > SAD (C), select (b),
If SAD (4) > SAD (B) and SAD (4) <SAD (C), select (c);
If SAD (A) < SAD (B) and SAD (A) < SAD (C), select (d);
If SAD (4) < SAD (B) and SAD (A) > SAD (C), select (e);

‘ Legend ® First Step W Second Step & Third Sten}

Fig . 4. SES

Although it saves a lot of computational time, but the error
surface is not strictly unimodular and hence gives poor
PSNR value.

E. Four Step Search (4SS)

FSS [4] employs center biased searching and has a halfway
stop provision. 4SS sets a fixed pattern size of S=2 for the
first step. Thus it looks at 9 locations in a 5x5 window. If the
least weight is found at the center of search window the
search jumps to fourth step. If the least weight is at one of
the eight locations except the center, then we make it the
search origin and move to the second step. Depending on
where the least weight location was, we might end up
checking weights at 3 or 5 locations. The patterns are shown
in Fig. 5. Once again if the least weight location is at the
center of the 5x5 search window we jump to fourth step or
else we move on to third step. The third is exactly the same
as the second step. In the fourth step the window size is
dropped to 3x3, i.e. S = 1. The location with the least weight
is the best matching macro block and the motion vector
is set to point of that location. This search algorithm has
the best case of 17 checking points and worst case of 27
checking points.

F. Diamond Search (DS)

DS [7] uses two different types of fixed patterns, one is
Large Diamond Search Pattern (LDSP) and the other is
Small Diamond Search Pattern (SDSP). DS procedure are
illustrated in Fig. 6. Just like in FSS, the first step uses LDSP
and if the least weight is at the center location we jump to
fourth step. The consequent steps, except the last step, are
also similar and use LDSP, but the number of points where
cost function is checked are either 3 or 5 and are
illustrated in second and third steps of procedure. The
last step uses SDSP around the new search origin and the
location with the least weight is the best match.

DS has no limit on the number of steps that the algorithm
can take but the search should remain inside the defines
search range. The end result should see a PSNR close to that
of ES while computational expense should be significantly
less.

4th ICCCNT 2013

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNgb%\/_é/}/QBQéI’Gﬁ}.Ua?W’dmlarhanuary 08,2025 at 10:22:04 UTC from IEEE Xplore. Restrictions apply.

IEEE - 31661

Fig. 5. Four Step search Fig. 6. Diamond search
1. Prediction Based Early Termination
DS(PBETDS)
This algorithm makes use of the fact that the general motion
in a frame is usually coherent, i.e. if the macro blocks around
the current macro block moved in a particular direction then
there is a high probability that the current macro block will
also have a similar motion vector. There are many prediction
strategies of which we use the mean of blocks on left and
above. In the fig. 7. for the current macro block E the
predicted motion vector is taken as the mean of the motion
vectors of macro blocks A and B.

MVB
AN
A MVE
N A
MVA E

Fig.7 . Prediction vector of macro block from motion vectors of block A and
block B

—>
MVpred(E): Mean(mA . M B) 3
Length of prediction is defined as

Lyred=Ax+/Xpred? + Ypred? 4

Where A is defined as weight for optimization of Lq.
Considering the direction of prediction, nine modes are
defined as shown in fig. 8.

A O I
B g B
= Amo M ey W
TR HRE
I L1 B H1ts
il e
RN FE RN \
fig(mode 1 fig(ymode? fig(3mode 3 fig(#)mode 4
BEN|] [T
Eﬂ‘w\ ! ik e]
%™ ‘J.|.77 - -I—uj% T{\‘r’ -U ‘
i kil Ly fig(9)mode 0
I 4T)R g
2 1|7,\1‘D| ———'—‘ﬁ—?‘- D H{}%
THHT et Tt
fig(5)mode 5 fig(6)mode 6 fig(T)mode 7 fig(8)mode 8

Fig. 8. Different modes of prediction (1) mode 1 (2) Mode 2 (3) Mode 3 (4)
Mode 4 (5) Mode 5 (6) Mode 6 (7) Mode 7 (8) Mode 8 (9) Mode 0

*CP-Center Point & PMD-Predicted Motion Direction

Different modes are selected based on following equations.
If Xorea=0 and Yeq=0; select mode O; 5

If | Xored | <Yprea/4; select mode 1;

If Xpred /<Y prea<8XXpreq; Select mode 2;
If |Ypred| <Xprea/4; select mode 3;

If -4xXpred <Ypred<-Xprea/4; select mode 4;

O oo N O

If [Xored| <-Yprea/4; select mode 5; 10
If 4xXpred <Y prea<Xpred/4; select mode 6; 11
I [Y prea|<-Xprea/4; select mode 7; 12
If -Xpred /4<Y prea<-4xXreq; select mode 8; 13

For mode 0 shown in Fig. 8.(9) simple rood pattern is
searched on 5 search locations.

For mode 1,3,5,7 shown in Fig. 8.(1), Fig. 8.(3), Fig. 8.(5)
and Fig. 8.(7) respectively rood pattern is searched, in
addition points are searched in the direction of prediction,
where starting from the end of the rood, we search 2 more
points than the prediction length.

Similarly for mode For mode 2,4,6,8 shown in Fig. 8.(2), Fig.
8.(4), Fig. 8.(6) and Fig. 8.(8) respectively cross pattern is
searched, in addition points are searched in the direction of
prediction, where starting from the end of the cross, we
search 2 more points than the prediction length.

Minimum distortion block (MDB) among these search
points is selected as center for the large diamond search
pattern (LDSP). Now diamond search with the LDSP is
performed repeatedly until MDB comes at the center of
LDSP.

In last step 9 point search is performe where 9 points are
searched around the MBD resulted from diamond search.

The MBD among these 9 candidate blocks gives the final

motion vector.

e Early Elimination based SAD
Instead of normal SAD calculation we use -early
elimination SAD which checks if the SAD of the
present candidate block has exceeded the previously
calculated SAD,,;;,, when the number of pixels accessed
are 2, ¥4 and 7/8 of the total number of pixel in the
macro block. If the SAD comes out to be greater than
SAD,;, then the SAD calculation is stopped midway.
This prevents a considerable amount of time as there is
good probability that the present SAD would exceed
SAD,,i, in the other half of the SAD calculation.

V. SIMULATION RESULTS

In our simulation experiments, the block size is fixed at
16x16. To make a consistent comparison, block matching is
conducted within al5x15 search window (i.e., 7 pels
displacement in horizontal and vertical directions).
Elimination based Sum of absolute distance rather than
normal SAD is used to eliminate impossible candidates. The
algorithms were implemented for Foreman sequence.

During the implementation phase all of the above 7
algorithm have been implemented on C (Visual Studio
Platform) with the use of OpenCV functions. The
implementation helps us to get more clear picture of the
hardware aspect which will be a matter of consideration at
the time of architecture designing.

As is shown by Fig. 10., ES, TSS, NTSS, SES, 4SS, DS
and new algorithm have been plotted against the frame
number (frame no. is the distance of the frame under
consideration from the reference frame wused for
reconstruction).

It was found that NTSS and SES perform badly whereas
our proposed algorithm gave PSNR close to the ES and
better than DS as shown in TABLE I. While the ES takes on
an average around 184 searches per MB whereas our
proposed algorithm takes 30 searches per MB which is little
greater than DS which is 28 searches per MB. However due

4th ICCCNT 2013

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNgbR,qlY_é/}/QBQy’Gﬁ}Ua?W’dmlarhanuary 08,2025 at 10:22:04 UTC from IEEE Xplore. Restrictions apply.

IEEE - 31661

to better PSNR than DS thus our algorithm proves to be
better than DS.

PSNR

TABLE1
NUMBER OF SEARCH POINTS PER MACRO BLOCK,
AVERAGE PSNR, AVERAGE TIME TAKEN FOR
MOTION ESTIMATION PER FRAME FOR DIFFERENT
ALGORITHMS ON FOREMAN SEQUENCE

comparison of different algorithm
35
33 ‘\
31 \ Plot Area |

\ e

BN

O\
\

s M
AN

S. | Nameof | Avgno Avg Avg time
No | Algorithm | of SP per | PSNR | taken per
MB frame

(msec)

1. |ES 184 23.576 |99.567

3. | NTSS 24 20.984 | 18.9

5. | 4SS 20 22.836 | 16.233

6. | DS 28 22.792 | 22.233

7. | PETDS 30 23.018 |20.167

=
REANEN ==

17 K/\ /_\/\

12345678 951011121314151617 18152021 22 23242512627 28128 30

—E5 —T85 ——NT3§ ——5SE5 ——435 —D5 Proposed

frame number

Fig. 10. PSNR vs Current Frame no. for foreman sequence

3SS has a higher probability of getting trapped in local
minima whereas the prediction technique used in our
proposed methodology gives the better approach local
minima. The time taken by our algorithm is also lesser than
ES and DS even if the search points are larger than DS as in
TABLE 1. This is because we have used early elimination
based SAD which prevents lots of computational time.

The weight of optimisation A has been found to give best
results for values in the range of 1.45 to 1.65, thus we use it
as a parameter to adjust video quality externally.

*these time calculation have been done on intel core-2-duo
processor (2 GHz).

REFERENCES

[1] Iain E. G. Richardson, Video Codec Design, West Sussex: John
Wiley & Sons Ltd., 2002, Ch. 4, 5, & 6. S. M. Metev and V. P. Veiko,

[2] K. R. Raoand J. J. Hwang, techniques and Standards for Image,
Video and Audio Coding. Englewood Cliffs, NJ: Prentice Hall, 1996.

[3] Coding of moving pictures and audio, ISO/IEC JTC1/SC29/WG11
N2932, Oct. 1999.

[4] Renxiang Li, Bing Zeng, and Ming L. Liou, “A New Three-Step
Search Algorithm for Block Motion Estimation”, IEEE Trans.
Circuits And Systems For Video Technology, vol 4., no. 4, pp.
438-442, August 1994.

[5] Jianhua Lu, and Ming L. Liou, “A Simple and Efficent Search
Algorithm for Block-Matching Motion Estimation”, IEEE Trans.
Circuits And Systems For Video Technology, vol 7, no. 2, pp. 429-
433, April 1997.

[6] Lai-Man Po, and Wing-Chung Ma, “A Novel Four-Step Search
Algorithm for Fast Block Motion Estimation”, IEEE Trans.
Circuits And Systems For Video Technology, vol 6, no. 3, pp.
313-317, June 1996.

[7] Shan Zhu, and Kai-Kuang Ma, “ A New Diamond Search Algorithm
for Fast Block-Matching Motion Estimation”, IEEE Trans. Image
Processing, vol 9, no. 2, pp. 287-290, February 2000.

[8] J.-B. Xu, L.-M. Po, and C.-K. Cheng, “Adaptive motion tracking
block matching algorithms for video coding,” IEEE Trans. Circuits
Syst. Video Technol., vol. 97, pp. 1025-1029, Oct. 1999.

4th ICCCNT 2013

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNgbR,G@(é/}/QBQéI’Gﬁ}Ua?&WFmlarhanuary 08,2025 at 10:22:04 UTC from IEEE Xplore. Restrictions apply.

