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The present study investigates magnetic, first-order chemical reaction, Soret and Dufour
effects on electrically conducting micropolar fluid flow between two circular cylinders. The
inner and outer surfaces of the annular cylinder are maintained at different constant wall
temperature where the outer cylinder is rotating and inner cylinder remains stationary. The
governing nonlinear partial differential equations are transformed into a system of ordinary
differential equations (ODEs) using similarity transformations. The resulting equations are
then solved for approximate analytical series solutions using homotopy analysis method
(HAM). The effects of various parameters on the velocity, microrotation temperature and
concentration are discussed and shown graphically. [DOI: 10.1115/1.4024838]
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1 Introduction

Convection heat transfer and fluid flow in an annulus between
two vertical concentric cylinders have been the focus of investiga-
tion for many decades due to their wide range of practical applica-
tions such as electrical machineries where heat transfer occurs in
the annular gap between the rotor and stator, growth of single sili-
con crystals, heat exchangers, cooling systems for electronic devi-
ces, solar collectors and other rotating systems [1,2]. The effect of
rotating the inner cylinder for a concentric annulus was first stud-
ied by Taylor [3]. According to the Taylor-Couette theory, the
flow of a fluid takes place in the gap between two concentric cyl-
inders as a result of rotation of one or both of them. Fusegi et al.
[4] studied mixed convection flows within a horizontal concentric
annulus with a heated rotating inner cylinder. Kataoka [5] ana-
lyzed the flow of Newtonian fluid between concentric cylinders
where the inner cylinder was rotated at a constant speed and the
outer cylinder was stationary. El-Shaarawi and Khamis [6]
numerically examined the induced flow in uniformly heated verti-
cal annuli with rotating inner walls. Kou and Huang [7] solved the
problem of fully developed laminar mixed convection through a
vertical annular duct embedded in a porous medium.

A large amount of research work has been reported in the field
of mathematical model for chemical reaction analysis. The study
of heat and mass transfer with chemical reaction is of considerable
importance in chemical and hydrometallurgical industries. For
example, formation of smog is a first-order homogeneous chemi-
cal reaction. Considering the emission of NO2 from automobiles
and other smoke-stacks, NO2 reacts chemically in the atmosphere
with unburned hydrocarbons (aided by sunlight) and produces per-
oxyacetyl nitrate, which forms an envelope can be termed as pho-
tochemical smog. Kermlt et al. [8] reported experimental results
about mass transfer in concentric rotating cylinders with surface
chemical reaction in the presence of Taylor vortexes. Pop et al.

[9] investigated the steady fully developed mixed convection flow
in a vertical channel with first-order chemical reaction. Shateyi
et al. [10] considered the two-dimensional flow of an incompressi-
ble viscous fluid through a nonporous channel with heat genera-
tion and a chemical reaction.

When heat and mass transfer occur simultaneously in a moving
fluid, the relations between the fluxes and the driving potentials are
of a more intricate nature. It has been observed that an energy flux
can be generated not only by temperature gradients but also by con-
centration gradients. The energy flux caused by a concentration gra-
dient is termed the diffusion-thermo (Dufour) effect. On the other
hand, mass fluxes can also be created by temperature gradients and
this embodies the thermal-diffusion (Soret) effect. In most of the
studies related to heat and mass transfer process, Soret and Dufour
effects are neglected on the basis that they are of a smaller order of
magnitude than the effects described by Fouriers and Ficks laws.
But these effects are considered as second order phenomena and
may become significant in areas such as hydrology, petrology, geo-
sciences, etc. Soret and Dufour effects are important for intermedi-
ate molecular weight gases in coupled heat and mass transfer in
binary systems, often encountered in chemical process engineering
and also in high-speed aerodynamics. Soret and Dufour effects are
also critical in various flow regimes occurring in chemical and geo-
physical systems. Kafoussias et al. [11] investigated Dufour and
Soret effects on mixed free forced convective and mass transfer
boundary layer flow with temperature dependent viscosity. Awad
and Sibanda [12] examined Dufour and Soret effects on heat and
mass transfer in a micropolar fluid in a horizontal channel. Sudar-
san Reddy et al. [13] obtained the finite element analysis of thermo-
diffusion and diffusion- thermo effects on convective heat and
mass transfer flow through a porous medium in cylindrical annulus
in the presence of constant heat source, but they considered annulus
without rotation. Recently, finite element analysis of thermodiffu-
sion effect on convective heat and mass transfer through a porous
medium in a circular annulus has been presented by Sulochana
et al. [14].

In recent years, progress has been considerably made in the
study of magnetohydrodynamic (MHD) flow and heat transfer due
to the effect of magnetic fields on the boundary layer flow control
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and on the performance of many systems using electrically con-
ducting fluids. In addition, this type of flow finds applications in
many engineering problems such as MHD generators, plasma
studies, nuclear reactors, and geothermal energy extractions,
boundary layer control in the field of aerodynamics, in rocket pro-
pulsion control, crystal growth technology, astrophysical plasma
fluid dynamics. Magnetohydrodynamic equations are ordinary
electromagnetic and hydrodynamic equations modified to take
into account the interaction between the motion of the fluid and
the electromagnetic field. Takhar et al. [15] numerically investi-
gated the MHD stability problem for dissipative Couette flow in a
narrow gap. Panja et al. [16] studied hydromagnetic flow of
Reiner-Rivlin fluid between two coaxial circular cylinders with
porous walls. KunugiLi and Serizawa [17] presented numerical
solutions of MHD effect on flow structures and heat transfer char-
acteristics of liquid metal-gas annular flow in a vertical pipe con-
sidering a transverse magnetic field. Siddiqa et al. [18] considered
double diffusive magnetoconvection fluid flow in a strong cross
magnetic field with uniform surface heat and mass flux.

It is well known that most fluids which are encountered in chemi-
cal and allied processing applications do not satisfy the classical
Newton’s law and are accordingly known as non-Newtonian fluids.
The study of non-Newtonian fluid flows has gained much attention
from the researchers because of its applications in biology, physiol-
ogy, technology and industry. In addition, the effects of heat and
mass transfer in non-Newtonian fluid also have great importance in
engineering applications; for instance, the thermal design of indus-
trial equipment dealing with molten plastics, polymeric liquids,
foodstuffs, or slurries. A number of mathematical models have
been proposed to explain the rheological behavior of non-
Newtonian fluids. Further, there exist several approaches to study
the mechanics of fluids with a substructure. Ericson [19,20] derived
field equations which account for the presence of substructures in
the fluid. Eringen [21] first formulated the theory of micropolar flu-
ids which display the effects of local rotary inertia and couple
stresses. This theory can be used to explain the flow of colloidal flu-
ids, liquid crystal, animal blood, etc. Physically, micropolar fluids
may be described as non-Newtonian fluids consisting of dumb-bell
molecules or short rigid cylindrical element, polymer fluids, fluid
suspension, etc. The presence of dust or smoke, particularly in a
gas, may also be modeled using micropolar fluid dynamics.

The HAM [22] was first proposed by Liao in 1992, is one of the
most efficient methods in solving different types of nonlinear equa-
tions such as coupled, decoupled, homogeneous and nonhomogene-
ous. Also, HAM provides us a great freedom to choose different
base functions to express solutions of a nonlinear problem [23]. The
application of HAM in engineering problems is highly considered
by scientists, because it provides with us a convenient way to control
the convergence of approximation series, which is a fundamental
qualitative difference in analysis between HAM and other methods.
Later Liao [24] presented an optimal homotopy analysis approach
for strongly nonlinear differential equations. HAM is used to get
analytic approximate solutions for heat transfer of a micropolar fluid
through a porous medium with radiation by Rashidi et al. [25]. Si
et al. [26] accessed HAM solutions for the asymmetric laminar flow
in a porous channel with expanding or contracting walls.

The objective of the present work is to study convective heat
and mass transfer of a MHD micropolar fluid flow between con-
centric cylinders with thermal-diffusion, diffusion-thermo, and
chemical reaction effects in the presence of applied magnetic
field. The governing nonlinear differential equations have been
solved by using HAM. The convergent region of the HAM solu-
tion for the model is introduced graphically and examined. The
velocity, microrotation, temperature, and concentration functions
variations are shown graphically for various values of parameters.

2 Mathematical Formulation

Consider a steady, laminar, incompressible micropolar fluid in
an annulus between infinite vertical concentric circular cylinders

of radii a and b ða < bÞ. Choose the cylindrical polar coordinate
system (r;u; z) with z-axis as the common axis for both cylinders.
The inner cylinder is at rest and the outer cylinder is rotating with
constant angular velocity X. The flow being generated due to the
rotation of the outer cylinder. Since the flow is fully developed
and the cylinders are of infinite length, the flow depends only on
r. The outer cylinder is maintained at a uniform temperature Tb

and the inner cylinder at a temperature Ta. The flow is subjected
to a uniform magnetic field along the radial direction and no exter-
nal electric field is applied. Assume that the magnetic Reynolds
number is very small so that the induced magnetic field can be
neglected in comparison with the applied magnetic field. Further,
assume that all the fluid properties are constant except the density
in the buoyancy term of the balance of momentum equation. In
addition, the Soret and Dufour effects with chemical reaction are
considered. With the above assumptions and Boussinesq approxi-
mations with energy and concentration, the equations governing
the steady flow of an incompressible micropolar fluid [27,28],
under usual MHD approximations are
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where u is velocity in u direction C is microrotaion, T is the tem-
perature, C is the concentration, q fluid density, l dynamic coeffi-
cient of viscosity, j is vortex viscosity, c is the spin gradient
viscosity, g� is the acceleration due to gravity, bT is the coefficient
of thermal expansion, bc is the coefficient of solutal expansion, a
is the thermal diffusivity, Dm is the mass diffusivity, Cp is the spe-
cific heat capacity, Cs is the concentration susceptibility, and Tm

is the mean fluid temperature, k1 is the rate of chemical reaction
parameter, B0 magnetic induction and r is electric conductivity of
the fluid.

The boundary conditions are

u ¼ 0; C ¼ 0; T ¼ Ta; C ¼ Ca; at r ¼ a (7a)

u ¼ bX; C ¼ 1

2r

@

@r
ðruÞ; T ¼ Tb; C ¼ Cb; at r ¼ b

(7b)

Introducing the following transformations

r ¼ b
ffiffiffi
k
p

; u ¼ Xffiffiffi
k
p f ðkÞ; C ¼ X

b
gðkÞ;

T � Ta ¼ ðTb � TaÞhðkÞ; C� Ca ¼ ðCb � CaÞ/ðkÞ
(8)

in Eqs. (3)–(6), we get the following dimensionless equations:
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where primes denote differentiation with respect to the variable k,
N ¼ j=ðlþ jÞ is coupling number, Re ¼ qXb=l is the Reynolds
number, Pr ¼ lCp=KT is the Prandtl number, GrT ¼ ðgbT

ðTb � TaÞb3=�2Þ is the temperature Grashof number, GrC ¼ ðgbC

ðCb � CaÞb3=�2Þ is the mass Grashof number, H2
a ¼ rB2

0b2=l is

Hartman number, t is kinematic viscosity, Br ¼ ðX2l=
aðTb � TaÞÞ is the Brinkman number, m2 ¼ ðb2jð2lþ jÞ=
cðlþ jÞÞ is micropolar parameter, Df ¼ ðDmKTðCb � CaÞ=tCsCp

ðTb � TaÞÞ is the Dufour number, Sc ¼ �=Dm is the Schmidt num-
ber, Sr ¼ ðDmKTðTb � TaÞ=tTmðCb � CaÞÞ is the Soret number

and K ¼ k1b2=t chemical reaction parameter. gs ¼ Gr=Re is the
temperature buoyancy parameter, gc ¼ Gc=Re is the mass buoy-
ancy parameter.

The corresponding boundary conditions in dimensionless form
are

f ðk0Þ ¼ 0; gðk0Þ ¼ 0; hðk0Þ ¼ 0; /ðk0Þ ¼ 0;

where k0 ¼
a

b

(13a)

f ð1Þ ¼ b; gð1Þ ¼ df

dk

� �
k¼1

; hð1Þ ¼ 1; /ð1Þ ¼ 1 (13b)

3 The HAM Solution of the Problem

The solution to the system of nonlinear ordinary differential
equations (9)–(12) is obtained by using the analytical technique
HAM. It has been successfully applied to many nonlinear prob-
lems such as boundary layer flows, heat transfer, MHD flows of
non-Newtonian fluids and many others. The basic idea behind the
use of the homotopy analysis method is the replacement of a non-
linear equation by a system of ODEs that can easily be solved
with the help of symbolic computation software. The solution of
this system of ODEs is used to form a convergent series which is
the solution of the original nonlinear equation. A detailed explana-
tion of the method is given in the book by Liao [22]. In using the
HAM, and in order to effectively control the region and the rate of
convergence of the HAM series solution, one has to carefully
select an initial approximation, an auxiliary linear operator, an
auxiliary function and a convergence controlling auxiliary param-
eter. Suggestions on how to select this combination of parameters
are given in Ref. [29] for general nonlinear problems.

For the analytical solution of Eqs. (9)–(12) using HAM, we
choose the initial approximations of f ðkÞ; gðkÞ; hðkÞ and /ðkÞ as

f0ðkÞ ¼ b
ðk� k0Þ
1� k0

; g0ðkÞ ¼
k� k0

ð1� k0Þ2
;

h0ðkÞ ¼
k� k0

1� k0

; /0ðkÞ ¼
k� k0

1� k0

(14)

and choose the auxiliary linear operators L ¼ @2=@k2 with the
property Lðc1 þ c2kÞ ¼ 0, where c1 and c2 are constants.

The zeroth-order deformation equation is given by

ð1� pÞL½ f ðk; pÞ � f0ðkÞ� ¼ ph1N1½ f ðk; pÞ�;
ð1� pÞL½gðg; pÞ � g0ðkÞ� ¼ ph2N2½gðk; pÞ�

(15a)

ð1� pÞL½kðk; pÞ � h0ðkÞ� ¼ ph3N3½hðk; pÞ�;
ð1� pÞL½/ðk; pÞ � /0ðkÞ� ¼ ph4N4½/ðk; pÞ�

(15b)

where h1, h2, h3, and h4 are nonzero auxiliary parameters and
p 2 ½0; 1� is the embedding parameter. Accordingly the boundary
conditions are given by

f ðk0; pÞ ¼ 0; gðk0; pÞ ¼ 0; hðk0; pÞ ¼ 0; /ðk0; pÞ ¼ 0

f ð1; pÞ ¼ b; gð1; pÞ ¼ d

dk
½ f ð1; pÞ�; hð1; pÞ ¼ 1; /ð1; pÞ ¼ 1

(16)

The nonlinear operators N1, N2, N3, and N4 are defined as
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If p¼ 0, the above deformation equation will give the initial
approximations

f ðk;0Þ¼ f0ðkÞ; gðk;0Þ¼ g0ðkÞ; hðk;0Þ¼ h0ðkÞ; /ðk;0Þ¼/0ðkÞ
(18)

and when p¼ 1, Eqs. (15) are same as Eqs (9)–(12), respectively;
therefore, at p¼ 1, we get the final solutions

f ðk; 1Þ ¼ f ðkÞ; gðk; 1Þ ¼ gðkÞ; hðk; 1Þ ¼ hðkÞ; /ðk; 1Þ ¼ /ðkÞ
(19)

If the embedding parameter p increases from 0 to 1 then
f ðk; pÞ; gðk; pÞ; hðk; pÞ, and /ðk; pÞ varying continuously from the
initial guesses f0ðkÞ; g0ðkÞ; h0ðkÞ, and /0ðkÞ to the final solution
f ðkÞ; gðkÞ; hðkÞ, and /ðkÞ which are called the zeroth-order defor-
mation equation. This continuous variation from the initial guess
to the exact solution as q going from 0 to 1 is called deformation
in topology.

Next, the mth-order deformation equations follow as

L½fmðgÞ � vmfm�1ðkÞ� ¼ h1Rf
mðkÞ;

L½gmðkÞ � vmgm�1ðkÞ� ¼ h2Rg
mðkÞ

L½hmðkÞ � vmhm�1ðkÞ� ¼ h3Rh
mðkÞ;

L½/mðkÞ � vm/m�1ðkÞ� ¼ h4R/
mðkÞ

(20)

with the boundary conditions

fmð0Þ ¼ 0; fmð1Þ ¼ 0; gmð0Þ ¼ 0; gmð1Þ ¼ 0;

hmð0Þ ¼ 0; hmð1Þ ¼ 0; /mð0Þ ¼ 0; /mð1Þ ¼ 0
(21)

where
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for m being integer and

vm ¼ 0 for m � 1

¼ 1 for m > 1
(23)

The initial guess approximations f0ðkÞ; g0ðkÞ; h0ðkÞ, and /0ðkÞ,
the linear operator L and the auxiliary parameters h1; h2; h3, and
h4 are assumed to be selected such that Eqs. (15) and (16) have so-
lution at each point p 2 ½0; 1� and also with the help of Taylor’s
series and due to Eq. (18); f ðk; pÞ; gðk; pÞ; hðk; pÞ, and /ðk; pÞ can
be expressed in series of q as

f ðk; pÞ ¼ f0ðkÞ þ
X1
m¼1

fmðkÞpm; gðk; pÞ ¼ g0ðkÞ þ
X1
m¼1

gmðkÞpm

hðk; pÞ ¼ h0ðkÞ þ
X1
m¼1

hmðkÞpm; /ðk; pÞ ¼ /0ðkÞ þ
X1
m¼1

/mðkÞpm

(24)

in which h1, h2, h3, and h4 are chosen in such a way that the series (24)
are convergent [24] at p¼ 1. Therefore, we have from Eq. (19) that

f ðkÞ ¼ f0ðkÞ þ
X1
m¼1

fmðkÞ; gðkÞ ¼ g0ðkÞ þ
X1
m¼1

gmðkÞ;

hðkÞ ¼ h0ðkÞ þ
X1
m¼1

hmðkÞ; /ðkÞ ¼ /0ðkÞ þ
X1
m¼1

/mðkÞ
(25)

Fig. 1 The h curve of (a) f ðgÞ, (b) gðgÞ, (c) hðgÞ, and (d) /ðgÞ
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where

fmðkÞ ¼
1

m!

@mf ðk; pÞ
@pm

����
p¼0

; gmðkÞ ¼
1

m!

@mgðk; pÞ
@pm

����
p¼0

;

hmðkÞ ¼
1

m!

@mhðk; pÞ
@pm

����
p¼0

; /mðkÞ ¼
1

m!

@m/ðk; pÞ
@pm

����
p¼0

We presume that the initial guesses to f, g, h and / the auxiliary
linear operators L and the nonzero auxiliary parameters h1, h2, h3,
and h4 are so properly selected that the deformation
f ðk; pÞ; gðk; pÞ; hðk; pÞ, and /ðk; pÞ are smooth enough and their

mth-order derivatives with respect to p in Eqs. (25) exist. The for-
mulae in Eq. (25) provide us with a direct relationship between
the initial guesses and the exact solutions. The convergence of a
Taylor series at p¼ 1 is a must as proved by Liao [24]. All the
effects of micropolar parameter, the heat and mass transfer, chem-
ical reaction parameter, Soret and Dufour effects, velocity and
microrotation can be studied from the exact formulae (25).

4 Convergence of the HAM Solution

One of the chief aims of the HAM method is to produce solutions
that will converge in a much larger region than the solutions
obtained with the traditional methods. Convergence of the solution
series depends upon the choice of initial approximations, the

Table 1 Optimal value of h1 at different order of approximations

Order Optimal of h1 Minimum of Ef ;m

10 0.32 5.73� 10�7

15 0.35 2.56� 10�7

20 0.35 6.47� 10�9

Table 2 Optimal value of h2 at different order of approximations

Order Optimal of h2 Minimum of Eg;m

10 1.05 �4.91� 10�5

15 1.0 �6.83� 10�6

20 1.0 �2.59� 10�8

Table 3 Optimal value of h3 at different order of approximations

Order Optimal of h3 Minimum of Eh;m

10 �0.93 4.90� 10�5

15 �0.95 �2.75� 10�6

20 �0.95 �6.63� 10�7

Table 4 Optimal value of h4 at different order of approximations

Order Optimal of h4 Minimum of E/;m

10 �1.55 6.20� 10�5

15 �1.6 �4.52� 10�7

20 �1.6 �2.81� 10�7

Fig. 2 Residual errors of (a) f ðgÞ, (b) gðgÞ, (c) hðgÞ, and (d) /ðgÞ
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auxiliary linear operators and the nonzero auxiliary parameters. By
varying these parameters we can adjust the region in which the se-
ries is convergent and the rate at which the series converges. One of
the chief factors that influence the convergence of the solution series
is the auxiliary parameters h1; h2, h3, and h4 as pointed by Liao [22].
For this purpose, the h-curves are plotted by choosing h1; h2, h3, and
h4 in such a manner that the solutions (24) ensure convergence Liao
[24]. Here to see the admissible values of h1; h2, h3, and h4 the
h-curves are plotted for 20th-order of approximation in Fig. 1 by

taking the values of the parameters gs¼ 1; gc¼ 0.1; Sc¼ 0.22;
Df¼ 0.03; Sr ¼ 2:0; K¼ 0.5; N¼ 0.5; m¼ 2.0; Ha¼ 2; Pr¼ 0.71;
Br¼ 0.01; and B1¼ 0.5. It is clearly noted from Fig. 1 that the range
for the admissible values of h1 is 0:2 < h1 < 0:5, h2 in a region
0:85 < h2 < 1:15, the admissible values of h3 and h4 are shown in a
region �1:05 < h3 < �0:85 and �1:7 < h4 < �1:5. A wide valid
zone is evident in these figures ensuring convergence of the series.
To choose optimal value of auxiliary parameter, the average residual
errors (see Ref. [24] for more details) are defined as

Table 5 Convergence of HAM solutions for different order of approximations

Order f(0.625) g(0.625) hð0:625Þ /ð0:625Þ

5 0.47094772214755665 0.7362762696667875 0.6368498802632638 0.65114803497806615
10 0.47237556807520314 0.7523562797808536 0.6528011865286971 0.66115508567139114
15 0.47252145774545407 0.7523233721746337 0.6528027409476421 0.66115332285792106
20 0.47252143940636366 0.7523231626437272 0.6528027704929337 0.66115331846895047
25 0.47252143940437764 0.7523231610147195 0.6528027702176895 0.66115331828527606
30 0.47252143940416766 0.7523231610137272 0.6528027702129337 0.66115331828489504
35 0.47252143940415764 0.7523231610137197 0.6528027702194755 0.66115331828360475
40 0.47252143940415662 0.7523231610137195 0.6528027702194725 0.66115331828360406

Fig. 3 Effect of coupling numbers on (a) velocity(f) (b) microrotation (c) temperature and (d) concentration for Ha 5 3,
Df 5 0:03;Sr 5 2, K 5 0.5
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Ef ;m ¼
1

K

XK

i¼1

N1

Xm

j¼0

fjðiDtÞ
" # !2

(26a)

Eg;m ¼
1

K

XK

i¼1

N2

Xm

j¼0

gjðiDtÞ
" # !2

(26b)

Eh;m ¼
1

K

XK

i¼1

N3

Xm

j¼0

hjðiDtÞ
" # !2

(26c)

E/;m ¼
1

K

XK

i¼1

N4

Xm

j¼0

/jðiDtÞ
" # !2

(26d)

where Dt ¼ 1=K and K¼ 4. At different order of approximations
(m), minimum of average residual errors are shown in Tables 1–4.
From these tables, it is found that they are minimum at
h1 ¼ 0:35; h2 ¼ 1:0; h3 ¼ �0:95; h4 ¼ �1:6, respectively. There-
fore, the optimum values of convergence control parameters are
taken as h1 ¼ 0:35, and h2 ¼ 1:0; h3 ¼ �0:95; h4 ¼ �1:6.

To see the accuracy of the solutions, the residual errors are
defined for the system as

REf ¼ �
2N

1� N
kgn0 þ

4

1� N
f 00n þ

ffiffiffi
k
p
ðgshn þ gc/nÞ � H2

afn

(27a)

REg¼� gn þ f 0n þ
2ð2� NÞ

m2
ðg0 þ kg00nÞ (27b)

REh ¼ðk3h00n þ k2h0nÞ þ
Br

1� N

� ðN=2Þk2ðf 0n � gnÞ2 þ ðfn � kf 0nÞ
2 þ Nð2� NÞ

m2
k3g02n

� �
þ Df Prðk3/00n þ k2/0nÞ (27c)

RE/ ¼
1

Sc

ðk/00n þ /0nÞ þ Srðkh00n þ h0nÞ �
K

4
/n (27d)

where fnðkÞ; gnðkÞ. hnðkÞ and /nðkÞ are the HAM solution for
f ðkÞ;xðkÞ; hðkÞ and /ðkÞ. For optimality of the convergence con-
trol parameters, residual error [25] for different values of h in the
convergence region displayed in Figs. 2(a)–2(d). We examine that

Fig. 4 Effect of Hartman number on (a) velocity(f) (b) microrotation (c) temperature and (d) concentration for N 5 0.5,
Df 5 0:03;Sr 5 2, K 5 0.5

Journal of Heat Transfer DECEMBER 2013, Vol. 135 / 122003-7

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/heattransfer/article-pdf/135/12/122003/6204608/ht_135_12_122003.pdf by N

ational Institute of Technology- W
arngal user on 08 January 2025



h1 ¼ 0:35; h2 ¼ 1:0; h3 ¼ �0:95, and h4 ¼ �1:6 gives a better so-
lution. Table 5 establishes the convergence of the obtained series
solution. It is found from the above observations that the series
given by Eq. (24) converge in the whole region of k when
h1 ¼ 0:35; h2 ¼ 1:0; h3 ¼ �0:95, and h4 ¼ �1:6.

5 Results and Discussion

The system of nonlinear ordinary differential equations
(9)–(12) together with the boundary conditions (13) are locally
similar and solved analytically using HAM. To have a better
understanding of the flow characteristics, velocity, microrotation,
temperature and concentration are calculated for the parameters
coupling, Hartman number, Dufour, Soret numbers and chemical
reaction parameters.

In Figs. 3(a)–3(d), the effects of coupling number N on the
dimensionless velocity, microrotation, temperature and concentra-
tion are presented for fixed values of other parameters. The cou-
pling number N characterizes the coupling of linear and rotational
motion arising from the micromotion of the fluid molecules.
Hence, N signifies the coupling between the Newtonian and rota-
tional viscosities. As N ! 1, the effect of microstructure becomes

significant, whereas with a small value of N the individuality of
the substructure is much less pronounced. As j! 0, i.e., N ! 0,
the micropolarity is lost and the fluid behaves as nonpolar fluid.
Hence, N ! 0 corresponds to viscous fluid. As N increases, it is
observed from Fig. 3(a) that velocity decreases. The velocity in
case of micropolar fluid is less compared to that of viscous fluid
case (N ! 0 corresponds to viscous fluid). Figure 3(b) depicts
that increasing coupling number increase the microrotation. From
Fig. 3(c), it is seen that, temperature decreases with increase in
the coupling number. An increase in the micropolarity behaves
like a cooling agent, a feature which is useful for many real situa-
tions. It can be seen from Fig. 3(d) concentration of the fluid
increases with increase of coupling number.

The variation of the nondimensional velocity, microrotation,
temperature and concentration profiles with k for different values
of magnetic parameter is illustrated in Figs. 4(a)–4(d). It is
observed from Fig. 4(a) that velocity decreases as the magnetic
parameter (Ha) increases. This is due to the fact that the introduc-
tion of a transverse magnetic field, normal to the flow direction,
has a tendency to create the drag known as the Lorentz force
which tends to resist the flow. Hence, the horizontal velocity
profiles decrease as the magnetic parameter Ha increases. From

Fig. 5 Effect of Dufour and Soret numbers on (a) velocity(f) (b) microrotation (c) temperature and (d) concentration for Ha 5 3,
N 5 0.5, K 5 0.5
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Fig. 4(b), it is clear that the microrotation component decreases
for increasing values of Ha. It is noticed from Fig. 4(c) that the
nondimensional fluid temperature increases with increasing values
of magnetic parameter. It is clear from Fig. 4(d) that the nondi-
mensional fluid concentration decreases with increasing values of
Ha. As explained above, the transverse magnetic field gives rise to
a resistive force known as the Lorentz force of an electrically con-
ducting fluid. This force makes the fluid experience a resistance
by increasing the friction between its layers and thus increases its
temperature and concentration.

The effects of Soret and Dufour number on the dimensionless
velocity, microrotation, temperature and concentration for fixed
values of N, Ha, and K is shown in Figs. 5(a)–5(d). Majority of the
papers that appears in the literature on Dufour and Soret effects
on convective flows do not offer a physical basis to calculate
Dufour and Soret coefficients [30]. But, Benano-Melly et al. [31],
while analyzing the problem of thermal diffusion in binary fluid
mixtures, lying within a porous medium and subjected to a hori-
zontal thermal gradient, presented list of references on the meas-
urements and the Dufour coefficient. In the present analysis the
values of Soret number Sr and Dufour number Df are chosen in
such a way that their product is a constant 0.06 according to their

definition provided that the mean temperature Tm is kept constant
[11,32,30]. As Dufour number increases (Soret number
decreases), it is seen from Fig. 5(a) that the velocity increases. In
Fig. 5(c), it is observed that the microrotation increases with an
increase in Dufour number. Figure 4(d) indicates an increase in
Dufour number (decrease in Soret number) increases the tempera-
ture of the fluid. It is noted from Fig. 5(d) that increase in Df

decreases the concentration. The Dufour number denotes the con-
tribution of the concentration gradients to the thermal energy flux
in the flow. It can be seen that an increase in the Dufour number
causes a rise in the velocity and temperature and a drop in the
concentration.

Figures 6(a)–6(d) represent the effect of chemical reaction K on
dimensionless velocity, microrotation, temperature and concentra-
tion. It can be seen from these figures that the velocity decreases
with an increase in the parameter K. The dimensionless microrota-
tion decreases and temperature increases as K increases. The con-
centration decreases with an increase in the parameter K. Higher
values of K amount to a fall in the chemical molecular diffusivity,
i.e., less diffusion. Therefore, they are obtained by species trans-
fer. An increase in K will suppress species concentration. The con-
centration distribution decreases at all points of the flow field with

Fig. 6 Effect of chemical reaction parameter on (a) velocity(f) (b) microrotation (c) temperature and (d) concentration for Ha 5 3,
Df 5 0:03;Sr 5 2, N 5 0.5
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the increase in the reaction parameter. This shows that heavier dif-
fusing species have greater retarding effect on the concentration
distribution of the flow field.

6 Conclusions

In this paper, the magnetic, chemical reaction, Dufour and Soret
effects on steady flow of a micropolar fluid between concentric
annulus with heat and mass transfer has been studied. For the gov-
erning systems nonlinear differential equations an approximate
analytical series solutions are obtained applying HAM. From the
present study we observe that

(1) the larger values of N (i.e., when the microstructure is sig-
nificant) the velocity and temperature of the fluid decreases
where as the concentration increases.

(2) the velocity, microrotation and concentration decreases
with an increase in the magnetic parameter.

(3) the velocity, microrotation and the dimensionless tempera-
ture of the fluid increases with the increase of Dufour num-
ber (or decrease of Soret number) and with increase of
Dufour number (or decrease of Soret number) the concen-
tration of the fluid decreases.

(4) the velocity, microrotation and concentration decreases
with the increase in the reaction parameter.

Nomenclature

Br ¼ Brinkman number
C ¼ concentration

Cp ¼ specific heat at constant pressure
Cs ¼ concentration susceptibility
S ¼ couple stress parameter

Df ¼ Dufour number
Dm ¼ mass diffusivity

f ¼ dimensionless stream function
g ¼ acceleration due to gravity

GrC ¼ mass Grashof number
GrT ¼ temperature Grashof number

k1 ¼ rate of chemical reaction
K ¼ chemical reaction parameter

KT ¼ thermal diffusion ratio
Pr ¼ Prandtl number
Re ¼ Reynolds number
Sc ¼ Schmidt number
Sr ¼ Soret number
T ¼ temperature

Tm ¼ mean fluid temperature
u ¼ velocity components in the direction of u

Greek Symbols

g ¼ similarity variable
g1 ¼ the coupling material constant
a ¼ thermal diffusivity

bT ¼ coefficient of thermal expansion
bc ¼ coefficient of concentration expansion
q ¼ density of the fluid
� ¼ kinematic viscosity
h ¼ dimensionless temperature
/ ¼ dimensionless concentration
l ¼ viscosity of the fluid

Superscript
0 ¼ differentiation with respect to k
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