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ABSTRACT

This paper addresses a realistic portfolio assets selection problem as a multiobjective optimization one,
considering the budget, floor, ceiling and cardinality as constraints. A novel multiobjective optimization
algorithm, namely the non-dominated sorting multiobjective particle swarm optimization (NS-MOPSO),
has been proposed and employed efficiently to solve this important problem. The performance of the
proposed algorithm is compared with four multiobjective evolution algorithms (MOEAs), based on non-
dominated sorting, and one MOEA algorithm based on decomposition (MOEA/D). The performance
results obtained from the study are also compared with those of single objective evolutionary algorithms,
such as the genetic algorithm (GA), tabu search (TS), simulated annealing (SA) and particle swarm
optimization (PSO). The comparisons of the performance include three error measures, four performance
metrics, the Pareto front and computational time. A nonparametric statistical analysis, using the Sign test
and Wilcoxon signed rank test, is also performed, to demonstrate the superiority of the NS-MOPSO
algorithm. On examining the performance metrics, it is observed that the proposed NS-MOPSO approach
is capable of identifying good Pareto solutions, maintaining adequate diversity. The proposed algorithm
is also applied to different cardinality constraint conditions, for six different market indices, such as the
Hang-Seng in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100 in USA, Nikkei 225 in Japan, and

BSE-500 in India.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The problem of portfolio assets selection has always been a
challenging task for researchers, investors and fund managers.
Markowitz set up a quantitative framework for the selection of
assets in a portfolio [1,2]. In this framework, the percentage of
each available asset is selected in such a way that the total profit of
the portfolio is maximized, while the total risk is minimized
simultaneously. The sets of portfolios of assets that yield the
minimum risk for a given level of return from the efficient frontier.
The optimal solution for the standard form of the Markowitz
portfolio asset selection problem, which is classified as a quadratic
programming model, can be obtained through exact methods,
such as active set methods, interior point techniques, etc.

However, portfolio assets’ selection is very complicated, as it
depends on many factors such as the preferences of the decision
makers, resource allocation, growth in sales, liquidity, total turn-
over, dividend and several other factors. Some authors have also
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added some practical constraints such as floor, ceiling, and
cardinality to the Markowitz model that make it more realistic.
The inclusion of these constraints to the portfolio assets selection
problem makes it intractable even for small instances. With these
constraints, the problem is a mixed integer programming with
quadratic objective functions. The traditional optimization meth-
ods used to solve this problem get trapped in local minima
solutions. To overcome this problem, different efficient heuristic
methods are developed.

An overview of the literature on the application of meta-heuristics
to the portfolio selection problem has been discussed in [3]. These
methods consist of simulated annealing (SA) [4], tabu search (TS) and
the genetic algorithm (GA) [5]. Tunchan [6] has applied the PSO
technique to solve cardinality constrained portfolios, and the results
are compared with those of the GA, TS and SA. Improved PSO
algorithms have been proposed by Gao and Chu [7] for the portfolio
selection problem with transaction costs. The PSO algorithm has been
applied to solve the constrained portfolio selection problem, with
bounds on holdings (minimum buy in threshold and maximum limit
in combination), cardinality, minimum transaction lots and sector
capitalization constraint [8]. Hanhong et al. [9] applied the PSO
technique to solve different restricted and unrestricted risky invest-
ment portfolios, and compared it with the GA.
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The portfolio assets selection problem is intrinsically a multi-
objective problem having conflicting objectives, i.e., risk and
returns. But, in the above studies, the problem has been viewed
as a single objective optimization problem, by considering the
overall objective as a weighted sum of two objectives. Such a
formulation yields multiple solutions, by suitably varying the
associated weights. But the selection of the appropriate weights
to get an optimal solution is a difficult task. Moreover, it requires
several runs to obtain multiple solutions. To overcome these
shortcomings, many researchers have applied multiobjective evo-
lutionary algorithms (MOEAs) to solve the problem. One of the
main advantages of a MOEA is that it gives a set of possible
solutions in a single run, called as a Pareto optimal solution, in a
reasonable amount of time [10,11]. The Pareto ant colony optimi-
zation (PACO) has been introduced for solving the portfolio
selection problem [11] and its performance been compared with
other heuristic approaches (i.e., Pareto simulated annealing, and
the non-dominated sorting genetic algorithm) by means of com-
putational experiments with random instances.

The portfolio assets’ selection problem with many practical
constraints is reported by many researchers [12-16]. Mishra et al.
[12,13] have applied MOEAs to solve the portfolio assets selection
problem with only budget constraint. The literature survey reveals
that the cardinality constraint has been addressed by using the
hybrid local search in MOEA [14]. The floor, ceiling and cardinality
constraints are addressed using MOEAs by some authors [15,16].
All these aforementioned studies lack generality and in-depth
analysis, in examining how the presence of these constraints
affects the decision of the portfolio manager. Hence, a solution
to the portfolio assets selection problem, satisfying a set of
constraints, is a challenging one for researchers. In the proposed
work, the combined presence of practical constraints such as the
budget, floor, ceiling and cardinality is considered, to make the
portfolio assets selection problem more realistic.

In the present study, the portfolio assets selection problem is
formulated as a multiobjective minimization problem with four
practical constraints, and is solved by using the proposed non-
dominated sorting multiobjective particle swarm optimization
(NS-MOPSO) algorithm. Some peer MOEAs based on non-
dominated sorting, such as the Pareto envelope-based selection
algorithm-II (PESA-II) [17], strength Pareto evolutionary algorithm
2 (SPEA 2) [18], non-dominated sorting genetic algorithm-II
(NSGA-II) [19], and the two-lbests based multiobjective particle
swarm optimizer (2LB-MOPSO) [20], have been applied to the
problem. One MOEA algorithm based on decomposition (MOEA/D)
[21] has also been applied to the same problem by formulating the
portfolio asset selection problem as a multiobjective maximization
problem. The performance of these MOEAs is evaluated, using four
statistical metrics such as generation distance, spacing, diversity
and convergence metrics. Two nonparametric statistical tests for
the pairwise comparison of MOEAs are also demonstrated. The
performances of these MOEAs are also compared with four those
of single objective optimization algorithms such as the GA, TS, SA
and PSO, using the mean Euclidean distance, variance of return
error and mean return error.

The rest of the paper is organized as follows. The multiobjective
optimization is presented in a concise manner in Section 2.
Different multiobjective evolutionary algorithms’ frameworks,
and the proposed non-dominated sorting multiobjective particle
swarm optimization (NS-MOPSO) are discussed in Section 3.
In Section 4, the portfolio assets selection problem and its multi-
objective formulation are described. Four performance metrics for
assessing the performance of MOEAs are discussed in Section 5.
Section 5.5 provides the experimental results of the present study.
Finally, the conclusion of the investigation is presented, and
further possible extension of the work is outlined in Section 6.

2. Multiobjective optimization: basic concepts and overview

Multiobjective optimization deals with the simultaneous opti-
mization of multiple objective functions, which are conflicting in
nature. A multiobjective optimization problem (MOP) is defined as
the problem of computing a vector of decision variables that
satisfies the constraints and optimizes a vector function, whose
elements represent the objective functions. The generalized multi-
objective minimization problem may be formulated [28] as

Minimize f(¥)=(f1(X),f2(X ), ....f (X)) 1

Subject to constraints:

g(¥)=0, j=1,2,3...] )
h(X)=0, k=1,2,3...,K 3)
where X represents a vector of decision variables
—
X ={X1,Xz,....xn}"

The search space is limited by
x<xi<xV, i=1,2,3...N 4)

xt and xY represent the lower and upper acceptable values
respectively for the variable x;. N represents the number of
decision variables and M represents the number of objective
functions. Any solution vector U = {Uuq, Us, ...ux)7 is said to dom-
. — T .
inate over vV ={vy,Vv,,...,v;} if and only if

i) <fu(V) Vie{l,2,...M) ;
fi() <f(V) 3ie{1,2,...,M} )

Those solutions which are not dominated by other solutions for
a given set are considered as non-dominated solutions. The front
obtained by mapping these non-dominated solutions into objec-
tive space is called the Pareto optimal front (POF)

POF = f(X) = {((f1(X).f2(¥). .../l X)X ep) (6)

where p is the set of obtained non-dominated particles.

The generalized concept of the Pareto front was introduced by
Pareto in 1986 [25]. The pioneering work in the practical applica-
tion of the genetic algorithm to MOP is the vector evaluated
genetic algorithm (VEGA) [26]. For similar applications the PESA-II
[17], SPEA 2 [18], NSGA-II [19], MOEA/D [21] algorithms have been
proposed by many authors. In the recent past, the heuristic
approach based on particle swarm optimization has been intro-
duced by Coello et al. [28] to solve multiobjective problems. Some
other variants of multiobjective particle swarm optimization
techniques, such as the TV-MOPSO [30], FCPSO [31] and 2LB-
MOPSO [20] have been suggested to solve the MOP. The PSO is
used in the MOEA/D framework where each particle is responsible
for solving one subproblem [32]. Multiobjective evolutionary
algorithms based on the summation of normalized objective
values and diversified selection (SNOV-DS) for solving MOP are
proposed by Qu and Suganthan [23]. Following these algorithms a
variant of the multiobjective optimization algorithm using particle
swarm optimization, called as non-dominated sorting particle
swarm optimization (NS-MOPSO), has been proposed and
employed to solve the portfolio assets selection problem.

3. Multiobjective evolutionary algorithms’ frameworks

According to algorithmic frameworks, the MOEAs may be
categorized as non-dominated sorting based, decomposition
based, memetic, convolution-based and indicator-based [27].
In this paper, five MOEAs algorithms based on non-dominated
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sorting and one algorithm based on decomposition (MOEA/D) are
applied to the portfolio assets selection problem.

3.1. Non-dominated sorting based MOEAs

A majority of the MOEAs in both research and application areas
are Pareto-dominance based, which are mostly the same as those
of NSGA-II [19]. All such algorithms involve two populations of
individuals. The first population or archive/external population is
used to retain the best solutions found during the search. The
second population is the normal population of individuals, some-
times used to simply store the offspring population and at other
times to take part in the reproduction process. The archive is
updated by the best individuals, based on information from both
the populations, and hence, elitism is ensured.

In these algorithms, a selection operator based on Pareto
domination and a reproduction operator are used. The operator
of the MOEAs guides the population iteratively towards the non-
dominated regions, by preserving the diversity to get the Pareto
optimal set. The evaluate operator leads the population conver-
gence towards the efficient frontier, and helps to preserve the
diversity of solutions along the efficient frontier. Both goals are
achieved by assigning a rank and a density value to each solution.
The MOEAs provide first priority to non-dominance, and second
priority to diversity. However, the methods by which they achieve
these two fundamental goals differ. The main difference between
the algorithms lies in their fitness assignment techniques. The
popular fitness assignment strategies are alternating objectives-
based fitness assignments such as the VEGA [26] and domination-
based fitness assignments, such as SPEA 2 [18], NSGA-II [19], etc.

In this paper, the authors have applied five different non-
dominated sorting based algorithms, such as PESA-II [17], SPEA 2
[18], NSGA-II [19], 2LB-MOPSO [20] and the proposed NS-MOPSO
one. The 2LB-MOPSO algorithm uses two local bests instead of one
personal best and one global best, to lead each particle. The two
local bests are selected to be close to each other, and help to
enhance the local search ability of the algorithm.

3.1.1. The PESA-II algorithm

Corne et al. [17] have proposed the Pareto envelope-based
selection algorithm for solving the multiobjective optimization
problem. In this algorithm, the newly generated solutions B, are
incorporated into the archive one by one. A candidate child from
the newly generated solutions enters the archive when it is non-
dominated within B, or it is not dominated by any current
member of the archive. If the addition of a solution renders the
archive over-full, then a mating selection is carried out by employ-
ing the crowding measure. The crowding distance measurement is
done over the archive members. Each individual in the archive is
associated with a particular hyper-box. It has a squeeze factor,
which is equal to the number of other individuals from the
archives, which are present in the same hyper-box. The environ-
mental selection criterion is based on this crowding measure, and
used for each individual from the archive. The PESA-II algorithm is
proposed in [17] by incorporating region based selection, and
shows improved performance over PESA.

3.1.2. The SPEA 2 algorithm

In SPEA 2, mating selection is used, which is based on the
fitness measure, and it uses the binary tournament operator [18].
It emphasizes non-dominated individuals by using a technique,
which combines the dominance count and dominance rank
method. Each individual is assigned a raw fitness value that
specifies the number of individuals it dominates, and also the
number of individuals by which it is dominated. The density

information is incorporated into the raw fitness, by adding a value
which is equal to the inverse of the kth smallest Euclidean distance
to the kth nearest neighbor, plus two. The archive updation is
performed according to the fitness values associated with each of
the individuals in the archive. Then, the updated operator returns
all the non-dominated individuals from the combined set of
archive and the current pool. There are two possibilities; if the
archive size is less than the pre-established size, it is completed
with dominated individuals from the current pool; otherwise,
some individuals are removed from the archive using the trunca-
tion operator. This operator is based on the distance of an
individual from its nearest neighbor.

3.1.3. NSGA-II algorithm

Dev and Pratab [19] have proposed the NSGA-II for solving
MOPs. The NSGA-II algorithm starts from a random population and
utilizes some operators, for uniform covering of the Pareto set. The
NSGA-II algorithm for multi-criteria optimization contains three
main operators: (i) a non-dominated sorting, (ii) density estima-
tion, and (iii) a crowded comparison. To guide the individuals
towards the efficient frontier, the dominance depth method is
adopted by the NSGA-IL It classifies the solutions in several layers,
based on the position of fronts containing the individuals. The
crowding distance mechanism is employed to preserve the diver-
sity of solutions which calculates the volume of the hyper-
rectangle defined by the two nearest neighbors. Based on these
values, the update operator returns the best individuals from the
combination of the archive and the population. Individuals with a
lower rank and higher crowding distance would fill the archive.
The three main characteristics of NSGA-II are (i) the non-
dominated sorting algorithm has a lower computational complex-
ity than its predecessor, the NSGA. The maximum computational
complexity of the NSGA-II algorithm is O(mN?), where N is the
population size and m is the number of objectives; (ii) Elitism is
maintained, and (iii) no sharing parameter needs to be chosen,
because sharing is replaced by the crowded-comparison to reduce
computations.

3.1.4. The 2 LB-MOPSO algorithms

In this paper, another most recently proposed evolutionary MO
algorithm called the Two-lbests based multiobjective particle
swarm optimizer (2LB-MOPSO) [20], for solving the portfolio
optimization problem, has been applied. This algorithm uses two
local bests instead of one personal best and one global best, to lead
each particle. In order to select the first Ibest for a particle, an
objective is first randomly selected, followed by a random selec-
tion of a bin of the chosen objective. Within this bin, the archived
member with the lowest front number and with the highest
crowding distance is selected as the first lbest. The second lbest
is selected from a neighboring non-empty bin, with the lower
front number and the smallest Euclidean distance in the para-
meter space to the first Ibest. As each particle’s velocity is adjusted
by the two Ibests from two neighboring bins, the flight of each
particle will be in the direction of the positions of the two lbests,
and orient to improve upon the current solutions. A pair of lbests is
assigned to a particle, and the number of iterations the particle
fails to contribute a solution to the archive is counted. If the count
exceeds a predefined threshold, the particle is re-assigned to
another pair of lbests. The two local bests are close to each other,
and help to enhance the local search ability of the algorithm.

3.1.5. Proposed non-dominated sorting multiobjective particle
swarm (NS-MOPSO): description of the algorithm

Kennedy and Eberhart [22] realized that an optimization
problem can be formulated by mimicking the social behavior of
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a flock of birds, flying across an area looking for food. This
observation and inspiration resulted in the invention of a novel
optimization technique called particle swarm optimization (PSO).
In PSO [22] each solution is represented by a particle and the ith
particle is given by X; = (xi1, Xj2, X3, ..., Xiq), Where d is the dimen-
sion of the search space. The ith particle of the swarm population
has its best position P;=(p;;,Di,----Dig) that yields the highest
fitness value. The global best position Pg = (g1, Pg2, - Pga) 1S the
position of the best particle that gives the best fitness value in the
entire population. V; = (vj1, Vi, ..., Vig) is the current velocity of ith
the particle. Particles communicate with each other and for a fully
connected topology, the position and velocity of each particle in
the next iteration are mathematically expressed as

Via(8) = wvig(t — D+ Ci11(Pig — Xia)(t — 1)+ Cara2(Pgg —Xi)(E = 1) (7)

Xia(t) = Xijg(t = 1)+ vig(t) (8)

where d=1,2,..,D and i=1,2,...,N. The size of the swarm popula-
tion is N. y is a constriction factor which controls and constricts the
velocity magnitude. w is the inertia weight parameter to control the
exploration or exploitation in the search space. It can be a positive
constant, or a linear or nonlinear function of time [22]. r; and r,

Initialize population with
random position, velocity
and size of archive

|

are two random values, called as acceleration constants within the
range [0, 1].

In classical PSO, each particle tries to maximize the food
substance obtained, by moving across the multi-dimensional
search space, by updating its velocity and position. It is the only
objective that governs the search process. But in the course of
moving, it may face constraints like favorable temperature condi-
tions, and it is expected that the swarm should not move to a
region of unfavorable temperature. If the temperature constraint is
incorporated by adding a penalty function to the actual nutrient
concentration, then the approach leads to a single objective
constraint optimization. Instead, the food concentration and favor-
able temperature can be considered as two separate objectives.
The individual particle tries to optimize these two objectives
simultaneously, and this can be applied to the multiobjective
optimization problem.

Coello et al. [28] extended the PSO to MOPSO, in order to deal
with the multiobjective problem. In our proposed NS-MOPSO, the
concept of non-dominated sorting is incorporated in MOPSO,
satisfying both the objectives and the constraints. Those swarms
whose locations represent non-dominated solutions are classified
as the optimal Pareto front 1 (OPF1) and the remaining swarms are
classified as higher OPFs. In this way, the complete population is
ranked, based on the Pareto-dominance criteria. The locations in

Evaluate the fitness of each
particle s and initialize

Find non-dominated solution
and insert it in external
pbest and gbest archive A

3

q
»

A 4

Compute Crowding distance of
each particle in A.

v

Update velocity: equation (7)
with modification of ghest
now replaced with A [gbest]

of A

Select ghest from top portion |q | Sort A in descending Crowding

distance value.

}

Update position: equation (8)

v

Contain particles within
search space using constraint
handling mechanism

}

Perform mutation operation

A

}

Evaluate the fitness of each

particle

Insert all new non-dominated
solution into external archive
if they are not dominated by
any of the stored solution

Update pbest

Reach
Maximum
Iteration ?

Output the archive

Fig. 1. Flow chat of NS-MOPSO algorithm.
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the lower OPF1 are rich in food, and the locations of higher OPFs
are poor in food content. Each particle updates its velocity and
position based on its own best experience and that of the particles
with lower OPF. The updating rule enables the particles to move
toward the lower optimal Pareto front.

The constraint handling is carried out, based on the approach
given by Deb et al. [19]. In this approach, the normalized sum of
constraint violations for all individuals is calculated. Then, the
individuals are classified according to the overall constraint viola-
tion. In between any two individuals, if the overall violation of both
of them is zero, then the ordinary ranking assignment is applied.
Otherwise, the individual with the lower (or null) overall violation
dominates the other one. In this study of NS-MOPSO based portfolio
assets selection, the position of each particle represents a weight
vector associated with different assets. The two fitness functions
(risk and return) evaluate the fitness value for each particle. A flow
chat of the proposed algorithm is shown in Fig. 1.

The pseudo code of the NS-MOPSO algorithm can be summar-
ized in the following steps.

Step 1: Initialization of parameters

® N: Population size and store the population in a list PSOList.

® X;: The current position of the ith particle within a specified
variable range.

® V;: The current velocity of the ith particle within the specified
decision variable range. It has the probability of 0.5 being
specified in a different direction.

The personal best position Pi is set to X.

® Vypp and Vo : Upper and lower bounds of the decision
variable range.

® Maxlterations: Maximum number of iterations.
Step 2: Evaluate each particle in the population.
Step 3: Iteration count loop:t=t+1.
Step 4: Identify particles that give non-dominated solutions in
the population and store them in a list NonDomPSOList.
Step 5: Calculate the crowding distance value for each particle.
Step 6: Resort the NonDomPSOList according to the crowding
distance values.
Step 7: Number of particles: i =i+1 (step through PSOList).

® Select randomly a global best P, for the ith particle from a
specified top part (e.g. top 5%) of the sorted NonDomPSOList.

® Calculate the new velocity V; and the new X; based on Egs.
(7) and (8) respectively.

® Add the ith particles P; and the new X; to a temporary
population, stored in NextPopList. At this stage the P; and X;
coexist and the size of NextPopList is 2N.
Step 8: If i <N, go to the next particle (i+1) (step 7).
Step 9: Identify particles that give non-dominated solutions
from NextPopList and store them in NonDomPSOList. Particles
other than non-dominated ones from NextPopList are stored in
a list NextPopListRest.
Step 10: Empty PSOList for the next iteration step.
Step 11: Select random members of NonDomPSOList and add
them to the PSOList (not to exceed number of particles (N)).
Assign the rest of NonDomPSOList as NonDomPSOListRest.
Step 12: If PSOList size < number of particles (N).

® [dentify non-dominated particles from NonDomPSOListRest, and
store them in NextNonDomlList.

® Add member of NextNonDomlList to PSOList.

e [f still the PSO List size < N, copy NextPopListRest to NextPopLis-
tRestCopy, then vacate NextPoplListRest.

® Assign the vacant NextPOPListRest with the remaining particles,
other than non-dominated ones from NextPopListRestCopy.
Step 13: If PSOlistsize < number of particles (N), go to (step 12).
Step 14: If t < MaxlIterations, go to the next iteration (step 3)

3.2. Decomposition based MOEAs

The decomposition MOEA (MOEA/D) [21] is another form of
algorithm. In this approach, the multiobjective optimization pro-
blem is decomposed into a number of scalar objective optimiza-
tion problems (SOPs). The objective of each SOP, called a
subproblem, is a weighted aggregation of the individual objectives.

The MOEA/D decomposes the multiobjective optimization
problem into N scalar optimization subproblems. It solves these
subproblems simultaneously, by evolving a population of solu-
tions. At each generation, the population is composed of the best
solution found so far for each subproblem. The neighborhood
relations among these subproblems are defined, based on the
distances between their aggregation weight vectors. A subproblem
is a neighbor of another subproblem, if the weight of the first is
close to that of the other. Each subproblem is optimized in the
MOEA/D by using information mainly from its neighboring sub-
problems. In this case, each individual subproblem keeps one
solution in its memory, which could be the best solution found so
far for the subproblem. The MOEA/D provides flexibility of
incorporating any decomposition approach, into its framework
for solving the MOPs.

The MOEA/D optimizes N scalar optimization problems, rather
than directly solving an MOP as a whole. Therefore, it employs
scalar optimization methods as each solution is associated with a
scalar optimization problem.

3.2.1. Decomposition based MOEAs using particle swarm

The issues of fitness assignment and diversity maintenance are
easier to handle in the framework of MOEA/D. Several improve-
ments on MOEA/D have been reported in [33] and have been
applied to a number of application areas [34,35]. In their works,
the authors have applied one decomposition based MOEA algo-
rithm (MOEA/D), in which the objective of each subproblem has
been optimized, using the heuristic algorithm. In this paper, the
authors have used one variant of the (MOEA/D) algorithm, where
an individual objective is optimized using the particle swarm
optimization for designing a decomposition-based multiobjective
evolutionary algorithm (MOEA/D).

3.3. Constraint handling in MOEAs

Coello et al. [28] classified the constraints handling methods
into five categories: (1) penalty functions, (2) special representa-
tions and operators, (3) repair algorithms, (4) separate objectives
and constraints, and (5) hybrid methods. The past, present and
future aspects of constraint handling in nature-inspired numerical
optimization have been described by Coello [29]. A constraint
dominance concept has been introduced by Deb et al. [19] to
handle constraints in multiobjective problems. A solution x dom-
inates a solution y if (i) x is feasible and y is infeasible, (ii) both are
infeasible, and x has a less constraint violation than y, or (iii) both
are feasible and x dominates y. The solutions are ranked using the
non-constraint-dominated method, while the superiors are
selected to evolve. The handling of different practical constraints
in the portfolio assets selection problem is explained in Section 6.

Although MOEAs have been investigated in depth within the
context of unconstrained and bound constrained MOPs, the gen-
eral constraints encountered in real-world problems have not
been considered. Typically, the search space €2 of a constrained
MOP [27] can be formulated as follows:

8i(x) =gj(x1,X2,...xn) <0, j=1,2,...]
Q={ ) =hx1,%2,..,x0) =0, k=1,2,...K 9)
xb<x <xV i=1,2,...,n
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where g;(x) and hi(x) are inequality and equality constraint
functions, respectively. Generally, equality constraints are trans-
formed into inequality forms, and then combined with the
inequality constraints using

max {g;(x), 0}, i=12..]
Gi(x) = { )

max {|hj—J@)|—8.0), j=J+1.J+2...J+K (10)

where § is a tolerance parameter for the equality constraints. Due
to the presence of constraints, the search space is partitioned into
feasible and infeasible regions.

4. Portfolio assets selection problem

The main objective of portfolio assets selection is the max-
imization of returns and minimization of risk. In addition to these
two objectives, other restrictions may be present, called as con-
straints. In the Markowitz model [2] for portfolio selection,
variance is used as a measure of risk which is mathematically
expressed as

N N
UIZJ= Z Z WiW;ajj (11)
i=1j=1
where ¢ is the covariance between assets i and j,

012, is the variance of portfolios, and N denotes the number of
assets available, w; and w; (weighting of asset) are the proportions
of the portfolios held in assets i and j respectively.

The portfolio return is represented as

N
rp: Z W;T'; (]2)
i=1

r; is the expected return of the asset i.
1p is the expected return of the portfolio.

N
Subjectto : Y w;=1 (13)
i=1
a;izi <w; < biZi, (14)
where
O0<ag<1 (15)
0<b;<1 (16)
and
S 1 forw;>0 17
e { 0 otherwise an
N
2 zi=K (18)

i=1

Eq. (13) shows the budget constraint which ensures that the
sum of the weights associated with each asset is equal to one, i.e.,
all the available money is invested in the portfolio. a; is the floor
constraint, and it is the lowest limit on the proportion of any asset
that can be held in a single portfolio. It prevents excessive
administrative costs for very small holdings, which have an
insignificant influence on the performance of the portfolio. b; is
the ceiling constraint and is the maximum limit on the proportion
of any asset that can be held in a single portfolio. It prevents the
excessive exposure to any portfolio, which is part of the institu-
tional diversification policy.

The decision variable z; is 1 or O depending upon whether an
asset i(i=1,2,...,N) is held or not respectively. Eq. (14) ensures
that if any asset i is selected (z; = 1), its proportion w; must lie
between qa; and b;; otherwise w; is zero (z; =0). Eq. (18) ensures

that exactly K assets (cardinality constraint) of N available assets
are held in a single portfolio.

Hence, with the presence of two objectives as shown in
Egs. (11) and (12), and the constraints shown in Egs. (13)-(18),
the portfolio problem becomes a multiobjective optimization
problem, and the sole aim is to find all non-dominated sets of
solutions. This multiobjective portfolio assets selection problem is
solved, with single objective evolutionary algorithms (SOEAs)-
based techniques by many researchers [5-9]. Most of these
approaches consider the overall objectives as a weighted sum of
the two objectives, which can be expressed mathematically as

Minimize V= A[g5]—(1—-A)rp]

N N N
=}{ PP WinO'ij] —-(1-4 { > Wiri:| (19)
i

i—1j=1

The only objective is to minimize ‘V’. By repeatedly varying the
parameter value 4, and solving a sequence of optimization pro-
blems (for each A), the efficient portfolios from the minimum
variance portfolio (A=1) to the maximum return portfolio (1=0)
can be found. Hence, such a formulation yields non-dominated
solutions, by suitably varying the A factor from 0 to 1 with a small
increment, viz., 0.01 or 0.02. The main advantage of these
approaches is that it reduces the multiobjective problem to a
scalar optimization problem, and then, any single objective meta-
heuristics algorithm can be applied.

However, solving this multiobjective problem with these SOEAs
methods requires the repeated use of an optimization technique to
find one single solution on the efficient frontier per run. Hence, it
is a time consuming process to get the entire Pareto front.
Furthermore, a uniform set of A does not guarantee a uniformly
distributed set of efficient points [10]. The diversity of solutions
along the efficient frontier is of immense importance, since certain
trade-off portfolios of interest may be missed, if they are concen-
trated in a small area of the efficient frontier. One more shortfall of
this approach is that it cannot find all efficient points as shown in
[5]. In addition, if practical constraints are considered the problem
becomes extremely difficult to solve, by using this method. To
overcome these shortcomings the portfolio assets selection pro-
blem is solved, by applying multiobjective evolutionary algorithms
(MOEAs), by suitably formulating it as a multiobjective optimiza-
tion problem. These MOEAs give a set of possible solutions in a
single run, called as a Pareto optimal solution.

4.1. Multiobjective formulation of portfolio assets selection

The portfolio assets selection is formulated as a multiobjective
optimization problem for non-dominated sorting based MOEAs,
and decomposition based MOEAs, as dealt within the following
subsections.

4.1.1. Formulation for non-dominated sorting based MOEAs

The multiobjective portfolio assets selection problem can be
solved by MOEAs based on non-dominated sorting, which do not
combine the two objectives to obtain the Pareto optimal solution
set. Here, the two objectives are taken individually, and an attempt
is made to optimize both simultaneously.

The main objective is to maximize the return, r, and minimize
the risk, 012,. The proposed NS-MOPSO are suitably oriented in such
a way as to minimize the two objectives. To express both the
objectives in minimization form, the first objective r,, is expressed
as —rp. In addition to these objectives, different practical
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constraints mentioned in Eqs. (13)-(18) are also considered.
Accordingly, the portfolio problem is expressed as

Minimize af, and —r, simultaneously considering all constraints
(20)

Hence, in the presence of these multiple objectives and con-
straints, the problem becomes a complex multiobjective minimi-
zation problem. By solving this Eq. (20), a set of efficient solutions,
called the efficient frontier, is obtained. This is a curve lying
between the global minimum risk portfolio and the maximum
return portfolio. In the present investigation, this efficient frontier
is termed as the Pareto front.

4.1.2. Formulation for decomposition based MOEAs (MOEA/D)

The MOEA/D provides the flexibility of using any decomposi-
tion approach in its framework for solving the MOPs. These
approaches include the weighted sum approach, Tchebycheff
approach, and the Boundary intersection approach [21]. If the
weighted sum approach is applied to the MOEA/D algorithm, it
considers a convex combination of different objectives. Mathema-
tically it is expressed as

Maximize g"* (w/1)= E} Aifi(w) 21
i=1

subject to x e Qwhere A= (11,..,Am)" is the weight vector, i.e.
Ai=0foralli=1,..,mand

3 A=1 22)
i=1
The symbol A is a coefficient vector in the objective function and x
is the variable to be optimized. Different weight vectors of A are
used in the above scalar optimization problem to generate a set of
different Pareto optimal vectors.

In the portfolio assets selection problem, the number of objec-
tives m is two, i.e., risk and return. For applying the MOEA/D, the
portfolio assets selection problem can be expressed as

Maximize g" (w/A)= ilifi(w) (23)
i<1

where 4;>0 foralli=1,2 and Y?_,4;=1, subject to xe 2, A is a
coefficient vector of the objective function, and x is the variable to
be optimized. The two functions f;(x) and f,(x) are to be max-
imized. To generate a set of different Pareto optimal vectors, one can
use different weight vectors A in the above scalar optimization
problem. In a single run, a set values of 1 is utilized, and using the
neighborhood concept the complete set of solutions on the Pareto
front is obtained.

Since the objective is to maximize the return r, and minimize
the risk of,, the risk 0'12, may be expressed in maximization form as
- af,. In addition to these objectives, different practical constraints
mentioned in Egs. (13)-(18) are also considered. Accordingly the
portfolio problem is expressed as

Maximize — af, and r, considering all constraint (24)

Hence, in the presence of this multiple objectives and con-
straints, the problem becomes a multiobjective maximization
problem. A set of Pareto optimal solutions is obtained by solving
Eq. (24) in a single run.

5. Simulation study

The algorithms are simulated in a MATLAB environment, and
are run on a PC with Intel Core 2 Duo 3.0 GHz with 4 GB RAM. The
portfolio assets selection problem is solved using NS-MOPSO. The
results thus obtained are compared with the corresponding results

achieved using the other five MOEAs (PESA-II, SPEA 2, NSGA-II,
2LB-MOPSO and MOEA/D) as well as the results obtained, using
the four single objective evolutionary algorithms (SOEAs), such as
the PSO, GA, TS and SA identical to those dealt within [6].

5.1. Solution representation, encoding and constraints satisfaction

The hybrid representation proposed by Streichert et al. [38] has
been implemented, which seems to be more appropriate for
portfolio assets selection. In order to have a fair comparison, the
same solution representation is carried out for all the algorithms.
In the hybrid representation, two vectors are used for defining a
portfolio: a binary vector that specifies whether a particular asset
participates in the portfolio, and a real-valued vector used to
compute the proportions of the budget invested in the assets:

z;=1{0,1},
O<w;<1,

A={z1,...,zn},
W ={wq,...,wyp},

i=1,..,n
i=1,..n (25)

Before the objective values are computed, the repair algorithm
is performed in order to find the portfolio x associated with the
above encoding. First, if the number of assets in the portfolio, i.e.,
the number of 1’s in A of Eq. (25), overcomes the maximum
allowable ones, then those assets that have the minimum weight
in W are deleted (by changing its value from 1 to 0 in A). In this
way, the portfolio satisfies the cardinality constraints.

To meet the constraint, the simplest strategy is to normalize
the weights, so that the total weights will meet the budget
constraint, i.e., the sum of the weights equal to one. This is
mathematically defined as

W;.Z;

Wadjusted = 21'1
i

_1Wi.Zi (26)

If both the floor and the ceiling constraints are included, then
the weight values are to lie within a specific range. Hence, the
simple strategy of normalizing the total weights to one, so as to
meet the budget constraint is no longer applicable, as the normal-
ized weights might not be within the limits. Hence, the fitness
evaluation for the proposed representation as in Eq. (26) has to be
modified. The modified fitness evaluation has been initialized with
an empty portfolio, where the assets are added iteratively. The
combination of floor and ceiling constraints can be divided into
three different cases.

Case 1: If both floor and ceiling constraints are present, then the
weights vector represented by Eq. (26) needs to be adjusted as

wW;.Z; n .
Wadiusted = i Zi+=——— | bizi— X @iz |, i=1,..,n (27)
2 Wiz i=1

Case 2: If the weight has to be adjusted only for the floor
constraint, and there is no restriction on the upper limit (ceiling
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Fig. 2. Plots of standard efficient frontier for Nikkei 225 stock indices.



S.K. Mishra et al. / Swarm and Evolutionary Computation 16 (2014) 38-51 45
x10° Nikkei with 225 Assets
4 T T T T T
3.5 ]
3 - -
£ 25 -
2
e
c 27 GOPF I
3 = NS-MOPSO
= .5 ——2LB-MOPSO||
== MOEA/D
1k NSGA-II
- SPEA 2
= PESA-II
0.5 -
0 I 1 1 1 1 1 1 1
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-3
Variance of return x10
10° Nikkei with 225 Assets
T T T T T T T T T T T
3.6
34
3.2
3 -
c
:5_. 28
e
c 26 GOPF
3 =—=NS-MOPSO
24 H
= =—=2LB-MOPSO
22+ =—MOEA/D H
NSGA-II
2F —SPEA2
18} = PESA-II
1.6 B
1 1 1 1 1 1 1 1
3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
. -4
Variance of return x 10
Fig. 3. Global optimal Pareto front and MOEAs efficient frontiers for Nikkei 225 stock indices.
Table 1
Experimental results of all algorithms to five markets.
Index Assets  Error GA TS SA PSO PESA-II  SPEA2  NSGA-I 2LB-MOPSO MOEA/D  NS-MOPSO
Hang-Seng 31 Mean Euclidian distance  0.004 0.004 0.004 0.0049 0.0044 0.0042 0.004 0.004 0.004 0.004
Variance of return error 1.6441 1.6578 1.6628 2.2421 1.5233 1.4877 1.3266 1.2789 1.2766 1.284
Mean return error (%) 0.6072 0.6107 0.6238 0.7427 0.762 0.6899 0.6472 0.601 0.6015 0.6021
DAX 100 85 Mean Euclidian distance ~ 0.0076 0.0082 0.0078 0.009 0.0098 0.0084 0.0077 0.0074 0.0075 0.0075
Variance of return error 7.218 9.039 8.5485 6.8588 9.2819 8.2432 7.1211 6.5056 6.6078 6.7543
Mean return error (%) 1.2791 1.9078 1.2817 1.5885 2.2212 1.5922 1.2634 1.2566 1.2601 1.2671
FTSE 100 89 Mean Euclidian distance  0.002 0.0021 0.0021 0.0022  0.0024 0.0022 0.0021 0.0018 0.0019 0.0019
Variance of return error 2.866 4.0123 3.8205 3.0596 5.2381 3.7652 2.9871 2.7899 2.8022 2.812
Mean return error (%) 0.3277 0.3298 0.3304 0.364 0.4023 0.3652 0.3329 0.32 0.322 0.325
S&P 100 98 Mean Euclidian distance  0.0041 0.0041 0.0041 0.0052 0.0056 0.0049 0.0042 0.0041 0.0041 0.004
Variance of return error 3.4802 5.7139 5.4247 3.9136 7.0122 5.4323 3.7629 3.4588 3.4677 3.4763
Mean return error (%) 1.2258 0.7125 0.8416 1.404 24232 1.2109 0.7321 0.7001 0.702 0.7021
Nikkei 225 Mean Euclidian distance  0.0093  0.001 0.001 0.0019 0.0101 0.0032 0.001 0.0009 0.0009 0.0008
Variance of return error 1.2056  1.2431 1.2017 24274  3.0986 2.0421 11232 1.1138 1.1189 0.9876
Mean return error (%) 5.3266  0.427 0.4126 0.7997 1.2314 0.8654 0.4325 0.4011 0.411 0.3276
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constraint), then the adjusted portfolio weights are computed
using Eq. (28)

1% =0a;zi+
adjusted = Yi-4i B 1W1 Z; =

2 Zi n .
% 1- Y azi ], i=1,...n (28)

Case 3: If the weight has to be adjusted to the ceiling constraint,
and there would be no restriction on lower limit (floor constraint).
Then the adjusted portfolio weights are computed using the
following equation:
Wiz

7(131'-21’),
1 Wizi

Wadjusted =bi.zi— i=1,...n (29)

5.2. Parameters used in the simulation of MOEAs

The conceptual framework for parameter tuning of different
evolutionary algorithms is presented in [24]. For all the six MOEAs,
the population size and number of generations are taken as 100
and 10,000 respectively. In the NS-MOPSO, 2LB-MOPSO and
MOEA/D, the position of each particle represents a weight vector
associated with different assets. For three MOEAs based on the
genetic algorithm, such as such as PESA-II, SPEA 2 and NSGA-II,
one chromosome represents one set of weights of assets, and each
gene represents the weight of one asset. The dimensions of the
search space depend on the number of assets of the stock. After
several experiments with different parameters, the final para-
meters of the fine-tuned algorithms are as follow.

PESA-II: The internal and external population size is taken as
50, uniform crossover is taken having a rate of 0.8. It has a
mutation rate of 1/L, where L refers to the length of the chromo-
some string that encodes the decision variables. The grid size, i.e.,
the number of divisions per dimension is set at 10.

Table 2
The performance evaluation metrics for different MOEAs.

Algorithm PESA-II  SPEA2  NSGA-II 2LB-MOPSO MOEA/D NS-MOPSO

S
Max 321E-5 743E—-6 6.54E—-6 5.12E—-6
Min 1.87E—-5 523E—-6 3.98E—-6 2.58E—6
Avg. 2.33E-5 6.36E—-6 4.74E—6 3.53E—-6
Std. 0.58E—5 1.58E—6 153E—-6 0.82E—-6
GD
Max 2.54E—-2 201E-3 723E-4 271E-4
Min 1.01E-2 0.89E—3 5.23E—4 1.04E-4
Avg. 1.76E—2 1.02E-3 6.72E—4 1.86E—4
Std. 042E—2 0.28E—3 148E—4 0.32E-4

593E-6 5.22E-6
2.51E-6 2.33E-6
3.62E—-6 3.48E—-6
0.87E—6 0.85E—6

2.63E—4 2.16E-4
1.05E-4 1.02E—-4
1.76E—4 145E-4
0.57E—4 0.36E—4

Max 6.78E—1 4.34E—1 334E-1 2.52E-1
Min 423E—-1 289E—-1 1.89E—-1 1.02E-1
Avg. 593E—-1 3.86E—1 2.96E—-1 142E-1

254E—-1 2.45E-1
120E—1 0.99E-1
145E—-1 133E-1

Std. 148E—1 093E—1 0.78E—1 044E—1  0.46E—1 043E—1
2.50E-05
u
2.00E-05
1.50E-05 -
1.00E-05 -
5.00E-06 - l
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Fig. 4. Average value of S metric for MOEAs algorithms.

SPEA 2: The crossover is taken as uniform. The crossover and
mutation rate are taken as 0.8 and 0.05 respectively. The archive
size is fixed at 50.

NSGA-II: The uniform crossover rate and mutation rate are
taken as 0.8 and 0.05 respectively.

NS-MOPSO: Velocity has the probability of 0.5 being specified in
a different direction. The upper and lower bounds of the decision
variable range Vypp and Vo are fixed at 0.06 and 0.5 respectively.
The parameter w=0.862 and C; = C; =2.05.

2LB-MOPSO: The parameter w=0.862, C; =C, =2.05. Each
objective function range in the external archive is divided into a
number of bins, i.e,n_bin and it is set to 10.

MOEA/D: Each subproblem of MOEA/D has been optimized,
using the particle swarm optimization. The parameter w = 0.862
and Ci=C,=2.05.

5.3. Nonparametric statistical tests for the comparison of algorithms

The interest in a nonparametric statistical analysis has grown
recently, for comparing evolutionary and swarm intelligence
algorithms [40]. Pairwise comparisons are the simplest kind of
statistical tests which can be applied within the framework of an
experimental study. Such tests compare the performance of two
algorithms, when applied to a common set of problems. In the
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\
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Fig. 5. Average value of A metric for MOEAs algorithms.

Table 3
The results obtained for C metric for different MOEAs.

PESA-II SPEA 2 NSGA-II 2LB-MOPSO MOEA/D NS-MOPSO

PESA-II - 0.3810 0.2230 0.1881 0.1987 0.1880
SPEA-II 0.7280 - 0.3280 0.2478 0.2612  0.2380
NSGA-II 0.8530 0.7620 - 0.3444 0.3510 0.3430
2LB-MOPSO 0.9080 0.8010 0.7810 - 0.4521 0.4412
MOEA/D 0.9010 0.7980 0.7710 0.4744 - 0.4510
NS-MOPSO  0.9090 0.8020 0.7800 0.4434 0.4680

Table 4

Comparison of CPU time in seconds among different markets using MOEAs.

Algorithms PESA- SPEA- NSGA- 2LB- P-MOEA/ NS-
I 11 11 MOPSO D MOPSO
CPU Hang- 685 708 675 673 443 671
time Seng
DAX 100 1606 1653 1586 1570 1033 1566
FTSE 100 1621 1669 1601 1585 1048 1582
S&P-100 1641 1680 1617 1600 1070 1602
Nikkie- 4820 4960 4760 4720 3100 4700
225
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present case, the Sign test and Wilcoxon signed rank test [40] are
carried out to compare the performance pairwise. In the simula-
tion work, the two tests are carried out by comparing all the
MOEAs algorithms with the NS-MOPSO algorithms. The Sign test
requires counting the number of wins achieved, either by the NS-
MOPSO or by the comparison algorithm. The Wilcoxon signed rank
test is analogous to the paired t-test in nonparametric statistical
procedure [40]. The aim of the Wilcoxon signed rank test is to
detect the difference between the behaviors of two algorithms.

5.4. Performance measure metrics

The four different metrics defined in the sequel are used during
the investigation for measuring the performance quality.

Generation distance (GD): It estimates the distance of elements
of the non-dominated vectors found from the standard efficient
frontier, and is mathematically [36,37] expressed as

op= VZi=rd
n

where n is the number of vectors in the set of obtained non-
dominated solutions. d; is the Euclidean distance between each of
these, and the nearest member of the standard efficient frontier. If
GD =0, all the candidate solutions are in the standard efficient
frontier. The smaller the value of GD, the closer the solution to the
standard efficient frontier.

Spacing (S): It measures the spread of candidate solutions
throughout the non-dominated vectors found. This metric [36] is
mathematically expressed as

(30)

(€3]

where

d; = min((f,'(X) —f )1 +1f,' (X))~ f/ (X)) and ij=1.2,...n

d=mean of all d; and n is the number of non-dominated vectors
found so far.

A value of zero for this metric indicates that all members of the
Pareto front currently available are equidistantly spaced.

Diversity metric (A): This metric measures the extent of the
spread, i.e., how evenly the points are distributed among the
approximation sets in objective space. This metric does not require
any standard efficient frontier, and has a relation with the
Euclidean distance between solutions. It is defined [19] as

A :df+d:+Z§V;fldin|
di+di+n—1d

(32)

where d; is the Euclidean distance between consecutive solutions
in the obtained non-dominated set of solutions. d is the average of
these distances d;. d; and d; are the Euclidean distance between
the extreme solutions and the boundary solutions of the obtained
non-dominated set. n is the number of solutions from the non-
dominated set. The low value of A indicates a better diversity of
the non-dominated solution. Its value for the most widely and
uniformly spread out set of non-dominated solutions is zero.
Convergence metric (C): This metric compares the quality of two
non-dominated sets. This matrix is computed without taking the

Table 5
Critical values for the two-tailed sign test at « =0.05 and a=0.1.

standard efficient frontier into consideration. Let A and B be two
different sets of non-dominated solutions; then, the C metric [36]
is mathematically expressed as

[{beB|dacA: ab}|
B

where a and b are candidate solutions of sets A and B respectively.
The function C maps the ordered pair (A, B) to the interval [0, 1]. If
C(A,B)=1, all the candidate solutions in B are dominated by at
least one solution in A. Similarly if C(A,B)=0, no candidate
solutions in B is dominated by any solution in A.

CA,B) = (33)

5.5. Experimental results

All the experiments have been simulated with a set of bench-
mark data available online, and obtained from OR-Library being
maintained by Prof. Beasley [39]. The same test data have also
been used in [6]. The data corresponds to the weekly prices
between March 1992 and September 1997 from different well
known indices, such as the Hang-Seng in Hong Kong, DAX 100 in
Germany, FTSE 100 in UK, S&P 100 in USA, and Nikkei 225 in Japan.
The numbers of different assets (stocks) for the above benchmark
indices are 31, 85, 89, 98 and 225 respectively. In the PORT-1 to
PORT-5 data sets, the returns of the individual assets and the
correlation between assets are given for these five indices respec-
tively. The covariance between the assets, evaluated from the
correlation matrix, is used for calculating the risk of the portfolio.

The data for the global optimal Pareto fronts (GOPF), also called
as the standard efficient front for each of these five stock indices,

Table 6
Critical values for the two-tailed sign test at «=0.05 and «=0.1 using S metric as a
winning parameter.

NS-MOPSO PESA-II  SPEA-II NSGA-II 2LB-MOPSO MOEA/D
Wins (+) 21 20 17 13 14
Loses (—) 4 5 8 12 11
Detected differences «=0.05 «=0.05 a=0.01 - -

Table 7
Critical values for the two-tailed sign test at «=0.05 and «=0.1 using A metric as a
winning parameter.

NS-MOPSO PESA-II  SPEA-II NSGA-II 2LB-MOPSO MOEA/D
Wins (+) 19 18 17 16 13

Loses (—) 6 7 8 9 12
Detected differences a=0.05 «=0.05 «=0.01 - -

Table 8
Critical values for the two-tailed sign test at #=0.05 and a=0.1 using GD metric as
a winning parameter.

NS-MOPSO PESA-II  SPEA-II NSGA-II 2LB-MOPSO MOEA/D
Wins (+) 20 19 17 15 14
Loses (—) 5 6 8 10 11
Detected differences «=0.05 a=0.05 «=0.01 - -

No. of cases 5 6 7 8 9 10 1 12 13 14

15 16 17 18 19 20 21 22 23 24 25

a=0.05 5 6 7 7 8 9 9 10 10 11
a=0.1 5 6 6 7 7 8 9 9 10 10

12 12 13 13 14 15 15 16 17 18 18
1 12 12 13 13 14 14 15 16 16 17




48 S.K. Mishra et al. / Swarm and Evolutionary Computation 16 (2014) 38-51

are available in files PORTEF-1 to PORTEF-5. The data corresponds
to the trade-off points between the risk (variance of return) and
the return (mean return). The GOPF is plotted by joining these
points. These trade-off points have been calculated by a rigorous
method, and are called as global optimal points, as they are the
best possible trade-off points between the risk and the return. The
GOPF corresponding to the Nikkei 225 stock indices is depicted in
Fig. 2 which shows the trade-off between the risk (variance of
return) and the return (mean return).

The proposed NS-MOPSO algorithm and five other MOEAs are
applied to the Nikkei 225 stock indices. The population sizes of all
these MOEAs are taken as 100. Hence, the final solutions of each
algorithm are 100 trade-off points between the risk and the
return. Hence, there are 100 possible sets of participation of assets
and proportions of the budget invested in them. The Pareto front is
obtained by plotting these 100 trade-off points. Each individual
point is one solution to the problem. The Pareto front obtained by
all these algorithms and the GOPF are shown in Fig. 3. It is evident
that the proposed NS-MOPSO algorithm is capable of providing
better solutions in comparison to the other five algorithms, as its
Pareto front is closer to the GOPF.

The effects of the budget, floor, ceiling and cardinality constraints
have been analyzed by examining the resultant Pareto front
achieved. The theoretical implementation of constraint is that it
limits the portfolio size, and hence, influences the level of risk and
return. The cardinality constraint is taken as K =10, the floor
constraint has been set at £=0.01 and the ceiling constraint is fixed
at 6 = 1 with all the available money that has to be invested. For this
constraint condition, the performance of all the MOEAs has been
compared with the results obtained, using single objective evolu-
tionary algorithms (SOEAs) such as the GA, TS, SA and PSO as given
in [6]. The results of the five benchmark stock indices for all the
algorithms are listed in Table 1. The experimental results of these
error measures reveal that the performance of the 2LB-MOPSO and

Table 9

MOEA/D algorithms are almost comparable to, and better than that
of all other SOEAs as well as MOEAs for the Hang-Seng, DAX 100,
FTSE 100, and S&P 100 benchmark indices, having 31, 85, 89, and 98
different assets. However, when the number of assets is more, as in
the case of Nikkei 225, the proposed NS-MOPSO algorithm performs
the best, in terms of all error measures.

Further, the performance of all the six MOEAs is evaluated,
using three different performance metrics, such as S,GD and A
metrics. Each algorithm is applied to the Nikkei 225 market for 25
independent runs. The parameters of the algorithms are the same
as in the previous cases. The maximum, minimum, average and
standard deviation values of S, GD and A metrics for 25 indepen-
dent runs are calculated, and shown in Table 2. The standard
deviations of the three metrics obtained by the 2LB-MOPSO
algorithm are the smallest, which indicate better consistency
compared to the other algorithms. From the experimental results
it is clear that the proposed NS-MOPSO algorithm performs the
best, in terms of the mean value of metrics among all MOEAs. The
mean value of metrics S and A for the different MOEAs in graphical
form is shown in Figs. 4 and 5. The convergence C metrics for all
the MOEAs are demonstrated in Table 3. It clearly shows that most
of the solutions obtained by 2LB-MOPSO, MOEA/D and NS-MOPSO
dominate the solutions obtained by the other three MOEAs.

The computational time is also evaluated for each algorithm
based on the same hardware platform. The CPU times of all the
algorithms for different stock indices are shown in Table 4, which
indicates that the decomposition based MOEAs (MOEA/D) take
much less time, compared to others. Among all the algorithms, the
SPEA 2 takes the maximum time.

The nonparametric statistical tests, such as the Sign test and
Wilcoxon signed rank test, are demonstrated for the pairwise
comparisons of the proposed algorithms with any other MOEAs.
The critical number of wins needed to achieve both a =0.05 and
a=0.1 levels of significance is shown in Table 5. An algorithm is

Wilcoxon signed test using S metric as a winning parameter and applying different MOEAs to Nikkie 225 market indices.

Comparison R* R~ z Asymp. sig (2-tailed) Exact sig. (2-tailed) Exact sig. (1-tailed) Point of probability
NS-MOPSO with PESA-II 252 73 —2410 0.016 0.014 0.007 0.000
NS-MOPSO with SPEA-II 231 94 —1.845 0.065 0.065 0.033 0.001
NS-MOPSO with NSGA-II 211.5 113.5 -1.319 0.187 0.193 0.096 0.002
NS-MOPSO with 2LB-MOPSO 160 165 —0.067 0.946 0.953 0.476 0.005
NS-MOPSO with MOEA/D 168 152 —0.148 0.882 0.810 0.445 0.005
Table 10

Wilcoxon signed test using A metric as a winning parameter and applying different MOEAs to Nikkie 225 market indices.

Comparison R* R~ z Asymp. sig (2-tailed) Exact sig. (2-tailed) Exact sig. (1-tailed) Point of probability
NS-MOPSO with PESA-II 214 m —1.387 0.165 0.170 0.085 0.002
NS-MOPSO with SPEA-II 196 129 —0.902 0.367 0.377 0.188 0.004
NS-MOPSO with NSGA-II 194 131 —0.848 0.396 0.407 0.203 0.004
NS-MOPSO with 2LB-MOPSO 191.5 133.5 —-0.781 0.435 0.445 0.223 0.004
NS-MOPSO with MOEA/D 186.5 168.5 -0.162 0.872 0.879 0.440 0.005
Table 11

Wilcoxon signed test using GD metric as a winning parameter and applying different MOEAs to Nikkie 225 market indices.

Comparison R* R~ z Asymp. sig (2-tailed) Exact sig. (2-tailed) Exact sig. (1-tailed) Point of probability
NS-MOPSO with PESA-II 242 83 -2142 0.032 0.031 0.015 0.001
NS-MOPSO with SPEA-II 229 96 -1.791 0.073 0.074 0.037 0.001
NS-MOPSO with NSGA-II 192 133 —0.794 0.427 0.437 0.219 0.004
NS-MOPSO with 2LB-MOPSO 185 139 —-0.619 0.539 0.546 0.273 0.004
NS-MOPSO with MOEA/D 168 157 —0.148 0.882 0.890 0.445 0.005
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significantly better than another, if it performs better on at least
the cases presented in each row. All the MOEAs are applied to the
Nikkie 225 market indices. The results of the Sign test for pairwise
comparisons among the proposed NS-MOPSO and other algo-
rithms, while taking the S metric as the wining parameter (i.e.
lower value of S means win) are shown in Table 6. From the results
it is clear that the NS-MOPSO shows significant improvement over
the PESA-II and SPEA 2 algorithms with a level of significance
a=0.05, and over NSGA-II, with a level of significance a=0.1.
Similarly, for the other metrics GD and A, the results of the Sign
test are listed in Tables 7 and 8. The Wilcoxon signed rank test is
carried out by calculating R* and R~ and then using the well-
known statistical software package SPSS. Table 9 shows the R™,R™,
z, Asymp. sig. (2-tailed), Exact sig. (2-tailed), Exact sig. (1-tailed)
and point of probability computed for all the pairwise compar-
isons, with the NS-MOPSO considering the S metric as the winning
parameter, and applying it to the Nikkie 225 market indices. The
results of the Wilcoxon signed rank test for the other two metrics
GD and A are reported in Tables 10 and 11.

The presence of different cardinality constraints K is also
studied in this work. The Pareto fronts obtained by applying the
NS-MOPSO for the Nikkei 225 data set having different cardinal-
ities are presented in Fig. 5. The value of K is set at 20, and is
increased to 180 in steps of 20. The portfolio manager has the
option to make a trade-off between the risk and the returns for
different values of K. The average and standard deviation values of
the various performance metrics are shown in Table 12. It is
observed that when K increases, these metric values also increase.
Table 13 lists the results of the convergence metric ‘C. It shows
that the final solutions obtained at K = 20 dominate the solutions
obtained at K more than 20. The CPU time for various values of K is
shown in Table 14. It reveals that the computation time increases
with the increase in the value of K. From Fig. 6 it is seen that the
Pareto front becomes shorter with an increase in the K value.

Table 12
Comparison of various performance metrics at different cardinality constraints.

Hence, the proposed algorithm is able to obtain a near optimal
solution efficiently, by investing lower number of assets, i.e.,
approximately 10% of the available assets. The Pareto front of
NS-MOPSO is also calculated for other stock indices, for different K,
and are depicted in Figs. 7-10.

The proposed algorithm is also applied to the BSE-500 (Bombay
Stock Exchange) of India [41]. The raw weekly prices of 50 stocks
(assets) from 500 stocks are collected. The time series of weekly
returns is calculated mathematically from the weekly prices for
each stock. The expected return is also computed by calculating
the mean of the past returns. The individual risk of each stock and
the risk between each pair of stocks are obtained, from the
variance and covariance of the time series of return. After
calculating the return and risk for each assets as well as the pair
of assets, the portfolio assets selection task is carried out by using
our proposed NS-MOPSO and other MOEAs. The Pareto fronts
obtained by all these algorithms are shown in Fig. 11. The presence
of the cardinality constraints K is also tested, by applying the
proposed algorithm to the BSE stock exchange. The floor constraint
has been set at £=0.01, the ceiling constraint is fixed at 6 =1, and
with no budget constraint, all the available money can be invested.
For this constraint condition, in the analysis, the value of K is
varied from 5 to 40, with a step size of 5. The Pareto fronts
obtained for these cardinality conditions are depicted in Fig. 12.

6. Conclusions and further work

A novel multiobjective PSO algorithm, the NS-MOPSO, has been
applied to realistic portfolio assets selection problems, with the
budget, floor, ceiling and cardinality constraints, by formulating it
as a multiobjective optimization problem. The performance of the
proposed approach is compared with that of four single objective
evolutionary algorithms, such as the genetic algorithm (GA), tabu

Cardinality constraint  Metrics values

S A GD

Max. Min. Avg. Std. dev.  Max. Min. Avg. Std. dev.  Max. Min Avg. Std. dev.
K=0 521E-6 232E-6 343E-6 085E-6 254E-1 1.87E—-1 2.21E-1 0.67E—-1 2.11E-4 1.10E—-4 145E—-4 0.36E-4
K=20 721E—-6 345E-6 564E-6 141E-6 443E-1 321E-1 3.76E—-1 O0.88E—1 342E-4 198E-4 245E-4 0.82E-4
K=40 921E-6 532E-6 777E-6 212E-6 4.54E-1 299E-1 394E—-1 O098E-1 4.23E-4 298E-4 342E-4 1.02E-4
K=60 532E-5 345E-5 443E-5 115E-5 5.15E-1 398E-1 454E—-1 118E-1 524E—-4 332E-4 415E-4 132E-4
K=80 8.76E-5 568E-5 765E-5 192E-5 6.76E—1 499E-1 578E—-1 145E-1 342E-3 189E-3 222E-3 0.55E-3
K=100 921E-5 765E-5 888E-5 252E-5 743E-1 576E-1 6.68E-1 167E—1 423E-3 298E-3 3.88E-3 097E-3
K=120 723E-4 321E-4 521E-4 132E-4 876E—-1 6.55E—-1 7.88E-1 1.94E-1 556E—-3 398E-3 454E-3 136E-3
K=140 9.76E—4 765E—4 845E—-4 212E-4 987E-1 765E-1 864E-1 212E-1 223E-2 110E-2 142E—-2 0.33E-2
K=160 3.21E-3 198E-3 2.65E-3 0.89E-3 10.1E-1 8.7E—1 953E—-1 288E-1 3.80E-2 186E-2 202E-2 0.52E-2
K=180 432E-3 232E-3 312E-3 091E-3 104E-1 798E—-1 999E-1 298E-1 453E-2 267E-2 3.12E-2 1.01E-2

Table 13
Comparison of results of convergence (C) metric for different cardinality constraints.

Cardinality constraint K=20 K=40 K=60 K=80 K=100 K=120 K=140 K=160 K=180
K=20 - 0.2610 0.3400 0.4660 0.5970 0.6580 0.7200 0.7810 0.8600
K=40 0.0890 - 0.3020 0.4220 0.5690 0.6260 0.7060 0.7670 0.8420
K=60 0.0840 0.2420 - 0.3840 0.5322 0.5860 0.6810 0.7420 0.8280
K=80 0.0810 0.2250 0.2620 - 0.5020 0.5590 0.6640 0.7220 0.8020
K=100 0.0770 0.2040 0.2420 0.3680 - 0.5220 0.6430 0.7040 0.7840
K=120 0.0740 0.1880 0.2240 0.3440 0.4740 - 0.6210 0.6810 0.7600
K=140 0.0710 0.1560 0.1990 0.3260 0.4420 0.4920 - 0.6620 0.7380
K=160 0.0670 0.1250 0.1640 0.3010 0.4170 0.4480 0.5920 - 0.7040
K=180 0.0590 0.1080 0.1280 0.2790 0.03820 0.4200 0.5680 0.6390 -
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Table 14
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Comparison of CPU time in seconds.

Number of cardinalities K=20 K=40 K=60 K=80 K=100 K=120 K=140 K=160 K=180
CPU time in second 4910 5320 5730 6190 6680 7020 7490 7830 8440
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Fig. 6. NS-MOPSO efficient frontier for different cardinalities for Nikkei 225 data.
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Fig. 8. NS-MOPSO efficient frontier for different cardinalities for DAX 100 data.

search (TS), simulated annealing (SA), particle swarm optimization
(PSO) and a set of competitive multiobjective evolutionary algo-
rithms (MOEAs) having non-dominated sorting based or
decomposition-based frameworks. The comparisons include the
evaluation of three error measures, four performance metrics, the
Pareto front and computational time. The Sign test and Wilcoxon
signed rank test are also performed to establish the superiority of
the NS-MOPSO over others. The simulation results demonstrate
the significant improvement of the proposed one over the PESA-II
and SPEA 2 algorithms with a level of significance @ =0.05, and
over NSGA-II, with a level of significance « =0.1.

Fig. 11. MOEAs efficient frontiers for BSE-500 stock indices.

The MOEAs are applied to six different market indices, such as
the Hang-Seng in Hong Kong, DAX 100 in Germany, FTSE 100 in
UK, S&P 100 in USA, Nikkei 225 in Japan and BSE-500 in India. The
computational results of these markets exhibit the improved
performance of the proposed NS-MOPSO algorithm, and hence,
the proposed method has been proven to be a good candidate for
solving the constrained portfolio assets selection problem. From
the simulation results it is clear that the investor does not have to
invest money on all the available assets; rather he can invest in a
fewer assets, i.e., approximately 10% of the available assets, to
explore a wide risk-return area. The portfolio manager has the
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Fig. 12. NS-MOPSO efficient frontier for different cardinalities for BSE-500 data.

option to make a trade-off between risk and return for different
cardinality constraints, to decide on the portfolio according to his
requirement.

Future research work on the topic includes the incorporation of
advanced local search operators into the proposed algorithm
model, which is expected to allow better exploration and exploita-
tion of the search space. To assess the strengths and weaknesses of
non-dominated sorting based or decomposition based MOEAs
frameworks, further investigation is needed. The performance of
proposed NS-MOPSO algorithm can also be evaluated by consider-
ing other real-world constraints, like round-lot, turnover and
trading. The same multiobjective optimization algorithm can also
be applied to other financial applications, such as asset allocation,
risk management, option pricing etc.
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