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Abstract

Perturbation solution is given for the laminar flow of viscous incompressible fluid through a non-uniform tube with an overlapping

constriction and permeable wall. The effect of fluid reabsorption through permeable wall is considered by taking flux as a function

of axial distance. The effects of various parameters on the velocity profiles at different cross sections of the tube, the axial

distribution of wall shear stress, mean pressure drop and streamlines are discussed and presented graphically.
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1. Introduction

Mathematical models of flow in renal tubule has been studied by various authors. An earlier work on mathematical

model of flow in renal tubule was done by Kelman [2] and Macey [1,3]. Marshal and Trowbridge [4] used the physical

condition existing at the permeable wall instead of prescribing the flux/radial velocity at the wall. Pallat et al. [5]

studied the flow in an infinite permeable cylinder assuming the loss of fluid from permeable tube to be a function of

pressure gradients across the wall. The above studies modeled renal tubule as cylindrical tube of uniform cross section,

while in general, such tubes may not have uniform cross section throughout their length. Radhakrishnamacharya et
al.[6] discussed to understand the hydrodynamical aspects of an incompressible viscous fluid in a circular tube of

varying cross section with reabsorption at the wall. In another study, Chathurani and Ranganatha [7] considered

fluid flow through a diverging/converging tube with variable wall permeability. Muthu and Tesfahun [8] developed

a mathematical model for the flow in a non-uniform channel with non-zero Reynolds number. They have given an

approximate analytical solution using a perturbation method to understand the basic concepts of the flow.

In this present work, the objective of the study is to understand the impact of an overlapping constriction on the

steady flow of a Newtonian fluid through a tube with permeable wall.
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2. Geometry
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Fig. 1. Geometry of the tube with an overlapping constriction.

The boundary of the tube wall is assumed to be axisymmetric about x−axis and vary with x as illustrated in Figure

1. It is taken as [9],

η(x) =

{
η0 − 3

2
h
[
11( x−d

L0
) − 47( x−d

L0
)2 + 72( x−d

L0
)3 − 36( x−d

L0
)4
]
, d ≤ x ≤ d + L0

η0, otherwise.
(1)

where η0 is the radius of the tube inlet (at x = 0), h is the maximum height of the constriction, d is the location of

constriction, L0 is the length of the spread of constriction and L is the length of the tube.

3. Mathematical Formulation

Consider an incompressible, viscous Newtonian fluid flow through an overlapping constricted tube as given by

equation (1). The motion of the fluid is assumed to be laminar, steady and symmetric. The tube is assumed to be long

enough to neglect both the entrance and end effects. For this situation the equations of continuity and momentum are

given by

∂u
∂x
+

1

r
∂(rv)

∂r
= 0 (2)

u
∂u
∂x
+ v
∂u
∂r
= − 1

ρ

∂p
∂x
+ ν

(
∂2u
∂x2
+
∂2u
∂r2
+

1

r
∂u
∂r

)
(3)

u
∂v
∂x
+ v
∂v
∂r
= − 1

ρ

∂p
∂r
+ ν

(
∂2v
∂x2
+
∂2v
∂r2
+
∂

∂r

(v
r

))
(4)

where u and v are the velocity components along the x and r axes respectively, p is the pressure, ρ density of the

fluid and ν = μ
ρ

is kinematic viscosity.

These are the subjected to the following boundary conditions,

(i) The tangential velocity at the wall is zero. That is,

u +
dη
dx

v = 0 at r = η(x) (5)

(ii) The regularity condition requires,

v = 0 and
∂u
∂r
= 0 at r = 0 (6)
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(iii) The reabsorption has been accounted by considering the bulk flow as a decreasing function of x. That is, the flux

across a cross section is given as

Q(x) =

∫ η(x)

0

2πru(x, r) dr = Q0F(αx) (7)

where F(αx) = 1 when α = 0 and decreases with x. Further, α ≥ 0 is the reabsorption coefficient, a constant and Q0

is the flux across the cross section at x = 0.

The relation between the stream function ψ(x, r) and velocity components is given as

u =
1

r
∂ψ

∂r
, v = −1

r
∂ψ

∂x
. (8)

Substituting (8) in (2) - (4) and eliminating p from (3) and (4) and using the following non-dimensional quantities,

x′ =
x
L
, r′ =

r
η0

, η′ =
η

η0

, ψ′ = 2πψ
Q0
, α′ = αL, p′ =

2πη3
0

μQ0

p.

we have the non-dimensional form of equations of motion(after dropping primes):

∇2ψ =
δRe

2

[
1

r
∂ψ

∂x
∇∂ψ
∂r
− 1

r
∂ψ

∂r
∇∂ψ
∂x
− 2

r2

∂ψ

∂x
∇ψ + 1

r3

∂ψ

∂r
∂ψ

∂x

]
(9)

where ∇ = δ2 ∂2

∂x2 − 1
r
∂
∂r +

∂2

∂r2

Further the boundary conditions and equation of the boundary of the overlapping constricted tube in non-dimensional

form are defined as

∂ψ

∂r
= −3

2
Hδ
[
11 − 94

( x − a
ε

)
+ 216

( x − a
ε

)2
− 144

( x − a
ε

)3] ∂ψ
∂x

at r = η(x) (10)

ψ = 0 and − ∂ψ
∂r
+ r
∂2ψ

∂r2
= 0 at r → 0 (11)

ψ = F(αx) at r = η(x) (12)

η(x) =

{
1 − 3

2
Hδ
[
11( x−a

ε
) − 47( x−a

ε
)2 + 72( x−a

ε
)3 − 36( x−a

ε
)4
]
, a ≤ x ≤ a + ε

1, otherwise.
(13)

where, Re = Q0

πη0ν
is the Reynolds number, δ = η0

L is the geometric parameter, H = h
L0

is the the constriction

parameter, ε = L0

L is the parameter describing the length of spread of the overlapping constriction and a = d
L is a

parameter indicating the location of the spread of overlapping constriction. In this problem, we consider exponentially

decreasing bulk flow, that is, in equation (7), following Kelman [2], F is taken as,

F(αx) = e−αx (14)

4. Method of Solution

To solve (9) in the present analysis, we assume the geometrical parameter δ 	 1 and we shall seek a solution for

stream function ψ(x, r) in the form of a power series in terms of δ, as

ψ(x, r) = ψ0(x, r) + δψ1(x, r) + ........ (15)

Substituting (15) in equations (9) - (12) and collecting coefficients of various like powers of δ, we get the following

sets of equations for ψ0(x, r), ψ1(x, r), .....

δ0 case:(
δ2
∂2

∂r2
− 1

r
∂

∂r

)2
ψ0 = 0 (16)
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The boundary conditions are

∂ψ0

∂r
= 0 at r = η(x) (17)

ψ0 = 0 and
∂2ψ0

∂r2
= 0 at r = 0 (18)

ψ0 = e−αx at r = η(x) (19)

δ1 case:

∇2
1ψ1 =

Re
2

[
1

r
∂ψ0

∂x
∇1

∂ψ0

∂x
− 1

r
∂ψ0

∂r
∇1

∂ψ0

∂x
− 2

1

r2

∂ψ0

∂x
∇1ψ0 +

1

r3

∂ψ0

∂r
∂ψ0

∂x

]
(20)

where ∇1 =
∂2

∂r2 − 1
r
∂
∂r

The boundary conditions are

∂ψ1

∂r
= −3

2
H
[
11 − 94

( x − a
ε

)
+ 216

( x − a
ε

)2
− 144

( x − a
ε

)3] ∂ψ0

∂x
at r = η(x) (21)

ψ1 = 0 and
∂ψ1

∂x
= 0 at r = 0 (22)

ψ1 = 0 at r = η(x) (23)

However, since we are looking for an approximate analytical solution for the problem, we consider up to order of

δ1 equations. The solution of equation (16) together with boundary conditions (17) - (19) is

ψ0(x, r) = A1(x)r2 + A2(x)r4 (24)

where A1(x) = −2
η2 e−αx and A2(x) = − 1

η4 e−αx.

The solution of equation (20) together with boundary conditions (21) - (23) is

ψ1(x, r) = A3(x)r2 + A4(x)r4 − Re

⎡⎢⎢⎢⎢⎢⎣
(
A1(x)

dA2(x)

dx
r6

24
+ A2(x)

dA1(x)

dx

)
r8

72

⎤⎥⎥⎥⎥⎥⎦ (25)

where

A3(x) = −Re
[
A1

dA2

dx
η4

24
+ A2

dA2

dx
η6

36

]
+ 3

4
H
[
11 − 94

(
x−a
ε

)
+ 216

(
x−a
ε

)2 − 144
(

x−a
ε

)3] [ dA1

dx η +
dA2

dx η
3
]

A4(x) = Re
[
A1

dA2

dx
η2

12
+ A2

dA2

dx
η4

24

]
− 3

4
H
[
11 − 94

(
x−a
ε

)
+ 216

(
x−a
ε

)2 − 144
(

x−a
ε

)3] [ dA1

dx
1
η
+ dA2

dx η
]

Hence, substituting ψ0 and ψ1 in equation (15), we get

ψ(x, r) = A1r2 + A2r4 + δ

(
A3r2 + A4r4 − Re

(
A1

∂A2

∂x
r6

24
+ A2

∂A2

∂x
r8

72

))
(26)

The velocity components along x and r directions are obtained by substituting equation (26) in (8). The non dimen-

sional pressure p(x, r) can be obtained by using equations (26), (8) and (3). It is given as

p(x, r) = δ
∂u
∂x
+

1

δ

∫
∂2u
∂r2

dx +
1

δ

∫
1

r
∂u
∂r

dx − Re
2

[∫
u
∂u
∂x

dx +
∫

v
∂u
∂r

dx
]

(27)
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The mean pressure is given as

p̄(x) =
1

πη2(x)

∫ η(x)

0

2πrp(x, r)dr (28)

Further, the mean pressure drop between x = 0 and x = x0


p̄(x0) = p̄(0) − p̄(x0), 0 ≤ x0 ≤ 1 (29)

The wall shear stress τw(x) is defined as,

τw(x) =
(σrr − σxx)

dη
dx + σxr(1 − (

dη
dx )2)

1 + (
dη
dx )2

at r = η(x) (30)

where σxx = 2μ∂u
∂x , σrr = 2μ∂v

∂r and σxr = μ(
∂u
∂r +

∂v
∂x )

Using the non-dimensional quantity τ′w =
2πη3

0

μQ0
τw, the wall shear stress becomes,

τw(x) =
2δ2( ∂v

∂r − ∂u∂x )
dη
dx + ( ∂u

∂r + δ
2 ∂v
∂x )(1 − δ2(

dη
dx )2)

1 + δ2(
dη
dx )2

(31)

In the equation (27), the integrals are calculated by numerical integration because it is difficult to evaluate analyti-

cally to get closed form expression for p(x, r).

5. Results and Discussions

The aim of this present study is to observe the behaviour of an incompressible fluid flow through an overlapping

constricted tube with reabsorbing wall. The parameter H characterizes the constriction of the wall, a represent the

entrance length of the tube and α represents reabsorption coefficient of wall. We discuss the effects of H and α on the

transverse velocity v(x, y) and mean pressure drop (Δp̄), wall shear stress (|τw|) and streamlines. In all our calculations,

the following parameters are fixed as δ = 0.1, Re = 1.0 and a = 0.1.

5.1. Velocity v :

The velocity profile of the flow is obtained by taking different values of constriction parameter H at different cross-

sections x = 0.25, x = 0.50 and x = 0.75 of the tube. The reabsorption coefficient is taken as α = 1.0. As the value

of H increases from 0.01 to 0.03, the narrowness of constriction increases. From the figures 2(a) - 2(c), the value

of transverse velocity at x = 0.25 is more than at x = 0.50 and x = 0.75. That is, the transverse velocity decreases

as x increases at different cross-sections. In the downstream of the flow, though there is no significant change in the

behaviour of transverse velocity, the quantity of the velocity decreases.

5.2. Mean pressure drop Δp̄ :

The values of the mean pressure drop over the length of the tube is calculated for different values of H and α. It

can be observed, from figure 3(a) and 3(b), that the mean pressure drop increases nonlinearly as H increases. Further,

as the reabsorption coefficient α increases the mean pressure drop decreases quantitatively.

5.3. Wall shear stress |τw| :

The effects of H and α on the magnitude of wall shear stress (|τw|) at various values of the axial distance are studied

and presented graphically in Figures 4(a) and 4(b). As the reabsorption coefficient α increases, the magnitude of wall

shear stress decreases. Also noted that, as constriction parameter increases, the magnitude of the wall shear stress

increases.
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Fig. 1. Distribution of transverse velocity (v) with r, at various cross-sections of the tube.
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Fig. 2. Distribution of mean pressure drop 
p̄ with x.

5.4. Streamlines :

We can observe the flow behaviour of the fluid by looking at the contour drawing of the stream function in the

overlapping constricted tube for different values of H and α. As H increases, the narrowness of the constriction

increases and the length of the boundary curve also increases. Figures 5(a)-5(c) are showing the flow pattern for

different constricted tube boundary wall. From Figures 5(a) and 5(d), we can observe that as α increases the curvature

of streamlines move towards the overlapping boundary because of reabsorption at the wall. Further, the flux at the

cross-section x = 1.0 is decreased.
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Fig. 3. Distribution of wall shear stress |τw | with x.
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Fig. 4. Streamlines for different values of H and α when a = 0.1.

6. Conclusions

The present investigation reported here is an attempt to understand theoretically the effect of overlapping constric-

tion and permeability of wall on the flow of Newtonian fluid in a tube. Perturbation solution is obtained for transverse

velocity, mean pressure drop, wall shear stress and streamlines and are shown graphically to observe the effects of

overlapping constriction. The following are the observations in the present analysis:

1. The transverse velocity at the overlapping constricted boundary decreases along the axial length.

2. The mean pressure drop increases due to increase in the parameter H but decreases with permeability parameter α.

3. The wall shear stress decreases like a sinusoidal wave with increase in H.

4. The streamline pattern shows that there exists a change in the direction of flow due to change in H as well as a.
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