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Abstract

Perturbation solution is given for the laminar flow of viscous incompressible fluid through a non-uniform tube with an overlapping
constriction and permeable wall. The effect of fluid reabsorption through permeable wall is considered by taking flux as a function
of axial distance. The effects of various parameters on the velocity profiles at different cross sections of the tube, the axial
distribution of wall shear stress, mean pressure drop and streamlines are discussed and presented graphically.
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1. Introduction

Mathematical models of flow in renal tubule has been studied by various authors. An earlier work on mathematical
model of flow in renal tubule was done by Kelman [2] and Macey [1,3]. Marshal and Trowbridge [4] used the physical
condition existing at the permeable wall instead of prescribing the flux/radial velocity at the wall. Pallat et al. [5]
studied the flow in an infinite permeable cylinder assuming the loss of fluid from permeable tube to be a function of
pressure gradients across the wall. The above studies modeled renal tubule as cylindrical tube of uniform cross section,
while in general, such tubes may not have uniform cross section throughout their length. Radhakrishnamacharya et
al.[6] discussed to understand the hydrodynamical aspects of an incompressible viscous fluid in a circular tube of
varying cross section with reabsorption at the wall. In another study, Chathurani and Ranganatha [7] considered
fluid flow through a diverging/converging tube with variable wall permeability. Muthu and Tesfahun [8] developed
a mathematical model for the flow in a non-uniform channel with non-zero Reynolds number. They have given an
approximate analytical solution using a perturbation method to understand the basic concepts of the flow.

In this present work, the objective of the study is to understand the impact of an overlapping constriction on the
steady flow of a Newtonian fluid through a tube with permeable wall.
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2. Geometry

Fig. 1. Geometry of the tube with an overlapping constriction.

The boundary of the tube wall is assumed to be axisymmetric about x—axis and vary with x as illustrated in Figure
1. It is taken as [9],

no = 3h| 1154 = 47C97 + 72(54)° = 36(49)*| d < x < d + Lo n
otherwise.

n(x) = {

1o,

where 7 is the radius of the tube inlet (at x = 0), & is the maximum height of the constriction, d is the location of
constriction, Ly is the length of the spread of constriction and L is the length of the tube.

3. Mathematical Formulation

Consider an incompressible, viscous Newtonian fluid flow through an overlapping constricted tube as given by
equation (1). The motion of the fluid is assumed to be laminar, steady and symmetric. The tube is assumed to be long
enough to neglect both the entrance and end effects. For this situation the equations of continuity and momentum are

given by
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where u and v are the velocity components along the x and r axes respectively, p is the pressure, p density of the
fluid and v = %’ is kinematic viscosity.

These are the subjected to the following boundary conditions,

(i) The tangential velocity at the wall is zero. That is,

d
u+—nv=() at r=n(x) (5
dx
(i1) The regularity condition requires,

v=0 and 6_u:0 at r=0 (6)
or
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(iii) The reabsorption has been accounted by considering the bulk flow as a decreasing function of x. That is, the flux
across a cross section is given as

(x)
0(x) = f " drute,r) dr = QuF (@) )
0

where F(ax) = 1 when @ = 0 and decreases with x. Further, @ > 0 is the reabsorption coefficient, a constant and Q
is the flux across the cross section at x = 0.
The relation between the stream function y/(x, r) and velocity components is given as
10 10
L ¥ ®)

r or rox’

Substituting (8) in (2) - (4) and eliminating p from (3) and (4) and using the following non-dimensional quantities,

X / r / T] 271-7]?)

=—, r=—, 5B =—,
L 10 )

we have the non-dimensional form of equations of motion(after dropping primes):
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where V=075 — <5 + 75

Further the boundary conditions and equation of the boundary of the overlapping constricted tube in non-dimensional
form are defined as

— —a\2 —a\3

W_ 3ps 11—94(u)+216(" ") —144(x “) Wt r = (10)
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Yy =0 and —a—l/r/+ra—rlf:0 at r—0 (11)
Y =F(ax) at r=nx) (12)
_3 X—ay _ x=a)2 x=a\3 _ x=a\4
noo =1 THO [11(52) - 47(32) + 72(%2) 36(6)],aSX§a+e 13
1, otherwise.
where, Re = ”Q—O is the Reynolds number, § = % is the geometric parameter, H = - is the the constriction
oV Ly

parameter, € = % is the parameter describing the length of spread of the overlapping constriction and a = % is a

parameter indicating the location of the spread of overlapping constriction. In this problem, we consider exponentially
decreasing bulk flow, that is, in equation (7), following Kelman [2], F is taken as,

F(ax) =e™™* (14)

4. Method of Solution

To solve (9) in the present analysis, we assume the geometrical parameter 6 < 1 and we shall seek a solution for
stream function ¥/(x, r) in the form of a power series in terms of 9, as

Y(x,r) = volx,r) + 0(x,r) + ........ (15)

Substituting (15) in equations (9) - (12) and collecting coefficients of various like powers of ¢, we get the following
sets of equations for Yo(x, r), ¥ (x, 7)), .....

&0 case:
? 19V
2 _ - =
((S or? rar) Yo=0 (16)
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The boundary conditions are

% =0 at r=nk) (17
or
o
Yo=0 and —=-=0 at r=0 (18)
or?
Yo=e* at r=n) (19)
5! case:
Re (1o o 100, 0o 1 0o 1 9o Yo
V2 = — |-y, 20 _ g T, Hy s diadl 20
Wi 2 [r ax 'ox ror ox rr ox o+ 3 or ox (20)
where V| = (;9—:2 - ];(%
The boundary conditions are
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0x
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However, since we are looking for an approximate analytical solution for the problem, we consider up to order of
8! equations. The solution of equation (16) together with boundary conditions (17) - (19) is

Yo(x, r) = Aj(x)r* + Ay(x)rt (24)
where A;(x) = ;—Ee—“ and  Ay(x) = —Le .
The solution of equation (20) together with boundary conditions (21) - (23) is
dA>(x) r® dA|(x)\
= A3(0)r? + Ay(0)r* — Re| |A —+A — 25
Y1(x,r) = As(xX0)r” + Ag(x)r 6[( 1(x) o AT 2(x) o~ |7 (25)
where
_ dA2 774 dA2 776 3 x—a x—a 2 x—a 3 dA, dAy 3
As(x) = —Re [Alﬁﬁ thAy— 2o +ZH[11 —94(54) + 216 (£2) - 144 (=) ][W” + 22|
_ dA2 7]2 dAz n4 3 x—a x—a 2 x—a 3144 1 dA
Ay(x) = Re [AIEE +a 22 —ZH[II — 04 (222) + 216 (22)” - 144 (22) ] [l 4 day)
Hence, substituting ¢ and ¢ in equation (15), we get
0A, 1° 0A, 18
W, r) = A? + At + 6(A3r2 + Agr* — Re (A1 6—55—4 + AQa—;;—z)) (26)

The velocity components along x and r directions are obtained by substituting equation (26) in (8). The non dimen-
sional pressure p(x, r) can be obtained by using equations (26), (8) and (3). It is given as

ou 1 (u 1 1 0u Re ou ou
=0—+< | 7= < | —dx -+ - - 27
p(x,7) 68x+ 3 6r2dx+ 6fr6rdx > [fuaxdx+fv6rdx] 27)



P. Muthu and M. Varunkumar / Procedia Engineering 127 (2015) 1165 — 1172 1169

The mean pressure is given as

1 77(x)
plx) = 2—f 2nrp(x, r)dr (28)
m*(x) Jo
Further, the mean pressure drop between x = 0 and x = xg
Ap(xo) = p(0) — p(xp), 0<xp <1 (29)
The wall shear stress 7,,(x) is defined as,

rr XX Xr 1 d” 2
7,(x) = (0~ )i +d(r a-Gn r=n(x) (30)
1+ (3)?

where o, = Zy%, Oy = 2/1% and o, = ,u(@ @)

. . . . 27
Using the non-dimensional quantity 7/, = ETW, the wall shear stress becomes,

282G — BT+ (5 + 831 - (P

1+ 62(4)2

Tyw(x) = 3D

In the equation (27), the integrals are calculated by numerical integration because it is difficult to evaluate analyti-
cally to get closed form expression for p(x, r).

5. Results and Discussions

The aim of this present study is to observe the behaviour of an incompressible fluid flow through an overlapping
constricted tube with reabsorbing wall. The parameter H characterizes the constriction of the wall, a represent the
entrance length of the tube and « represents reabsorption coefficient of wall. We discuss the effects of H and @ on the
transverse velocity v(x, y) and mean pressure drop (Ap), wall shear stress (|7,,|) and streamlines. In all our calculations,
the following parameters are fixed as 6 = 0.1, Re = 1.0 and a = 0.1.

5.1. Velocity v :

The velocity profile of the flow is obtained by taking different values of constriction parameter H at different cross-
sections x = 0.25, x = 0.50 and x = 0.75 of the tube. The reabsorption coefficient is taken as @ = 1.0. As the value
of H increases from 0.01 to 0.03, the narrowness of constriction increases. From the figures 2(a) - 2(c), the value
of transverse velocity at x = 0.25 is more than at x = 0.50 and x = 0.75. That is, the transverse velocity decreases
as x increases at different cross-sections. In the downstream of the flow, though there is no significant change in the
behaviour of transverse velocity, the quantity of the velocity decreases.

5.2. Mean pressure drop Ap :

The values of the mean pressure drop over the length of the tube is calculated for different values of H and a. It
can be observed, from figure 3(a) and 3(b), that the mean pressure drop increases nonlinearly as H increases. Further,
as the reabsorption coefficient « increases the mean pressure drop decreases quantitatively.

5.3. Wall shear stress |1, :

The effects of H and @ on the magnitude of wall shear stress (|7,,|) at various values of the axial distance are studied
and presented graphically in Figures 4(a) and 4(b). As the reabsorption coefficient @ increases, the magnitude of wall
shear stress decreases. Also noted that, as constriction parameter increases, the magnitude of the wall shear stress
increases.
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Fig. 1. Distribution of transverse velocity (v) with r, at various cross-sections of the tube.
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Fig. 2. Distribution of mean pressure drop Ap with x.

5.4. Streamlines :

We can observe the flow behaviour of the fluid by looking at the contour drawing of the stream function in the
overlapping constricted tube for different values of H and a. As H increases, the narrowness of the constriction
increases and the length of the boundary curve also increases. Figures 5(a)-5(c) are showing the flow pattern for
different constricted tube boundary wall. From Figures 5(a) and 5(d), we can observe that as « increases the curvature
of streamlines move towards the overlapping boundary because of reabsorption at the wall. Further, the flux at the

cross-section x = 1.0 is decreased.
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Fig. 4. Streamlines for different values of H and & when a = 0.1.

6. Conclusions

The present investigation reported here is an attempt to understand theoretically the effect of overlapping constric-
tion and permeability of wall on the flow of Newtonian fluid in a tube. Perturbation solution is obtained for transverse
velocity, mean pressure drop, wall shear stress and streamlines and are shown graphically to observe the effects of
overlapping constriction. The following are the observations in the present analysis:

1. The transverse velocity at the overlapping constricted boundary decreases along the axial length.

2. The mean pressure drop increases due to increase in the parameter H but decreases with permeability parameter «.
3. The wall shear stress decreases like a sinusoidal wave with increase in H.

4. The streamline pattern shows that there exists a change in the direction of flow due to change in H as well as a.
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