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Abstract The effect of thermal and mass stratification on
mixed convection boundary layer flow over a vertical flat
plate embedded in a porous medium saturated by a nano-
fluid has been investigated. The vertical plate is maintained
at uniform and constant heat, mass and nanoparticle fluxes,
and the behavior of the porous medium is described by the
Darcy model. The model considered for nanofluids incor-
porates the effects of Brownian motion and thermophore-
sis. In addition, the thermal energy equations include
regular diffusion and cross-diffusion terms. A suitable
coordinate transformation is introduced, and the obtained
system of non-similar, coupled and non-linear partial dif-
ferential equations is solved numerically. The influence of
pertinent parameters on the non-dimensional velocity,
temperature, concentration and nanoparticle volume frac-
tion are discussed. In addition, the variation of heat, mass
and nanoparticle transfer rates at the plate are exhibited
graphically for different values of physical parameters.

Keywords Mixed convection - Nanofluid - Thermal
stratification - Solutal stratification - Brownian motion -
Thermophoresis

Introduction

During the past decade, the study of nanofluids has
attracted enormous interest from research due to its
exceptional applications to electronics, communication,
computing technologies, optical devices, lasers, high-
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power X-rays, scientific measurement, material processing,
medicine and material synthesis. Nanofluids are prepared
by dispersing solid nanoparticles in base fluids such as
water, oil or ethylene glycol. Choi et al. (2011) showed that
the addition of a small amount (<1 by volume) of nano-
particles to conventional heat transfer liquids increased the
thermal conductivity of the fluid. The detailed introduction
and applications of nanofluids can be found in the book by
Das et al. (2007). Buongiorno (2006) has investigated the
factors that contribute to abnormal thermal conductivity
increase relative to base fluids and viscosity. He developed
an analytical model for convective transport in nanofluids,
which takes Brownian diffusion and thermophoresis effects
into account. The random motion of nanoparticles within
the base fluid is called Brownian motion, and this results
from continuous collisions between the nanoparticles and
the molecules of the base fluid. Particles can diffuse under
the effect of a temperature gradient. This phenomenon is
called thermophoresis, and is the particle equivalent of the
well-known Soret effect for gaseous or liquid mixtures.
The literature on nanofluids has been reviewed by Kakac
and Pramuanjaroenkij (2009), Gianluca et al. (2011)
among several others. These reviews discuss in detail the
work done on convective transport in nanofluids.
Convective transport in porous media has been the
subject of great importance and interest in the recent years
owing to its wide range of applications in civil, chemical
and mechanical engineering. Several authors investigated
the mixed convection heat and mass transfer along non-
isothermal vertical surface embedded in a nanofluid sat-
urated porous medium. Nazar et al. (2011) considered the
steady mixed convection boundary layer flow from an
isothermal horizontal circular cylinder embedded in a
porous medium filled with a nanofluid for both cases of a
heated and cooled cylinder. Rosca et al. (2012) studied
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numerically the problem of steady mixed convection
boundary layer flow over an impermeable horizontal flat
plate embedded in a porous medium saturated by a
nanofluid. Rana et al. (2012) analyzed the steady mixed
convection boundary layer flow of an incompressible
nanofluid along a plate inclined at an angle a in a porous
medium. RamReddy et al. (2013) presented the influence
of the Soret effect on mixed convection heat and mass
transfer in the boundary layer region of a semi-infinite
vertical flat plate in a nanofluid under the convective
boundary conditions. Rohni et al. (2013) studied the
steady mixed convection boundary layer flow on a vertical
circular cylinder embedded in a porous medium filled by a
nanofluid. Chamkha et al. (2013) studied the problem of
steady, laminar, mixed convection boundary layer flow
over a vertical cone embedded in a porous medium sat-
urated with a nanofluid in the presence of thermal radia-
tion taking into account the effects of Brownian motion
and thermophoresis with Rosseland diffusion approxima-
tion. Heat transfer characteristics of a two-dimensional
steady hydromagnetic natural convection flow of nanofl-
uids over a non-linear stretching sheet taking into account
the effects of radiation and convective boundary condition
have been investigated numerically by Rahman and El-
tayeb (2013).

In all the above mentioned studies, the effect of
stratification has been neglected. Stratification is a for-
mation/deposition of layers which occur due to temper-
ature variations, concentration differences, or the
presence of different fluids. In practical situations where
the heat and mass transfer mechanisms run simulta-
neously, it is interesting and important to analyze the
influence of double stratification (stratification of medium
with respect to thermal and concentration fields) on the
convective transport in nanofluid. The analysis of natural
and mixed convection in a doubly stratified medium is a
fundamentally interesting and important problem,
because of its broad range of engineering applications.
These applications include heat rejection into the envi-
ronment such as lakes, rivers, and seas; thermal energy
storage systems such as solar ponds; and heat transfer
from thermal sources such as the condensers of power
plants. Rosmila et al. (2012) examined the magnetohy-
drodynamic convection flow and heat transfer of an
incompressible viscous nanofluid past a semi-infinite
vertical stretching sheet in the presence of thermal
stratification. They have concluded that the flow field,
temperature, and nanoparticle volume fraction profiles
are significantly influenced by the thermal stratification
and the magnetic field.

Previous studies on convection transport focussed on
seeking similarity solution, because similar variables can
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give great physical insight with minimal effort. However,
the non-similarity boundary layer flows are more general in
nature in our everyday life, and thus are more important
than the similarity ones. It may be remarked that earlier
studies did not include the effect of double stratification on
double diffusive mixed convection flow of a nanofluid past
a vertical plate in a porous medium. Hence, in the present
study, we have made an attempt to study the effect of
double stratification on mixed convection heat and mass
transfer over a vertical plate in a nanofluid-saturated porous
medium. The governing system of non-linear partial dif-
ferential equations are solved numerically using implicit
finite difference method. The influence of pertinent
parameters on the flow characteristics is examined and
exhibited through graphs.

Mathematical formulation

Consider the mixed convection boundary layer flow over a
semi-infinite vertical flat plate embedded in a porous
medium saturated with a nanofluid. The x coordinate is
taken along the plate, in the ascending direction and the
y coordinate is measured normal to the plate, while the
origin of the reference system is considered at the leading
edge of the vertical plate. The plate has the constant wall
heat, mass and nanoparticle fluxes. The ambient medium
is assumed to be vertically linearly stratified with respect
to both temperature and concentration in the form
Too(x) = Toop + Ax, Coo(x) = Cx0 + Bx, where A and
B are constants which are varied to alter the intensity of
stratification in the medium, T and C, o are ambient
temperature and concentration, respectively. The values of
Ty, and C,, are assumed to be greater than the ambient
temperature T o and concentration Co o at any arbitrary
reference point in the medium (inside the boundary layer).
The nanoparticle volume fraction on the surface of the
plate is ¢, and the ambient value of the nanoparticle
volume fraction is denoted by ¢.,. The porous medium is
assumed to be uniform and isotropic and is in local
thermal equilibrium with the fluid. The effects of
Brownian motion and thermophoresis are incorporated
into the model for nanofluids. The fluid properties are
assumed to be constant except for density variations in the
buoyancy force term.

Using the Boussinesq and boundary layer approxima-
tions, the governing equations for the conservation of total
mass, momentum, energy and nanoparticles within the
boundary layer near the vertical plate can be written as:

Ou Ov

ey " (1)
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where u and v are the components of velocity along x and
y directions, respectively, g is the gravitational
acceleration, 7T is the temperature, C is the
concentration, ¢ is the nanoparticle volume fraction, pg
is density of the base fluid, p, is the density of
nanoparticles, K, is the Permeability, fir and f. are
volumetric thermal and solutal expansion coefficients of
nanofluid, respectively. p is the dynamic coefficient of
viscosity of the fluid, v is the kinematic viscosity, o is the
thermal diffusivity, Dy is the solutal diffusivity, Dy is the
Brownian diffusion coefficient, Dt is the Thermophoretic
diffusion coefficient. Dyc and Dt are Dufour and Soret
type diffusivities, respectively. The boundary conditions
are:

— — — _rfor - _ ac
u=0,v=0gu=-k ay)y:O;CIm— Ds(ay)y:O7

Gnp = —Dg (%) at

=0
y=0 y

(6a)
U— Uoo, T — Too(x),C — Coo(x), 0 — ¢oo(x) as

y— 00

(6b)

where the subscripts w and co indicates the conditions at
wall and at the outer edge of the boundary layer,
respectively.

The continuity equation (~ 1) is satisfied by introducing
the stream function { such that

_w W
_a_y7 V= Ox )

Introducing the following non-dimensional variables
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into Egs. (2-5), we obtain
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where the prime denotes differentiation with respect to the
Bcgmk
BrqwDs

diffusive buoyancy ratio, N, =

similarity variable m, B =

is the regular double

(pp — P, )ank

pi. Br(1 = ¢oc)qwDs
K
nanofluid buoyancy ratio, K, is Permeability, Da = L_g is
Darcian number, Pr = ! is the Prandtl number,
o

k D
6 = —Re'?A and ¢, = —Re'?B are the thermal and

qw dm
solutal stratification parameters, respectively,
1— *Brgwl v
Gr:< 9)Pr.8 Praw is Grashof number, Sc = —
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is the Schmidth number, Nt:& is
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thermophoresis parameter, N, = is Brownian
oRe!/2
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motion parameter, Sc, :D— is nanofluid Schmidt
B

D
number, Ly = Crw is Dufour-solutal Lewis number and
m
D k
Ny = Z1Cdmt is modified Dufour number. The
aDsqw

Disase cllad dyao .
KACST a,01étllg roglel @ Springer



Appl Nanosci

corresponding boundary conditions in dimensionless form
are:

f@iﬁ=0J@ﬁ%+%(%> —0,0(2,0)
n=0

- 71751(570) = 717g/(630) =-1

fl(&00) =1, 0(¢,00)=0, s(&00)=0,
g(&,00) =0

The heat, mass and nanoparticle volume fraction
transfers from the plate, respectively, are given by

oT oC
w=—k(— m = —Ds |— and
1 (ay)y—() I |:6y:| y=0

09
Gnp = -D |::|
p B ay 4=0

(13a)

(13b)

(14)

The non-dimensional rate of heat transfer, called the

Nusselt number Nu; = L, rate of mass transfer,
k(Tw - oo,O)
qmX
called the Sherwood number Shy = ———— and
: DS(CW - Coc,O)
nanoparticle volume fraction transfer, called nanofluid
GnpX .
Sherwood number Sh,, = ——————— are given by
: DB(¢W - qsoo)
Nuf 61/2 Shf 61/2 and
— = s — = n
Rel ¢, & 10(¢,0) Re'? &' 45(¢,0)
Shn 14 61/2
Re'/2  g(&,0)
(15)

Results and discussions

The governing non-linear and non-homogeneous partial
differential equations Eqgs. (9-12) are solved using the
implicit finite-difference scheme discussed in Cebeci and
Bradshaw (1984). This method is adequately explained in
the literature and it gives accurate results for boundary
layer equations. In the present study, the boundary condi-
tions for 5 at oo are replaced by a sufficiently large value
where the velocity, temperature and concentration
approach zero. In order to see the effects of step size (Ap),
we ran the code for our model with three different step

Table 1 Convergence analysis with step sizes A = 0.05,0.01,0.001
for the velocity, temperature, concentration and nanoparticle volume
fraction

An 1" (&0 0 (0 s (£,0) 8 (50

0.05 0.47843954  2.99380339 1.97888089  2.07132977
0.01 0.47843286  2.99442992 1.97877599  2.07146725
0.001  0.47843258  2.99445577 1.97877166  2.07147292
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sizes as Ay = 0.001,0.01 and 0.05 and in each case we
found very good agreement between them on different
profiles, which is presented in Table. (1). After some trials,
we imposed a maximal value of n at oo of 10 and a grid
size of An as 0.01.

In order to assess the accuracy of our method, we have
compared our results with those of Lee et al. (1987) in the
absence of ¢, €2, &, Ny, Ny, Ny, Ly and Ny with the variation
of Prandtl number Pr. The comparison in the above case is
found to be in good agreement, as shown in Table. (2)

The effect of thermal stratification parameter &, on non-
dimensional velocity, temperature, concentration and
nanoparticle fractions is shown in Figs. 1, 2, 3, and 4. It is
observed from Fig. 1 that the velocity decreases with the
increase of thermal stratification ¢;. Increase in thermal
stratification parameter reduces the effective convective
potential between the heated plate and the ambient fluid in
the medium. This factor causes a decrease in the buoyancy
force, which decelerates the velocity of the flow. It is
noticed from Fig. 2 that the non-dimensional temperature
of the fluid decreases with the increase of the thermal

Table 2 Comparison between % calculated by the present method

and that of Lee et al. (1987) with the variation of Prandtl number Pr

Pr ﬁ
Lee et al. (1987) Present
0.1 0.2007 0.2009
0.7 0.4059 0.4059
7.0 0.8856 0.88564
100.0 2.1512 2.15222
1.0
e, =0.0
08 - Tm7g =04
------ e =08
A e =12
2
0.6
i
0.4 4
0.2 4
€,=0.2, B=0.5, N=0.01, N=0.1, Nb=0.5, Ld=1.0, Nd=0.2,
Sc=0.22, Scn=0.22, Da=0.5, Pr=0.71, Re=200.0, Ri=1.0
0.0 T T T T T T T T
0 2 4 6 8 10
n

Fig. 1 Velocity profile for various values of thermal stratification
parameter
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£,=0.2, B=0.5, N =0.01, N=0.1, N,=0.5, L =1.0, N =0.2,
Sc=0.22, Sc, =0.22, Da=0.5, Pr=0.71, Re=200.0, Ri=1.0

\

0 2 4 6 8 10

Fig. 2 Temperature profile for various values of thermal stratification
parameter

\ €,=0.2, B=0.5, N=0.01, N=0.1, N,=0.5, L =1.0, N =0.2,

a

Fig. 3 Concentration profile for various values of thermal stratifica-
tion parameter

stratification parameter. When the thermal stratification
effect is taken into consideration, the temperature gradient
between the plate and the ambient fluid will decrease. In
view of this, the thermal boundary layer is thickened and
the temperature is reduced. The magnitudes of concentra-
tion and nanoparticle volume fraction enhance with the
increase of thermal stratification parameter as shown in
Figs. 3 and 4.

In Figs. 5, 6, 7 and 8 the influence of solutal strati-
fication parameter & on the dimensionless velocity,
temperature, concentration and nanoparticle fractions is
presented. From Fig. 5, it is observed that the velocity of
the fluid decreases with the increase of solutal stratifi-
cation parameter. Increase in mass stratification parame-
ter lessens the concentration gradient between the

3.71 -
€,=0.2, B=0.5, N=0.01, N=0.1,N,=0.5, L =1.0, N,=0.2,

a1g | §90=0-22, 8¢ =022, Da=0.5, Pr=0.71, Re=200.0, Ri=1.0

2.65
2.12
1.59 A
1.06

0.53

0.00

10

Fig. 4 Nanoparticle volume fraction profile for various values of
thermal stratification parameter

1.0 H
€, = 0.0
08 1 ---g,=04
L Y < T e, =08
0.6 | s T g, =12
4
0.4
0.2 4
£=0.4, B=0.5,N =0.1,N=0.3, N,=1.0, L =1.0, N =0.2,
Sc=1.0, SCn=1.0, Da=0.5, Pr=3.0, Re=200.0, Ri=2.0
0.0 T T T T T T T T T
0 2 4 6 8 10

n

Fig. 5 Velocity profile for various values of solutal stratification
parameter

ambient and the surface. This declines the buoyancy
force, which reduces the velocity of the flow. It is
noticed from Fig. 6 that the temperature of the fluid
increases with the increase of solutal stratification
parameter. It is clear from Fig. 7 that the non-dimen-
sional concentration of the fluid decreases with the
increase of solutal stratification parameter. From Fig. 8,
it can be noticed that the solutal stratification parameter
enhances the nanoparticle fraction. It is observed that the
non-dimensional temperature and concentration values
would become negative inside the boundary layer for
different values of the stratification parameters depending
on the values of other parameters. This is because the
fluid near the plate can have temperature or concentra-
tion lower than the ambient medium.

isdlate ¢l ayao .
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R €=0.4,B=0.5N=0.1,N=0.3,N,=1.0, L =1.0,N=0.2,
Sc=1.0, Sc,=1.0, Da=0.5, Pr=3.0, Re=200.0, Ri=2.0

——¢,=0.0
---g,=04

Fig. 6 Temperature profile for various values of solutal stratification
parameter

204\ €=04,B=05,N=0.1,N=0.3,N.=1.0, L =1.0, N,=0.2,
I\ Sc=1.0, Sc =1.0, Da=0.5, Pr=3.0, Re=200.0, Ri=2.0
153 {: € =00
‘ ——-g,=04
102 VNN -
(/]
0.51 -
0.00 4
T T T T T T T T T

Fig. 7 Concentration profile for various values of solutal stratifica-
tion parameter

Figures 9, 10 and 11 depict the effect of thermal strat-
ification parameter on the non-dimensional Nusselt num-
ber, Sherwood number and nanoparticle Sherwood number.
As & increases, the Nussellt number, Sherwood number and
nanoparticle sherwood number increases. Figures 9, 10 and
11 reveal that an enhancement in thermal stratification
reduces heat, mass and nanoparticle transfer rates. Figures
12, 13 and 14 show the effect of solutal stratification
parameter on dimensionless Nusselt number, Sherwood
number and nanoparticle Sherwood number. As & increa-
ses, the Nussellt number, Sherwood number and nanopar-
ticle sherwood number increases. An increase in solutal
stratification parameter causes a significant decrease in
non-dimensional heat, mass and nanoparticle transfer rates
as shown in Figs. 12, 13 and 14.
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Fig. 8 Nanoparticle volume fraction profile for various values of
solutal stratification parameter
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NuglRem
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0.00 ——

0.0 0.2 0.4 0.6 0.8 1.0

&

Fig. 9 Variation of local heat transfer coefficient with thermal
stratification parameter

The dimensionless heat, mass and nanoparticle volume
fraction transfer rates for different values of thermophoresis
parameter N, and Brownian motion parameter N, are pre-
sented in Figs. 15, 16 and 17. Figure 15 depicts that the
dimensionless heat transfer rate decreases with the increase
in both the thermophoresis and Browinian motion parame-
ters. The dimensionless mass transfer rates increase with the
increase of both the thermophoresis and Brownian motion
parameters, as shown in Fig. 16. An increase in the value of
thermophoresis parameter causes a decrease in nanoparticle
volume fraction transfer rate. Further, increasing Brownian
motion parameter enhances the nanoparticle volume frac-
tion transfer rate, as shown in Fig. 17.

The variation of dimensionless Nusselt, Sherwood and
nanoparticle Sherwood numbers for different values of
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thermal stratification parameter

Dufour-solutal Lewis number L4 and modified Dufour
number Ny is exhibited in Figs. 18, 19 and 20. It is seen
from Fig. 18 that the dimensionless heat transfer rate is
increased with the increase in Dufour-solutal Lewis num-
ber and decreased with the increase of modified Dufour
number. The dimensionless mass transfer rate increases
with the increase of modified Dufour number and decreases
with an increase in the value of Dufour-solutal Lewis
number, as shown in Fig. 19. Figure 20 shows that the
nanoparticle volume fraction transfer rate increases with
increase in the values of Dufour-solutal Lewis number and
modified Dufour number.

The non-dimensional heat, mass and nanoparticle
transfer rates for different values of Darcy number are
presented in Figs. 21, 22 and 23. An increase in Darcy

number decreases dimensionless heat, mass and
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Fig. 13 Variation of local mass transfer coefficient with solutal
stratification parameter

nanoparticle transfer rates as depicted in Figs. 21, 22 and
23. Figures 24, 25 and 26 present the variation of non-
dimensional Nusselt, Sherwood and nanoparticle Sherwood
numbers with varying mixed convection parameter. The
dimensionless heat, mass and nanoparticle transfer rates are
enhanced with an increase in the value of mixed convection
parameter Ri as shown in Figs. 24, 25 and 26.

Conclusions

In this article, we studied the influence of thermal and
solutal stratification on mixed convection boundary layer
flow of a nanofluid past a vertical plate embedded in a
porous medium. The effects of Brownian motion and
thermophoresis are incorporated into the model for
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Fig. 26 Variation of local nanoparticle transfer coefficient with
mixed convection parameter

nanofluids. The plate is subject to a uniform and constant
wall heat, mass and nanoparticle fluxes. The governing
equations are reduced to a system of non-similar parabolic
equations for which numerical solutions have been pre-
sented for the wide range of parameters.

e An increase in the thermal stratification parameter ¢,
reduces the velocity, temperature and local heat, mass
and nanoparticle transfer coefficients but enhances the
concentration and nanoparticle fraction.

e The higher value of solutal stratification parameter &,
results in a lower velocity, concentration and local heat,
mass and nanoparticle transfer coefficients but a higher
temperature, nanoparticle fraction.

e The influence of Brownian motion parameter is to
reduce the heat transfer rate and to enhance mass and
nanoparticle transfer rates.

e The presence of thermophoresis effect is significantly
decreased the heat transfer rate and increased mass and
nanoparticle transfer rates.

e It is observed that the Dufour-solutal Lewis and
modified Dufour numbers have significant influence
on heat, mass and nanoparticle transfer rates.

e The local heat, mass and nanoparticle transfer rates are
significanlty decreased with increase of Darcy number,
but are enhanced with the increase of mixed convection
parameter.
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