
FPGA implementation of multipliers for ECC

Ravi Kishore Kodali, Prasanth Gomatam, Lakshmi Boppana

Department of Electronics and Communication Engineering

National Institute of Technology, Warangal

WARANGAL 506004,INDIA

E-mail: ravikkodali@gmail.com

Abstract—Scalar Multiplication(SM) is the most frequently
used operation in Elliptic Curve Cryptography(ECC). The ef-
ficiency of an ECC based system depends on the efficient
implementation of SM. The type of basis used while designing a
cryptosystem determines the space and time complexities. We im-
plemented two multipliers based on Optimal Normal Basis of type
II(ONB) and polynomial basis. This work uses Karatsuba and
Sunar-Koc algorithms. The hardware implementations of both
the multipliers have been carried out for different key lengths:
243, 251, and 270 bits. The FPGA device used for hardware
implementation is XC6VLX240T(Virtex-6). The synthesis results
are compared qualitatively in terms of hardware complexities for
these key lengths.

key words-Sunar-Koc multiplier, Karatsuba multiplier,

ECC.

I. INTRODUCTION

The arithmetic operations in Finite field play a crucial

role in many Cryptographic computations. The complexity of

operations depends on the basis used to represent the Finite

field. There are many bases available in literature. Normal

basis and Polynomial basis are most widely used among the

bases by many applications.

Scalar Multiplication(SM) is the most frequently used

finite field operation in Elliptic curve cryptography (ECC).

The speed of the multiplier used determines the performance

of the cryptosystem. The multipliers are implemented using

Polynomial basis and Normal basis and Karatsuba and

Sunar-Koc algorithms have been used.

Sunar-Koc multiplier is a conversion based ONB(type II)

multiplier. The operands are initially converted from Normal

basis to Canonical basis. The conversion process is called

permutation and it requires no additional hardware. After the

completion of multiplication the result is converted back to

Normal basis. Karatsuba multiplier is a polynomial based

multiplier. It involves repeated splitting of operands into

several sub-operands. The details of both the multipliers are

discussed comprehensively in further subsections.

The rest of the paper is organized as follows: Section II

provides literature survey, section III gives an overview of

Sunar-Koc multiplier and Karatsuba multiplier, section IV

gives scheme of experimentation, section V presents results

and section VI concludes the paper.

II. LITERATURE SURVEY

In the original Karatsuba-Offman algorithm[1], the

operands are split into most significant, least significant

halves and the product is calculated. During the summation

of partial products overlapping takes place leading to the

repetitive use of XOR gates. Instead, the operands are

split based on their parity. Such a split-up results in non

overlapping of XOR operations yielding improved time

complexities [1].

Optimal normal basis (ONB) type II representation [2] is

used to achieve reduced time complexities. The multipliers

designed using ONB (type II) to achieve minimum propagation

delays cannot be implemented using VLSI. Chang proposed

a ONB type II multiplier, which makes use of matrix vector

representation to compute partial products. This design can

be implemented using VLSI. The depicted design finds its

application in those systems with limited hardware resources.

Broadly, two types of multipliers making use of ONB [3]

are found in literature: (i) lambda matrix based multipliers

(ii) conversion based multipliers.

Somani and Amin [3] compared different kinds of lambda

based multipliers and conversion based multipliers. They

illustrated various ways of splitting the lambda matrix in

order to achieve different space and time complexities.

Hasan modified the ONB representation [4] and developed

a new architecture for Massey-Omura algorithm. The modified

representation allows the partial products to be saved into a

register resulting in reduced number of XOR gates.

The advantage of normal basis [5] over other bases is that a

squaring operation can be carried out by making use of simple

shifting operation. The usage of all one polynomial (AOP)

makes a part of input independent of shifting operation,

thereby attaining lesser time complexities.

The space occupied by ONB multiplier [6] grows

exponentially with increased key lengths. Reed suggested the

usage of standard basis pipelined multipliers for higher key

lengths as the throughput of such multipliers is very high.

However, this multiplier takes longer time to generate initial

978-1-4799-6986-9/14/$31.00©2014 IEEE

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 08,2025 at 06:33:31 UTC from IEEE Xplore. Restrictions apply.

output and the delay depends on the width of operand.

The author [7] implemented arithmetic field operations

using polynomial basis and optimal normal basis respectively.

The ONB type II is used where higher performances are

required at the cost of hardware and vice-versa. But, Kim

[7] predicted that both the bases have identical performance

levels by using projective co-ordinate system.

The array multiplier [8] consists of a linear feedback shift

register (LFSR), general purpose register and an execution

unit (EU). The EU consists of required hardware resources

and a latch. The latch is used to synchronize the output and

this output is passed onto the feedback register. The contents

of the registers are the coefficients of polynomial basis

representation of the multiplicand and multiplier operands.

The design consumed lesser hardware by using the EU

iteratively.

There are two kinds of side channel attacks on

cryptographic systems: (i) Simple Power Analysis (SPA)

attack (ii) Differential power analysis (DPA) attack.

The SPA attack involves extracting a single power trace

of signals involved in computation. It is used to analyse [9]

the operation involved in system. The DPA attack involves

observation of a set of signals. They are classified into

different groups and statistical studies are carried on them.

The DPA attack is more dangerous compared to SPA due to

its accurate estimate of the arithmetic operations involved.

Both the attacks can be tackled by randomizing the scalar

point involved in every scalar multiplication used by the

crypto primitives. Apart from the above attacks, the timing

attacks are also countered by randomizing scalar point

yielding varying delays.

Applications like noise generation, ranging code generation,

test data generation [10], require random sequence (RS) of

longer length. The author [10] added Massy-Omura multiplier

circuit to the maximum length shift register architecture in

order to generate RS of longer lengths.

Scalar Multiplication can be achieved [11] by a sequence of

point addition and point doubling operations. Mishra used a

two stage pipeline to perform the same. Mishra used Jacobian

co-ordinate system and calculated the time complexities based

on the individual blocks involved in the pipeline stages.

In general, elliptic curve scalar multiplication is done by

performing point addition (ECAD) and doubling (ECDBL)

operations [12] repeatedly. ECAD and ECDBL operations can

be performed by a sequence of finite field (FF) operations

like addition, squaring, multiplication and inversion. The time

complexities for various cases of Montgomery multiplication

have been studied [12].

III. MATHEMATICAL BACKGROUND

A. KARATSUBA MULTIPLIER

The operands used in Karatsuba Algorithm are the elements

in GF(2m). They are represented using polynomial basis as

given by equation (1).

A =
m−1
∑

j=0

ajx
j = X

m

2 AH +AL, (1)

where

AH =

m

2
−1

∑

i=0

a(i+m

2
)x

i

Similarly, the other operand B can be represented using

equation (2).

B =

m−1
∑

j=0

bix
j = X

m

2 BH +BL, (2)

where

BH =

(m

2
−1)

∑

j=0

b(j+m

2
)x

j

The resultant product C is computed using equation (3).

C = XmAHBH +ALBL + (AHBH +ALBL+

(AH +AL(BH +BL)))X
m

2

(3)

Using recursion, each sub-product is divided further into

sub-parts. This process of division continues till the lowest

possible level, where multiplication can be easily computed

using conventional algorithms, such as shift and add algorithm,

Booth’s multiplication algorithm, etc.

B. Sunar-Koc Multiplier

The operands in canonical form are shown below:

A = a1λ+ a2λ
2 + a3λ

22 ++ amλ2m−1

(4)

B = b1λ+ b2λ
2 + b3λ

22 ++ bmλ2m−1

(5)

The three stages involved in Sunar-Koc algorithm are:

(i) Permutation (ii) Multiplication (iii) Re-permutation.

Permutation:

The operands are initially in canonical basis. They are

converted into Normal basis using the below mentioned

scheme.

The coefficients in the above equation altogether form a key

word.

bi = bj , (6)

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 08,2025 at 06:33:31 UTC from IEEE Xplore. Restrictions apply.

where i =

{

k, k ∈ [1,m]

(2m+ 1)− k, k ∈ [m+ 1, 2m]

and k = 2j−1 mod (2m+ 1)

A similar scheme is followed for the other operand. The key

words after the permutation are shown here.

The key words after the permutation are listed below:

A =

m
∑

i=1

(aiλi) (7a)

B =

m
∑

i=1

(biλi) (7b)

Multiplication:

The product is computed by summing the following three

sub-products.

D =
m
∑

i=1

m
∑

j=1

aibj(γ
(i−j) + γ−(i−j)) (8a)

E =
m
∑

i=1

m−i
∑

j=1

aibj(γ
(i+j) + γ−(i+j)) (8b)

F =

m
∑

i=1

m
∑

j=(m−i+1)

aibj(γ
(i+j) + γ−(i+j)) (8c)

Re-permutation:

Using the same scheme as in permutation the product is

converted back to canonical basis.

IV. SCHEME OF EXPERIMENTATION

We have developed VHDL models for both Karatsuba and

Sunar-Koc multipliers respectively. Karatsuba and Sunar-Koc

multipliers have been implemented on the XILINX FPGA VIR-

TEX family device. Hardware complexities were measured

for both the algorithms in terms of device utilization. VHDL

models have beeb developed for three different key lengths for

both the multipliers. The key lengths are 243-bit, 251-bit and

270- bit. The output simulations have also been included in

the next section. The algorithms used in the architectures of

the multipliers are illustrated here.

A. KARATSUBA MULTIPLIER

Using Algorithm -1, the operands are split into the available

multiplier blocks at lower level. Algorithm -2 is made use of

in the multiplier block.

B. SUNAR-KOC MULTIPLIER

Sunar algorithm consists of three phases. They are per-

mutation, multiplication and re-permutation. Three separate

VHDL modules have been developed for the three phases. The

permutation and re-permutation operations are used to convert

operands from Normal basis to canonical basis and canonical

basis to Normal basis respectively. The algorithm involved in

Multiplication phase is illustrated below.

Algorithm 1 METHOD FOR SPLITTING IN KARATSUBA

ALGORITHM
INPUT:Input in polynomial basis

OUTPUT:Output in polynomial basis

BEGIN K

t = a′length;
if t = 2 or t = 3 then

multi(a, b)
end if

z0 := k(a1, b1);
z4 := a1;
z5 := b1;
z1 := k((a1 xor z4), (b1 xor z5));
z2 := k(a1, b1);
z6 := (z2 xor z1 xor z0);
endk;

Algorithm 2 METHOD FOR MULTIPLICATION IN

KARATSUBA ALGORITHM
INPUT:Input operands

OUTPUT:Resultant product

BEGIN multi

for i = 0 to b′length− 1 do

if b1(i) = 1 then

s2 := s2 XOR s1;
end if

s1 := s1((s1′length− 2)downto0)
end for

return multi

Algorithm 3 ALGORITHM FOR MULTIPLICATION PRO-

CESS
INPUT: Input operands in Canonical basis

OUTPUT: Resultant product in Canonical basis

for j = 1 to m do

for i = 1 to m− i do

c(j) := (a(i)andb(j+i))xor(a(j+i)andb(i))xorc(j)
end for

end for

for j = 2 to m do

for l = 1 to k − 1 do

d(k) := (a(l) and b(k − l)) xor d(k)
end for

end for

for j = 1 to m do

for i = m− i+ 1 to m do

e(m) := (a(n) and b(346− n−m+ 1)) xor e(m)
end for

end for

for j = 1 to m do

p(u) := c(u) xor d(u) xor e(u)
end for

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 08,2025 at 06:33:31 UTC from IEEE Xplore. Restrictions apply.

(a) Key length = 243

(b) Key length = 251

(c) Key length = 270

Fig. 1: Sunar-Koc algorithm Simulation results for three different key lengths

(a) Key length = 243

(b) Key length = 251

(c) Key length = 270

Fig. 2: Karatsuba algorithm Simulation results for three different key lengths

V. SYNTHESIS AND SIMULATION RESULTS

A. SYNTHESIS RESULTS

We have used Xilinx 13.4 to implement the designed

multipliers. The simulations for different key lengths have

been illustrated here.

B. SYNTHESIS RESULTS FOR SUNAR-KOC MULTIPLIER

The Sunar multiplier has been designed based on the algo-

rithm described in the previous section and the same has been

implemented on XC6VLX240T device. The implementation

results are illustrated here.

TABLE I: DEVICE UTILIZATION FOR SUNAR-KOC MUL-

TIPLIER

Parameter 243-bit 251-bit 270-bit

Logic Utilization Available Used Used Used

No. of Slice LUT’S 150720 82863 88008 101957

No. of Slice FF-pairs 76055 0 0 0

No. of IOB’s 600 730 754 811

C. SYNTHESIS RESULTS FOR KARATSUBA MULTIPLIER

The implementation of Karatsuba multiplier has also been

carried out on the XC6VLX240T device and the synthesis

results are shown here.

A comparison of both the multipliers in terms of hardware

complexities is given by the histogram as shown in figure 3.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 08,2025 at 06:33:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Comparison of hardware complexities of Sunar-Koc

and Karatsuba multipliers

TABLE II: DEVICE UTILIZATION FOR KARATSUBA

MULTIPLIER

Parameter 243-bit 251-bit 270-bit

Logic Utilization Available Used Used Used

No. of Slice LUT’S 150720 15790 16378 19882

No. of Slice FF’Pairs 76055 0 0 0

No. of IOB’s 600 656 645 752

It is observed that the Karatsuba multiplier consumed lesser

resources. Sunar-Koc is a parallel multiplication algorithm

where as Karatsuba makes use of the available resources in

an iterative manner. Hence, Karatsuba multiplier consumed

lesser resources than Sunar-Koc multiplier.

VI. CONCLUSIONS

There are different bases available in literature for finite

field representation. We have chosen Polynomial basis and

Normal basis representation during the implementations of

the multipliers. The implementation has been carried out

on FPGA device. The device used is XC6VLX240T-ff1156.

The multipliers are compared qualitatively in terms of device

utilization. Our future work involves an implementation of a

Cryptographic processor using these algorithms.

REFERENCES

[1] H. Fan, J. Sun, M. Gu, and K.-Y. Lam, “Overlap-free karatsuba-ofman
polynomial multiplication algorithms,” Information Security, IET, vol. 4,
no. 1, pp. 8–14, 2010.

[2] C.-Y. Lee and C.-J. Chang, “Low-complexity linear array multiplier for
normal basis of type-ii,” in Multimedia and Expo, 2004. ICME’04. 2004

IEEE International Conference on, vol. 3. IEEE, 2004, pp. 1515–1518.

[3] T. F. Al-Somani and A. Amin, “Hardware implementations of gf (2m)
arithmetic using normal basis,” Journal of Applied Sciences, vol. 6, no. 6,
pp. 1362–1372, 2006.

[4] A. Reyhani-Masoleh and M. A. Hasan, “A new construction of massey-
omura parallel multiplier over gf (2¡ sup¿ m¡/sup¿),” Computers, IEEE

Transactions on, vol. 51, no. 5, pp. 511–520, 2002.

[5] M. A. Hasan, M. Wang, and V. K. Bhargava, “A modified massey-
omura parallel multiplier for a class of finite fields,” Computers, IEEE

Transactions on, vol. 42, no. 10, pp. 1278–1280, 1993.
[6] I.-S. Hsu, T.-K. Truong, L. J. Deutsch, and I. S. Reed, “A comparison of

vlsi architecture of finite field multipliers using dual, normal, or standard
bases,” Computers, IEEE Transactions on, vol. 37, no. 6, pp. 735–739,
1988.

[7] Y.-J. Choi, M.-S. Kim, H.-R. Lee, and H.-W. Kim, “Implementation
and analysis of elliptic curve cryptosystems over polynomial basis and
onb,” in Proceedings of World Academy of Science, Engineering and

Technology, vol. 10. Citeseer, 2005.
[8] C. Chiou, L. Lin, F. Chou, and S. Shu, “Low-complexity finite field

multiplier using irreducible trinomials,” Electronics Letters, vol. 39,
no. 24, pp. 1709–1711, 2003.

[9] J. C. Ha and S. J. Moon, “Randomized signed-scalar multiplication of
ecc to resist power attacks,” in Cryptographic hardware and embedded

systems-CHES 2002. Springer, 2003, pp. 551–563.
[10] C. C. Wang and D. Pei, “A vlsi design for computing exponentiations

in gf (2¡ sup¿ m¡/sup¿) and its application to generate pseudorandom
number sequences,” Computers, IEEE Transactions on, vol. 39, no. 2,
pp. 258–262, 1990.

[11] P. Mishra, “Pipelined computation of scalar multiplication in elliptic
curve cryptosystems (extended version),” Computers, IEEE Transactions

on, vol. 55, no. 8, pp. 1000–1010, 2006.
[12] B. Ansari and M. A. Hasan, “High-performance architecture of elliptic

curve scalar multiplication,” Computers, IEEE Transactions on, vol. 57,
no. 11, pp. 1443–1453, 2008.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 08,2025 at 06:33:31 UTC from IEEE Xplore. Restrictions apply.

