FPGA implementation of multipliers for ECC

Ravi Kishore Kodali, Prasanth Gomatam, Lakshmi Boppana
Department of Electronics and Communication Engineering
National Institute of Technology, Warangal
WARANGAL 506004,INDIA

E-mail: ravikkodali@gmail.com

Abstract—Scalar Multiplication(SM) is the most frequently
used operation in Elliptic Curve Cryptography(ECC). The ef-
ficiency of an ECC based system depends on the efficient
implementation of SM. The type of basis used while designing a
cryptosystem determines the space and time complexities. We im-
plemented two multipliers based on Optimal Normal Basis of type
II(ONB) and polynomial basis. This work uses Karatsuba and
Sunar-Koc algorithms. The hardware implementations of both
the multipliers have been carried out for different key lengths:
243, 251, and 270 bits. The FPGA device used for hardware
implementation is XC6VLX240T(Virtex-6). The synthesis results
are compared qualitatively in terms of hardware complexities for
these key lengths.

key words-Sunar-Koc multiplier, Karatsuba multiplier,

ECC.

[. INTRODUCTION

The arithmetic operations in Finite field play a crucial
role in many Cryptographic computations. The complexity of
operations depends on the basis used to represent the Finite
field. There are many bases available in literature. Normal
basis and Polynomial basis are most widely used among the
bases by many applications.

Scalar Multiplication(SM) is the most frequently used
finite field operation in Elliptic curve cryptography (ECC).
The speed of the multiplier used determines the performance
of the cryptosystem. The multipliers are implemented using
Polynomial basis and Normal basis and Karatsuba and
Sunar-Koc algorithms have been used.

Sunar-Koc multiplier is a conversion based ONB(type II)
multiplier. The operands are initially converted from Normal
basis to Canonical basis. The conversion process is called
permutation and it requires no additional hardware. After the
completion of multiplication the result is converted back to
Normal basis. Karatsuba multiplier is a polynomial based
multiplier. It involves repeated splitting of operands into
several sub-operands. The details of both the multipliers are
discussed comprehensively in further subsections.

The rest of the paper is organized as follows: Section II
provides literature survey, section III gives an overview of
Sunar-Koc multiplier and Karatsuba multiplier, section IV
gives scheme of experimentation, section V presents results
and section VI concludes the paper.

II. LITERATURE SURVEY

In the original Karatsuba-Offman algorithm[1], the
operands are split into most significant, least significant
halves and the product is calculated. During the summation
of partial products overlapping takes place leading to the
repetitive use of XOR gates. Instead, the operands are
split based on their parity. Such a split-up results in non
overlapping of XOR operations yielding improved time
complexities [1].

Optimal normal basis (ONB) type II representation [2] is
used to achieve reduced time complexities. The multipliers
designed using ONB (type II) to achieve minimum propagation
delays cannot be implemented using VLSI. Chang proposed
a ONB type II multiplier, which makes use of matrix vector
representation to compute partial products. This design can
be implemented using VLSI. The depicted design finds its
application in those systems with limited hardware resources.

Broadly, two types of multipliers making use of ONB [3]
are found in literature: (i) lambda matrix based multipliers
(ii) conversion based multipliers.

Somani and Amin [3] compared different kinds of lambda
based multipliers and conversion based multipliers. They
illustrated various ways of splitting the lambda matrix in
order to achieve different space and time complexities.

Hasan modified the ONB representation [4] and developed
a new architecture for Massey-Omura algorithm. The modified
representation allows the partial products to be saved into a
register resulting in reduced number of XOR gates.

The advantage of normal basis [5] over other bases is that a
squaring operation can be carried out by making use of simple
shifting operation. The usage of all one polynomial (AOP)
makes a part of input independent of shifting operation,
thereby attaining lesser time complexities.

The space occupied by ONB multiplier [6] grows
exponentially with increased key lengths. Reed suggested the
usage of standard basis pipelined multipliers for higher key
lengths as the throughput of such multipliers is very high.
However, this multiplier takes longer time to generate initial

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 08,2025 at 06:33:31 UTC from IEEE Xplore. Restrictions apply.

078-1-4799-6986-9/14/$31.0002014 IEEE

output and the delay depends on the width of operand.

The author [7] implemented arithmetic field operations
using polynomial basis and optimal normal basis respectively.
The ONB type II is used where higher performances are
required at the cost of hardware and vice-versa. But, Kim
[7] predicted that both the bases have identical performance
levels by using projective co-ordinate system.

The array multiplier [8] consists of a linear feedback shift
register (LFSR), general purpose register and an execution
unit (EU). The EU consists of required hardware resources
and a latch. The latch is used to synchronize the output and
this output is passed onto the feedback register. The contents
of the registers are the coefficients of polynomial basis
representation of the multiplicand and multiplier operands.
The design consumed lesser hardware by using the EU
iteratively.

There are two kinds of side channel attacks on
cryptographic systems: (i) Simple Power Analysis (SPA)
attack (ii) Differential power analysis (DPA) attack.

The SPA attack involves extracting a single power trace
of signals involved in computation. It is used to analyse [9]
the operation involved in system. The DPA attack involves
observation of a set of signals. They are classified into
different groups and statistical studies are carried on them.
The DPA attack is more dangerous compared to SPA due to
its accurate estimate of the arithmetic operations involved.
Both the attacks can be tackled by randomizing the scalar
point involved in every scalar multiplication used by the
crypto primitives. Apart from the above attacks, the timing
attacks are also countered by randomizing scalar point
yielding varying delays.

Applications like noise generation, ranging code generation,
test data generation [10], require random sequence (RS) of
longer length. The author [10] added Massy-Omura multiplier
circuit to the maximum length shift register architecture in
order to generate RS of longer lengths.

Scalar Multiplication can be achieved [11] by a sequence of
point addition and point doubling operations. Mishra used a
two stage pipeline to perform the same. Mishra used Jacobian
co-ordinate system and calculated the time complexities based
on the individual blocks involved in the pipeline stages.

In general, elliptic curve scalar multiplication is done by
performing point addition (ECAD) and doubling (ECDBL)
operations [12] repeatedly. ECAD and ECDBL operations can
be performed by a sequence of finite field (FF) operations
like addition, squaring, multiplication and inversion. The time
complexities for various cases of Montgomery multiplication
have been studied [12].

IT1I. MATHEMATICAL BACKGROUND
A. KARATSUBA MULTIPLIER

The operands used in Karatsuba Algorithm are the elements
in GF(2™). They are represented using polynomial basis as
given by equation (1).

m—1
A= ajr! = X% AR AL (D
=0
where
m_
AH = Z a(iJ’,%)xl
i=0

Similarly, the other operand B can be represented using
equation (2).

m—1
B=3) b’ =X*B"+B", @
j=0
where
3D
B =3 by’
j=0
The resultant product C is computed using equation (3).
C=X"A"B" 4 ALBE + (A" B + ALBE+)

(A" + AL(BH 4 BE)X %

Using recursion, each sub-product is divided further into
sub-parts. This process of division continues till the lowest
possible level, where multiplication can be easily computed
using conventional algorithms, such as shift and add algorithm,
Booth’s multiplication algorithm, etc.

B. Sunar-Koc Multiplier

The operands in canonical form are shown below:

A=a)+ a2\ + a3)\22 F o + am)\27n71
B = b\ 4 boA2 4+ 0322 + + b A2

The three stages involved in Sunar-Koc algorithm are:
(i) Permutation (ii) Multiplication (iii) Re-permutation.

Permutation:

The operands are initially in canonical basis. They are
converted into Normal basis using the below mentioned
scheme.

The coefficients in the above equation altogether form a key
word.

(6)

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 08,2025 at 06:33:31 UTC from IEEE Xplore. Restrictions apply.

_) ke [1,m]
where 7 =
2m+1)—k, ke[m+1,2m]
and k =271 mod (2m +1)

A similar scheme is followed for the other operand. The key
words after the permutation are shown here.
The key words after the permutation are listed below:

A

I
.MS

s
Il
-

((J,z)\z) (721)

B=) (bi\) (7b)

I

s
Il
—

Multiplication:
The product is computed by summing the following three
sub-products.

NE
NE

D= aib; (779 4 47(9) (8a)
=1 j=1
E = Z azb; (D) 4 = (HD)) (8b)
i=1 j=1
F= Z azb; (D) 4 4=+ (8¢)
i=1 j=(m—i+1)

Re-permutation:
Using the same scheme as in permutation the product is
converted back to canonical basis.

IV. SCHEME OF EXPERIMENTATION

We have developed VHDL models for both Karatsuba and
Sunar-Koc multipliers respectively. Karatsuba and Sunar-Koc
multipliers have been implemented on the X/ILINX FPGA VIR-
TEX family device. Hardware complexities were measured
for both the algorithms in terms of device utilization. VHDL
models have beeb developed for three different key lengths for
both the multipliers. The key lengths are 243-bit, 251-bit and
270- bit. The output simulations have also been included in
the next section. The algorithms used in the architectures of
the multipliers are illustrated here.

A. KARATSUBA MULTIPLIER

Using Algorithm -1, the operands are split into the available
multiplier blocks at lower level. Algorithm -2 is made use of
in the multiplier block.

B. SUNAR-KOC MULTIPLIER

Sunar algorithm consists of three phases. They are per-
mutation, multiplication and re-permutation. Three separate
VHDL modules have been developed for the three phases. The
permutation and re-permutation operations are used to convert
operands from Normal basis to canonical basis and canonical
basis to Normal basis respectively. The algorithm involved in
Multiplication phase is illustrated below.

Algorithm 1 METHOD FOR SPLITTING IN KARATSUBA
ALGORITHM

INPUT:Input in polynomial basis

OUTPUT:Output in polynomial basis

BEGIN K

t = d'length;

if t=2ort=3 then

multi(a,b)

end if

20 := k(al,bl);

z4 := al;

25 :=bl;

z1 := k((al xor z4), (bl xor z5));

22 := k(al,bl);

26 := (22 xor z1 xor 20);

endk;

Algorithm 2 METHOD FOR
KARATSUBA ALGORITHM
INPUT:Input operands
OUTPUT:Resultant product
BEGIN multi
for i = 0 to b'length — 1 do
if b1(7) = 1 then
52 := s2 XOR s1;
end if
s1:= s1((sl'length — 2)downto0)
end for
return multi

MULTIPLICATION IN

Algorithm 3 ALGORITHM FOR MULTIPLICATION PRO-
CESS
INPUT: Input operands in Canonical basis
OUTPUT: Resultant product in Canonical basis
for j =1 to m do
for i =1tom—17do
c(j) := (a(i)andb(j+1i))xor(a(j+1)andb(i))zorc(j)
end for
end for
for j =2 to m do
for/=1tok—1do
d(k) := (a(l) and b(k — 1)) zor d(k)
end for
end for
for) =1 tom do
fori=m—1i+1tomdo
e(m) := (a(n) and b(346 —n —m + 1)) zor e(m)
end for
end for
for j =1 tom do
p(u) = c(u) zor d(u) zor e(u)
end for

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 08,2025 at 06:33:31 UTC from IEEE Xplore. Restrictions apply.

o 2 5

Name Ilpsl‘lilllll Fﬁlll[lllllllllllllllllllll1IFE]rlIIIIlFI!:EIII
B aj243:00 | achd 1203achd 120 3acbd 120 3achd 120 3achd 170 3achd 120 3achd 10 3acbd 1

1
B ozazo) achid 1203achd 1203achq1203achd 1203achd 1203acbd 1203achd 10 3achd
B t2az0) | CBH6 7 /B4H4558010504]5d So058 3chels 20b2 1ac2abb0024ec 312
(a) Key length = 243
]

Name A T U A O [N W N T T T T T T A T A T T I A B
% a[251:0) { achd 120 3achd | 20 3achd 120 3achd 1 P03achd 1203achd 120 3achd 1.203achd 112
B bzs1:0] 4 acbd 1203acbd | 20 3achd 1203achd 1 203achd 1203achd 120 3achd 1203acbd211

]
B t251:0] { b0d 206366 1edac 3t 11499 7d 3 10¢ 73 |efaec 3edb 2bboBadtd 443e0f 76b 13620
¥
(b) Key length = 251
999,994 999,995 999,996 999,997 999,993

Name IIIIIIII IIIIIp 11 1 1 IIIIIp 11 1 1 IIIIIp 11 1 1 Ilrllp 11 1 | IIJ-IIp 1
% a[270:0] 5652890196 52890 1d6 52890 1db 52890 1d6 52890 1d652890 1d6 52890 1d6 52239009 1b
By br70:0] 5652390 1d6 52390 1d6 52390 1dR 52390 1d6 52390 1d852390 1d5 52590 1d6 52908809 1d
% t[270:0] 43623260 18F 2fce386d 33001386 19005 7fa 150880846 222 1308 746 2be 2 T89eah 790

(c) Key length = 270
Fig. 1: Sunar-Koc algorithm Simulation results for three different key lengths
999,994 ps 999,995 ps 999,996 ps 999,997 p 999,993 p 999,999 p
0525250440 16545121100353136641 10653110363 122345721 100353 136422007 162750440 16545721
01106425503630440725011045412500F 262750440 16545721100353 136422007 362750440 16545721
13113703741420633346166607626362621564213406 174190347 70057043335162047365420101112
(a) Key length = 243
999,994 p 999,995 p 999,996 05 999,997 p 999,993 p 999,999 p
03008c0523008c0523008c0523008c0523008dc523008c0 523008005232
068(8c0523008c0523004c0 5670080523008 152300920523008c1522d
1563ca82a2507f8263dc 15660848922 5920 52¢ 045032 1F343F444c 12hen
(b) Key length = 251
999,993 999,994 999,995 999,996 999,997 [599,998 999,999 |
1262750440 16545721100353) 3642200726275044D 16545721 100353 136422007 262750440 1654572 104400 4433
1262750440 1654572100353} 3642200726 275044) 1654572110035313642200726 2750440 1654572204200 4435
1033043115306 1713747070323 14140470303 16005757750250 25002443042 702362072 149574236 1172533620

(c) Key length = 270

Fig. 2: Karatsuba algorithm Simulation results for three different key lengths

V. SYNTHESIS AND SIMULATION RESULTS TABLE I: DEVICE UTILIZATION FOR SUNAR-KOC MUL-

TIPLIER
A. SYNTHESIS RESULTS Parameter 243-bit | 251-bit | 270-bit
Logic Utilization | Available | Used | Used | Used
o . . No. of Slice LUT’S | 150720 | 82863 | 88008 | 101957
W.e have used .Xllln)f 134 to .1mplement the designed No. of Sfice FF-pairs | 76055 o 0 0
multipliers. The simulations for different key lengths have No. of IOB’s 600 730 754 311

been illustrated here.

C. SYNTHESIS RESULTS FOR KARATSUBA MULTIPLIER
B. SYNTHESIS RESULTS FOR SUNAR-KOC MULTIPLIER
The implementation of Karatsuba multiplier has also been

carried out on the XC6VLX240T device and the synthesis
results are shown here.

The Sunar multiplier has been designed based on the algo-
rithm described in the previous section and the same has been
implemented on XC6VLX240T device. The implementation
results are illustrated here.

A comparison of both the multipliers in terms of hardware
complexities is given by the histogram as shown in figure 3.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 08,2025 at 06:33:31 UTC from IEEE Xplore. Restrictions apply.

[5] M. A. Hasan, M. Wang, and V. K. Bhargava, “A modified massey-

100 omura parallel multiplier for a class of finite fields,” Computers, IEEE

88.08 Transactions on, vol. 42, no. 10, pp. 1278-1280, 1993.

82.8 [6] L-S. Hsu, T.-K. Truong, L. J. Deutsch, and I. S. Reed, “A comparison of
vlsi architecture of finite field multipliers using dual, normal, or standard
bases,” Computers, IEEE Transactions on, vol. 37, no. 6, pp. 735-739,
1988.

[7]1 Y.-J. Choi, M.-S. Kim, H.-R. Lee, and H.-W. Kim, “Implementation
and analysis of elliptic curve cryptosystems over polynomial basis and
onb,” in Proceedings of World Academy of Science, Engineering and
Technology, vol. 10. Citeseer, 2005.

[8] C. Chiou, L. Lin, F. Chou, and S. Shu, “Low-complexity finite field
multiplier using irreducible trinomials,” Electronics Letters, vol. 39,

19,88 no. 24, pp. 1709-1711, 2003.

[9] J. C. Ha and S. J. Moon, “Randomized signed-scalar multiplication of
ecc to resist power attacks,” in Cryptographic hardware and embedded
systems-CHES 2002. Springer, 2003, pp. 551-563.

sunar ks(243-bit] sunar ks(251-bit) sunar ks(270-bit) [10] C. C. Wang and D. Pei, “A vlsi design for computing exponentiations

in gf (2; sup; m;j/sup;) and its application to generate pseudorandom

on Y-axis:- y*1000 per cm number sequences,” Computers, IEEE Transactions on, vol. 39, no. 2,

on X-axis:- Multiplers of different pp. 258-262, 1990.

key lengths [11] P. Mishra, “Pipelined computation of scalar multiplication in elliptic

curve cryptosystems (extended version),” Computers, IEEE Transactions
on, vol. 55, no. 8, pp. 1000-1010, 2006.
.o [12] B. Ansari and M. A. Hasan, “High-performance architecture of elliptic
and Karatsuba multipliers curve scalar multiplication,” Computers, IEEE Transactions on, vol. 57,
no. 11, pp. 1443-1453, 2008.

No. of Slice LUT pairs

15.78 16.37

=

sunar-Sunar Koc Multiplier
ks-Karat Suba Multiplier

Fig. 3: Comparison of hardware complexities of Sunar-Koc

TABLE II: DEVICE UTILIZATION FOR KARATSUBA
MULTIPLIER

Parameter 243-bit | 251-bit | 270-bit
Logic Utilization Available | Used | Used | Used
No. of Slice LUT’S | 150720 | 15790 | 16378 | 19882
No. of Slice FF’Pairs | 76055 0 0 0
No. of IOB’s 600 656 645 752

It is observed that the Karatsuba multiplier consumed lesser
resources. Sunar-Koc is a parallel multiplication algorithm
where as Karatsuba makes use of the available resources in
an iterative manner. Hence, Karatsuba multiplier consumed
lesser resources than Sunar-Koc multiplier.

VI. CONCLUSIONS

There are different bases available in literature for finite
field representation. We have chosen Polynomial basis and
Normal basis representation during the implementations of
the multipliers. The implementation has been carried out
on FPGA device. The device used is XC6VLX240T-ff1156.
The multipliers are compared qualitatively in terms of device
utilization. Our future work involves an implementation of a
Cryptographic processor using these algorithms.

REFERENCES

[1] H. Fan, J. Sun, M. Gu, and K.-Y. Lam, “Overlap-free karatsuba-ofman
polynomial multiplication algorithms,” Information Security, IET, vol. 4,
no. 1, pp. 8-14, 2010.

[2] C.-Y. Lee and C.-J. Chang, “Low-complexity linear array multiplier for
normal basis of type-ii,” in Multimedia and Expo, 2004. ICME’04. 2004
IEEE International Conference on, vol. 3. 1EEE, 2004, pp. 1515-1518.

[3] T. F. Al-Somani and A. Amin, “Hardware implementations of gf (2m)
arithmetic using normal basis,” Journal of Applied Sciences, vol. 6, no. 6,
pp. 1362-1372, 2006.

[4] A. Reyhani-Masoleh and M. A. Hasan, “A new construction of massey-
omura parallel multiplier over gf (2; sup; mij/sup;),” Computers, IEEE
Transactions on, vol. 51, no. 5, pp. 511-520, 2002.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 08,2025 at 06:33:31 UTC from IEEE Xplore. Restrictions apply.

