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Abstract

This paper analyzes the steady laminar magnetohydrodynamic (MHD) flow, heat and mass transfer characteristics in a nanofluid
over a wedge in the presence of a variable magnetic field. The governing nonlinear partial differential equations are transformed
into a system of ordinary differential equations using similarity variables and then solved numerically by using spectral quasi
linearization method (SQLM). The present numerical results are validated by favourable comparisons with previously published
ones as the special cases of the present investigations. The effects of magnetic parameter, Falkner-Skan power-law parameter and
the volume fraction parameter on the non-dimensional heat and mass transfer rates are presented graphically.
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1. Introduction

The term “nanofluid”, which is first pioneered by Chio et al. [1], to indicate engineered colloids, composed of
nanoparticles dispersed in a base fluid for the enhancement of heat transfer rate. Chio noticed that the addition
of one percent of nanoparticles by volume to the usual fluids increases the thermal conductivity of the fluid up to
approximately twice. The state of art review of nanofluids is presented in the book by Das [2]. The flow, heat and
mass transfer characteristics in nanofluids received the attraction of many researchers duo to its importance in industry
and technology. Magnetic nanofluid is a magnetic colloidal suspension of carrier liquid and magnetic nanoparticles.
The advantage of the magnetic nanofluid is that fluid flow and heat transfer can be controlled by an external source,
which makes it applicable to various fields such as electronic packing, thermal engineering, and aerospace. On the
other hand, the study of magneto-hydrodynamic flow for an electrically conducting fluid past a heated wedge has
important applications in many engineering problems such as plasma studies, petroleum industries, MHD power
generators, cooling of nuclear reactors, the boundary layer control in aerodynamics, and crystal growth. Further,
MHD is significant in the control of boundary layer low and metallurgical processes. Several authors ([3-9]) studied
the effects of MHD on laminar boundary layer flow, heat and mass transfer over a wedge in different situations for
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Fig. 1. Physical model and coordinate system.

different types of fluids. Makanda [10] studied that the natural convection of viscoelastic fluid from a cone embedded
in a porous medium with viscous dissipation.

Papailiou and Lykoudis [11], established experimentally the existence of the similarity solutions for the case of
variable magnetic field. They found that similarity solutions exist when the intensity of the magnetic field changes
with, where is the coordinate measured in the direction of the flow. The objective of this paper is to consider the
effect of variable magnetic field on the fluid flow and heat transfer characteristics for a fixed wedge with variable wall
temperature and concentration.

2. Mathematical Formulation

Consider a steady laminar boundary layer flow past a wedge embedded in a free stream of electrically conducting
nanofluid with velocity U(x). Choose the co-ordinate system such that x-axis is along the surface of the wedge
andy-axis normal to the surface of the wedge, as shown in the Fig. 1. The surface of the wedge is maintained with
variable temperature Tw(x) and variable concentrationCw(x). T and C are ambient temperature and concentration at
any arbitrary reference point in the medium, respectively. A variable magnetic field B(x) is applied normal to the
walls of the wedge. The magnetic Reynolds number is assumed to be small so that the induced magnetic field can be
neglected in comparison with the applied magnetic field. With the above assumptions, using Boussinesq and boundary
layer approximations, the governing equations for the nanofluid flow are given by
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where u and v are the components of velocity along x and y directions respectively, T is the dimensional temperature
of the fluid near the plate, C is the dimensional concentration, D, is the molecular diffusivity of nanofluid.

The effective dynamic viscosity(u, ), the effective density(p, ), the thermal diffusivity (a, ) and heat capacitance
((0Cp)ny) of the nanofluid are given by
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where ¢ is the solid volume fraction of nanoparticles. The thermal conductivity of nanofluids restricted to spherical
nanoparticles is approximated by the Maxwell-Garnetss (MG) model (see [12] and [13]),

ky + 2k — 2¢(ks + k)
kg + 2kp + plks + ky)

knp = (6)
Here, the subscript nf, f and s represent the thermophysical properties of the nanofluid, base fluid and nano solid
particles, respectively.

The boundary conditions are:

u=0, v=0, T=T,x), C=Cux) at y=0,

u—->Ux)=ux", T—->Tsx, C—-Csx as y— oo, (7

The aim of this study is to estimate the skin friction coefficient C , local heat transfer coefficient, Nusselt number
Nu, and local mass transfer coefficient, Sherwood numbersS /,. These are defined as

_ Hpy 6u) _( kx )(6T) B x (6C)
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Hence, the non dimensional skin friction coeflicient, local heat-transfer coefficient and mass transfer coefficient are
given by

Nu, ky Sh
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where the local Reynolds number Re, = .
vy

3. Method of solution

In order to obtain similarity solutions of the problem, we assume that the variable magnetic field B(x) is of the form
B(x) = Box™ VY2 where By is the uniform magnetic field (see [14],[15]). Further, we assume that the free stream
velocity U(x) is of the form U(x) = Uypx™, where 1 is constant and m is the Falkner-Skan power-law parameter with
0 < m < 1. Here m = B/(2 — ) where (3 is the Hartree pressure gradient parameter that corresponds to 8 = Q/I1
for the total wedge angle Q2. We note that 5 = 0 and 8 = 1 correspond to the horizontal and vertical wall cases,
respectively.

0 0
Introducing the stream function ¥(x, y) through u = 6_¢” V= —aLp and the following similarity variables
y X
w12 T-T.
¥ =pug X" 2F(m), n= (uo ) Y S =0, Tu(x) - T = xAT
c_c Vf X Tw(-x) - Too . (10)
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in Egs. (2), (3) and (4), we obtain
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where a prime denotes differentiation with respect to n, Pr = M is the Prandtl number, Sc¢ = Bf is the Schmidt
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The boundary conditions (7) in terms of F, 6 and ¢ becomes

n=0: F(0)=0,F(0)=0,00)=1,e0) =1, "
as n—ooo: F -1, 650, ¢—0, ’

4. The Spectral QLM Solution of the Problem

The non-linear nonhomogeneous differential equations (11) - (13) are solved subject to the boundary conditions
(14) numerically using the spectral quasi- linearization method [16]. Applying the Quasi Linearization Method (QLM)
on Egs. (11) - (13) gives the following iterative sequence of linear differential equations,

Flli+a, Fl +ayF, +a,Fri=as,, (15)
bl,r F:url + b2,r Frg + 0;’+1 + b3,r ‘9;+1 + b4,r Or1 = bS,r’ (16)
clrFlyy+ e Frot + @l + €300, + Cayfret = Cs s a7

where the coefficients a;;,, (s = 1,2,3,4), b;, and ¢;,, (i = 1,2,3,4,5) are known functions (from previous calcula-

tions) and are defined as
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The above QLM sceme (15) to (17) is a coupled linear system of differential equations with variable coefficients,
and is ready to solve iteretively using any numerical method such as finite differences, finite elements, Runge-Kutta
based shooting methods or collocation methods for r = 1, 2, 3.... In this work, as will be discussed below, the
Chebyshev spectral collocation method was used to solve the QLM scheme (15) to (17). This method is based
on approximating the unknown functions by the Chebyshev interpolating polynomials in such a way that they are
collocated at the Gauss-Lobatto points defined as

0= cos(%),j =0,1,2...N, (18)
where N is the number of collocation points used. The derivative of F,; at the collocation points are represented as
N
d°F,
oS DUFa) =D'F j= 0,12 N, (19)
dT]“ e J

where D® = ((2/L) ®)* and © is the Chebyshev spectral differentiation matrix (see, e.g., [20, 21]), and § is the vector
function is given by § = [F(0), F(1), ..., F(y)]”. Similarly the derivatives of 6 and ¢ are given by 6 = D*@® and
¢ = D* @, where s is the order of derivative, and D is the matrix of order (N + 1) x (N + 1). Substituting (18) and
(19) in SQLM scheme (15) - (17) results in the following matrix equation

An Ap A [ S+t K
Aj Ap Ap || O | =Ko |, (20)

Az Az Az 1Dy K3
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where

An = I)2 + a]’rD2 + ag’,«D + a3,,.I, A12 = O, A]3 = O,

Az = b1, D+by,1, Ay =D? +b3,D + by 1, Ay =0,

2

Az =c1, D+, Ay =0, A3 =D?+c3,D +ca, L,

Ki =ay,, K; = bs,, K3 =cs,.

In the above definitions, a; (s = 1,2,3), b;, and ¢, (i = 1,2, 3,4,5) are diagonal matrices of size (N + 1) x (N +1),1
isa (N + 1) X (N + 1) identity matric and O is a matrix of zeroes of order (N + 1) X (N + 1). The approximate solutions
for §§, ® and © are obtained by solving the matrix system (20).

5. Results and Discussion

The nonlinear differential equations (11) - (13) with boundary conditions (14) do not have a closed form solu-
tion. These equations were solved numerically using the SQLM. To check the accuracy of the solutions, the non-
dimensional skin friction for pure water (nanoparticle volume fraction ) is compared with results reported by Ariel
(1994) for the case of vertical plate , and it was found that they are in good agreement.

Table 1. Comparison of skin friction F”’(0) values calculated by the present method and that of [17], for pure water ¢ = 0, m = 1, with Pr = 1 and
Sc=0.24.

M [17] Present

0 1.232588 1.2325965196
1 1.585331 1.5852800424
4 2.346663 2.3468696599
25 5.147965 5.1479646032
100 10.074741 10.0747411168

In the present work, MHD mixed convection heat and mass transfer past a wedge immersed in water based
nanofluid with variable wall temperature and concentration is conducted. In this study, two different nanoparticles,
namely, silver (Ag) and gold (Au), with water as the base fluid considered. The Prandtl number of the base fluid was
kept at constant as Pr = 6.7850. The thermophysical properties of the nanofluid are given in table 2 (see Oztop and
Abu-Nada [18]).

Table 2. Thermo-physical properties of water and nanoparticles.

Properties p(kg/m3) C,(J/kg K) k(W/mK)
Pure water 997.1 4179 0.613

Ag 10500 235 429

Au 19282 129 310

Volume fraction of nanoparticles is a key parameter for studying the effect of nanoparticles on flow fields, tem-
perature and concentration distributions of nanofluids, the resulting influence of ¢ on the non-dimensional profiles is
presented in the Figs. 2, for both Ag —water and Au — water nanofluids. In the limiting case ¢ — O corresponds to the
base fluid (water). In Fig. 2 the velocity across the boundary layer is shown for different values of the nanoparticle
volume fraction. From Fig. 2(a) velocity of both types of nanofluids increase for the increasing values of ¢. As the
nanoparticle volume fraction ¢ increases, in the dynamic boundary layer the width of the velocity profiles decreases,
because of the gradient of the velocity from wall to free stream is more rapid when ¢ increases. The same trend is
observed in the case of a Au — water nanofluid. Figs. 2(b) and 2(c) illustrate the effect of the nanoparticle volume
fraction on the temperature and concentration profiles, respectively, in the case of a Ag — water nanofluid. It is clear
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Fig. 3. Effect of M on (a) Heat transfer rate; (b) Mass transfer rate

that as the nanoparticle volume fraction increases the nanofluid temperature and the concentration increase. This can
be explained as the thermal conductivity of the nanofluid increases as the solid nano particles increase which are hav-
ing the high thermal conductivity than the base fluid. Hence, the heat transfer from base fluid to solid nano particles
is more and increases the temperature of the nanofluid. Since the thermal conductivity of Ag is more than that of
Au, hence, for the increasing solid nano particles of Ag and Au in the base fluid, we observe that the temperature
distribution of Ag — water nanofluid is correspondingly higher than that of a Au — water nanofluid. As a result, the
temperature of the nanofluid increases in mixed convection, with increasing nanoparticle volume fraction. Same trend
can be seen in the case of Au — water nanofluid. The concentration boundary layer thickness increases for both types
of nanofluids. And further we can conclude that the velocity, temperature and concentration profiles of nanofluids are
higher than that of the water (¢ = 0 corresponds to the base fluid (water)).

Figure (3) depict the variation of heat transfer rate (local Nusselt number (Nu,)), mass transfer rate (local Sherwood
number (S 4,)) with volume fraction of nanoparticles (¢) for different values of magnetic parameter (M) of both water
based nanofluids. It is seen that both the local Nusselt number and local Sherwood number increase as the magnetic
parameter increases. This is due to the motive force created by traverse magnetic field which tends to accelerate the
flow. As explained above, the nanofluid velocity increases as the magnetic parameter (M) increases in the mixed
convection, as a result of the hot nanofluid replaced by the cooled nanofluid chunks, hence the higher heat transfer
rates can be seen. A similar analogy con be seen in mass transfer rate.
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Fig. 4. Effect of m on (a) Heat transfer rate; (b) Mass transfer rate

Figs. 4 (a) and (b) show the heat transfer and mass transfer coefficients as a function of nanoparticle volume fraction
¢ for m = 0 (horizontal plate), m = 0.5 (wedge surface) and m = 1 (stagnation point flow). As the wedge angle
parameter is increased, the local Nusselt number and the local Sherwood number increase for forced convection. This
may be explained by the fact that as the wedge angle increases, the wedge becomes flatter and less of an obstruction.
It is worth noting that the present study reduces to that of a regular viscous fluid when ¢ = 0.

The variation of the wall heat and mass transfer rates are shown for different values of nanoparticle volume fraction
and for different configurations of the wedge surface in Figs. 3 - 4. The heat and mass transfer rates more for the
increasing values of ¢. The heat and mass transfer rates increase from pure base fluid (¢ — 0) to that of nanofluid.
Same trends can be seen in both the water based nanofluids.
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