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1. Introduction the layers the solution behaves regularly and varies slowly. In
the recent years, there has been a growing interest in the
numerical treatment of such differential equations. This is
due to the versatility of such type of differential equations in
the mathematical modelling of processes in various application
fields, for e.g., the first exit time problem in the modelling of
the activation of neuronal variability [1], in the study of bista-
ble devices [2], and variational problems in control theory [3]
where they provide the best and in many cases the only realistic
simulation of the observed.

In [4], the authors Amiraliyev and Cimen presented an expo-
nentially fitted difference scheme on a uniform mesh for singu-
larly perturbed boundary value problem for a linear second
order delay differential equation with a large delay in the reac-
tion term. File and Reddy [5] presented a numerical integration

PR of a class of singularly perturbed delay differential equations
FLSEVIER Production and hosting by Elsevier with small shift, where delay is in differentiated term. In [6],

A singularly perturbed delay differential equation is an ordin-
ary differential equation in which the highest derivative is mul-
tiplied by a small parameter and containing delay term. In
these problems, typically there are thin transition layers where
the solution varies rapidly or jumps abruptly, while away from
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the authors Mohapatra and Natesan constructed a numerical
method for a class of singularly perturbed differential-differ-
ence equations with small delay. The numerical method com-
prises of upwind finite difference operator on an adaptive
grid, which is formed by equidistributing the arc-length moni-
tor function. Kadalbajoo and Sharma [7] presented a numerical
approach to solve singularly perturbed differential-difference
equation, which contains negative shift in the function but
not in the derivative term. Lange and Miura [8,9] gave an
asymptotic approach for a class of boundary-value problems
for linear second-order singularly perturbed differential-differ-
ence equations.

In this paper, we have presented a computational technique
for solving singularly perturbed delay differential equations
with twin layer or oscillatory behaviour. Here, the delay term
is not present in the differentiated term. In this method, we
have replaced the original second order singularly perturbed
delay differential equation to first order neutral type delay dif-
ferential equation and employed the Trapezoidal rule. Then,
linear interpolation is used to get three term recurrence rela-
tion which is solved easily by discrete invariant imbedding
algorithm. Several model examples for various values of the
delay parameter and perturbation parameter are solved, and
computational results are presented. We have also discussed
the convergence of the method.

2. Description of the method

We consider singularly perturbed delay differential equation of
the standard form

7" (x) + a(x)y(x = 0) + b(x)y(x) =f(x),0 < x < 1, )

with boundary conditions

y(x) = ¢(x), -0 <x<0 (2a)
and
y1) =4 (2b)

where ¢ is small parameter, 0 < ¢ 1 and ¢ is also small delay
parameter, 0 < § < 1; a(x), b(x), f(x) and ¢(x) are bounded
continuous functions in (0, 1) and f is a given constant. For
0 = 0, the solution of the boundary value problem (1) and
(2) exhibits layer or oscillatory behaviour depending on the
sign of (a(x) + b(x)). If (a(x) + b(x)) < 0, the solution of
the problem (1) and (2) exhibits layer behaviour, and if
(a(x) + b(x)) > 0, it exhibits oscillatory behaviour. The
boundary value problem considered here is of the reaction—dif-
fusion type, therefore, if the solution exhibits layer behaviour,
there will be two boundary layers which will be at both the end
points i.e., at x = 0 and x = 1. In this paper, we present both
the cases, i.e., when the solution of the problem exhibits layer
as well as oscillatory behaviour and shows the effect of the
delay on the layer and oscillatory behaviour. In particular,
as delay increases then the layer behaviour of the solution is
destroyed and the solution begins to exhibit oscillatory behav-
iour across the interval.
We divide the interval [0, 1] into an even number of sub-
intervals N with constant mesh size /4. Let 0 = x, xy, -
.., Xy = 1 be the mesh points. Then we have x; = ih for
i=0,1,..., N. We choose n such that x, = % In the interval
[O,%], the boundary layer will be in the left hand side i.e., at

x =0, and in the interval [, 1], the boundary layer will be
in the right hand side i.e., x = 1. Hence, we derive the
numerical method by approximating ¢)y” using Taylor series
expansion of retarded terms y'(x + ¢) and y'(x — ¢), then we
get

n o Y(xte)

p— / " — £
o~ Vix—¢)

2

Using the above approximation in Eq. (1), it is replaced by
an asymptotically equivalent first order differential equation as
follows:

—2a(x)y(x = 8) = 2b(x)y(x) + 2/(x)
(3)

This replacement is significant from the computational point
of view El’sgol’ts and Norkin [10]. The above equation can
be written as

V(x+e) —yx—e)~

Vx4e) =y (x —¢) = p(x)y(x = 0) + q(x)p(x) + r(x) 4)

where p(x) = — 2a(x), g(x) = — 2b(x), r(x) = 2f(x).
Integrating Eq. (4) in [0, 1] with respect to x from x; to x; 1,

we get
e e oldes [ Py —0) + a0y
+ r(x)]dx
V(X1 + 8) —y(xi+¢&) —y(xi — &) +y(xi — )
~ [ = 8) + g(on(x) + ()] (5)

By using Taylor series, we have

y(xi+e) my(x) + e (xi) ~y; + ey
y(xi—e) & y(x;) — ey (x;) = y; — ey

V(¥ — &) & p(xisr) — ey (Xir) R iy — ey
V(¥ + &) & p(xinr) + ey (X)) R iy + ey,

Here, we denote y(x;) = y
Substituting the above approximations in Eq. (5), we get

26y, — 2y / Py — 8) + q(x)p(x) + r(x))dx

By using the Trapezoidal rule to evaluate the integral on the
right of the above equation, we get

/ , o h .
2€yi+1 — 2y = E(piﬂy(xiﬂ —0)+py(xi—9) +5

h
X (i 1Vigr +q;) + B (rigs +14) (6)

By means of Taylor series expansion and then approximating
y'(x) by linear interpolation, we get

V(X1 = 8) A y(xier) — 0¥ (Xiwr) B Yiy — 56%)

(1), L0
~ 7 Vi1 hyi

}’(-’Ci - 5) ~ y(xi) - 5)/(?61)

~ (1 0 ,+5
~ h},‘ hyi—l

o)
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Substituting the above approximations in Eq. (6), we get
, , h o 0
2oy — 2ey; = ile {(1 - E)yHl JF%J’;‘]
h 0 0 h
+§P,‘ I*E YiJFzyH +§[qi+lyi+l]
. h[ 1+ h
5 qiVi 3
2&( i+1 T l) _ ( )
|:2pt+l ( ) +5 q1+1:|y1+1
e () (1 =0) g |22
2P1+1 I 21’ 7 Z‘If Vi 217,'/1 Vi1

h h
+§Vi+§"i+1 (7

Rewriting the Eq. (7) into three term recurrence relation, we
get

2¢ O 4 6 h 0 h
|:h 2[’])’, [h “'517:4-1 +§17i(1 _E> +§qi:|yi
2¢ h 0 h h h
+ {W 5P (1 - %) - Eqi+l:|yi+l =3l +§"i+1

This tridiagonal system can be written as follows:

h
Vt-l-ii’m

Eiyi*liﬂyi+Giyi+l:Hivforizlazv"'anfl (8)
where

2¢O
E=="—Zp

n 2k

F*ﬁ—I—é +ﬁ l_é _|_ﬁ
I_h 2pi+l 2]7, h 2qz

2¢e h 0 h
G==_"p (1-2)-Z4
h 2pz+1 ( /1) 2qt+l
h h
Hizzriﬂ +§l‘i

Now in the interval [1,1] ie., for right — end boundary
layer, integrating Eq. (4) with respect to x from x;_; to x;,
we get

| s
/ p(x
(xi+e) —

- [ it

The above equation simplified as

2ey; = 2ey;, = / ’ [P(x)y(x = 0) + q(x)y(x) +r(x)ldx — (9)

— ¥ (x — )ldx—

0)dx + q(x)y(x) + r(x)]dx
y(xio +e)] = [p(xi — &) + y(xiot — &)
+ q(x)y(x) + r(x)]dx

Using the Trapezoidal rule to evaluate the integral on the right
of Eq. (9), we get

2¢ 2¢ h
" Dig1 —¥i) — 3 i = yiet) =5 Py (xir = 0) + piv(x; = 9))

h h
+§(q[yi+q[—1yi—l)+§(ri+ri—1) (10)

By means of Taylor series expansion of y(x;_; — d) and y(x; -
— 0), then approximating )’(x) by linear interpolation, we get

y(xin = 90) = y(xicn) = 0V (xi) =y, — 5<y, Ji1 )

h
~ 7 i1 hJ/i

¥ = 0) 2 p() — 0y () 3, = o (2 =)

~ 1+5 0
~ 7 Vi h)’[+1

Substituting the above approximations in Eq. (10) and rear-
ranging the terms, we get the tridiagonal system as follows:

N— 1.
(11)

Ey,_ ,—Fy,+Gy,, =H fori=n+1,n+2,...

where

2¢ h 0 h
k= =3P (1 +%) — 34

F=2 ) o (142) < p 000
7 2 7 Pi 7 pi—lz 2‘1:‘
2¢ 0

G = Z+2P
h

H,'ZE[VI’-FI’,;]]

Now, from Eq. (8) in [ ,2] fori=1,2,...,n—1; and from
Eq. (1) in [}, 1] fori=n+1,n+ 2,..., — 1; we have a
system of (N-2) equations with (N+ 1) unknowns. From the
given boundary conditions Eq. (2), we have two more
equations.

We need one more equation to solve for the unknowns
Yo, V1, - -- » Yn- To get this equation, we consider the reduced
problem of Eq. (1) by setting ¢ = 0, then we have

a(x)y(x = 6) + b(x)y(x) = f(x)

which does not satisfy both the boundary conditions.
Atx=x,= %, above equation becomes

a(xn)y(xn = 0) + b(x)y(x) = f(x) (12)

Using Taylor series expansion, we have

’ yn _y"—
y(xn - 6) ~ y(X,,) - 5}7 (X") == 5(%)

Substituting this in Eq. (12) and by simplification, we have

0 0
ﬂyn—l - (_an - bﬂ)yn - ﬂyr&l _f;1 (13)
With Eq. (13), we now have (N + 1) equations to solve for the

(N + 1) unknowns yo, yi, ..., yn. We solve this tridiagonal
algebraic system by using an efficient and stable method of
invariant imbedding [11].

3. Convergence analysis

Writing the tridiagonal system (8) in matrix-vector form, we
get

AY=C (14)
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in which 4 = (m; ;),1 <i, j<n—1is a tridiagonal matrix of
order n — 1, with

2¢ )
My = Fa_‘_ ha, (1 - Z) + hbiyy,

4¢ 0
m; = —7 + (1,‘+15 + ha,-(l — Z) + hbl’,
2¢
Mi-1 = 4 + da
and C = (d;) is a column vector with d = h(f;,, + f;), where
i=1,2,..., n— 1 with local truncation error

i) = 2|5 6+ B+ 5 (b= = 377 + 008
(15)

Writing the tridiagonal system (11) in matrix—vector form, we
get

AY=C (16)

in which 4 = (m;;), n+ 1<i, j<N—1 is a tridiagonal
matrix of order N — 1, with

2¢

My = — — 0a;
h
4
mi =2 na (142 4 sar, — b,
h h
2¢ 0
mii—, = Z+ha[_l (] +Z) + hai—l

and C = (d,) is a column vector with d; = h (f; + f;_1), where
i=n+1,n+ 2,..., N— 1 with local truncation error

!/

rn) = (<5 + G- b4ty ar] 0wy @)

and Y = (y1, y2 -5 yv—1)"

We also have
AY - T(h) =C (18)

where Y = (7,7,,...,¥5_;) denotes the actual solution, and
T(h) = (Ty(h), To(hy), ..., Ty_1(hy_1))" is the local truncation
error.

From (14), (16) and (18), we get

A(Y —Y)=T(h) (19)
Thus, the error equation is

AE = T(h) (20)
where E=Y — Y = (e1,e2,...,ex_1)".

Clearly, we have

N-1

Si:Zm[j :h(fli+bi)+0(h2) :th'vi: 1,2, n—1
=1
where B = (a; + b;)

Si = /’l(dn + bn) = hB;/7 i = n where B;'/ = (a" + b")

1

N—1
Si= Y my = h2(—a— b)) + O(F) = hB',i=n-+1,... N~ 1
j=1

where B)' = 2(—a; — b;)

We can choose / sufficiently small, so that the matrix 4 is
irreducible and monotone. It follows that A~ ' exists and its
elements are non negative.

Hence from Eq. (20), we get

E=A4"T(h) (21)

Also from the theory of matrices, we have
k=12,...,.N—1 (22)

where . ; is (k, i) element of the matrix A7
Therefore,

in’l < b1 < ! (23)
LTS Tmin S, hB,, S h|B,|

1<i<N-1 fo
for some iy between 1 and N — 1 and
B, i=11)n—-1
= | B, i=n (24)
B, i=n+1(1)N-1
From Egs. (15), (17), (21) and (23), we get

B

lo

N—1
e/zzmktTl(h)? ]:17277N_1
i=1

which implies

kh .
e <5, j=

, 1,2,...,N—1 (25)
|Bi0|

where k is a constant independent of /.
Therefore,

IEll = O(h)

i.e., our method reduces to a first order convergent for uniform
mesh.

4. Numerical experiments

To demonstrate the applicability of the method, we implement
the method on four numerical experiments, two with twin
boundary layers and two with oscillatory behaviour. We
present the graphs of the computed solution of the problem
for different values of ¢ and for different values of 6 of o(¢).
The maximum absolute errors for the examples are calculated
using the double mesh principle [12], Y = maxo<;cy |y — 33|

Example 1. Consider an example of singularly perturbed
delay differential equation with layer behaviour

&y"(x) = 2y(x — ) — y(x) = 1
boundary conditions

under the interval with

y(_x) = 1,75<X<0 and y(l) =0.

The maximum absolute errors are presented in Tables 1 and
2 for different values of ¢ and for different values of 6. Also, we
present the graph of the computed solution of the problem for
¢ = 0.1 for different values of ¢ shown in Fig. 1.
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Table 1 The maximum absolute error of the examples for different values of § with ¢ = 0.1.
1) N

100 200 300 400 500
Example 1
0.03 3.1674e—003 1.6058e—003 1.0754e—003 8.0837e—004 6.4760e—004
0.05 3.1437e—003 1.5949¢—003 1.0685e—003 8.0338e—004 6.4367¢e—004
0.09 3.0784e—003 1.5660e—003 1.0502e—003 7.9000e—004 6.3310e—004
Results in Phaneendra et.al. [13]
0.03 9.3352e—003 4.9360e—003 3.3540e—003 2.5398e—003 2.0438e—003
0.05 8.7514e—003 4.7344e—003 3.2355e—003 2.4561e—003 1.9803e—003
0.09 7.2037e—003 4.1449¢—003 2.8840e—003 2.2111e—003 1.7913e—003
Example 2
0.03 2.1999e—003 1.1041e—003 7.3705e—004 5.5315e—004 4.4269¢e—004
0.05 2.2012e—003 1.1049e—003 7.3749e—004 5.5345e—004 4.4293e—004
0.09 2.1999e—003 1.1038e—003 7.3676e—004 5.5289e—004 4.4247e—004
Results in Phaneendra et.al. [13]
0.03 8.9194e—003 4.5468¢—003 3.0511e—003 2.2959¢—003 1.8404e—003
0.05 8.9177e—003 4.5440e—003 3.0482e—003 2.2934e—003 1.8382¢—003
0.09 8.8966e—003 4.5252e—003 3.0345¢—003 2.2825¢—003 1.8292¢—003
Example 3
0.03 2.5991e—003 1.2872e—003 8.5528e—004 6.4039¢—004 5.1179e—004
0.05 2.6270e—003 1.3013e—003 8.6474¢—004 6.4750e—004 5.1749¢—004
0.09 2.6813e—003 1.3289e—003 8.8320e—004 6.6139¢e—004 5.2863e—004
Results in Phaneendra et.al. [13]
0.03 7.1024e—002 3.5558e—002 2.3661e—002 1.7721e—002 1.4163e—002
0.05 6.9203e—002 3.4790e—002 2.3181e—002 1.7373e—002 1.3890e—002
0.09 6.6055e—002 3.3490e—002 2.2377e—002 1.6794e—002 1.3439e—002
Example 4
0.03 1.5929¢—002 7.4850e—003 4.8816e—003 3.6202e—003 2.8764e—003
0.05 1.5470e—002 7.2782e—003 4.7473e—003 3.5209e—003 2.7975e—003
0.09 2.1396e—002 1.0097e—002 6.5922e—003 4.8916e—003 3.8879¢e—003
Results in Phaneendra et.al. [13]
0.03 1.9740e—001 1.0467e—001 7.0844e—002 5.3521e—002 4.2985e—002
0.05 2.5749e—001 1.3585e—001 9.2035e—002 6.9554e—002 5.5884e—002
0.09 1.5004e—000 7.1504e—001 4.6444e—001 3.4319¢—001 2.7196e—001
Table 2 The maximum absolute error of the examples for different values of ¢ for 6 = 0.5e.
& N

24 25 26 27 28
Example 1
274 2.1118e—002 1.1692e—002 6.1941e—003 3.1887¢—003 1.6178¢—003
273 2.7872e—002 1.6023e—002 8.6367e—003 4.4957e—003 2.2948e—003
276 3.5711e—002 2.1293e—002 1.1869e—002 6.2731e—003 3.2240e—003
277 4.6679e—002 2.8350e—002 1.6107e—002 8.6728e—003 4.5120e—003
278 5.4895¢—002 3.6018e—002 2.1373e—002 1.1929¢—002 6.2847¢—003
27? 5.7371e—002 4.7254e—002 2.8581e—002 1.6140e—002 8.6961e—003
2710 5.7878e—002 5.5695¢—002 3.6153e—002 2.1406e—002 1.1956e—002
Example 2
274 1.8632e—002 9.6189e—003 4.8865¢—003 2.4643e—003 1.2376e—003
273 2.8161e—002 1.4818¢—002 7.6255¢—003 3.8713e—003 1.9509¢—003
276 3.7958e—002 2.0967e—002 1.0977e—002 5.6273e—003 2.8498e—003
277 5.0640e—002 2.8316e—002 1.5267e—002 7.9105¢—003 4.0287e—003
278 6.3580e—002 3.7706e—002 2.0984e—002 1.1012e—002 5.6555¢e—003
27° 8.3843e—002 5.0477e—002 2.8297e—002 1.5261e—002 7.9111e—003
2710 9.9137e—002 6.3529e—002 3.7660e—002 2.0974e—002 1.1011e—002
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8=0.3¢

~ 3=0.9¢

numerical solution

Figure 1  The numerical solution of Example 1 with ¢ = 0.01.

Example 2. Consider singularly perturbed delay differential
equation with layer behaviour

&y"(x) + 0.25y(x — §) — y(x) = 1 with boundary condi-
tions y(x) = 1, =3 < x < 0and y(1) = 0.

The maximum absolute errors are presented in Tables 1 and
2 for different values of ¢ and for different values of J. Also, we
present the graph of the computed solution of the problem for
¢ = 0.01 for different values of 6 shown in Fig. 2.

Example 3. Consider a singularly perturbed delay differential
equation with oscillatory behaviour

&y"(x) + 0.25y(x — ) + y(x) = 1 with boundary condi-
tions y(x) = 1, =0 < x <0, y(1) = 0.

The maximum absolute errors are presented in Table 1 for
¢ = 0.1 for different values of 4. Also, we present the graph of
the computed solution of the problem for ¢ = 0.01 for
different values of 6 shown in Fig. 3.

numerical solution

Figure 2 The numerical solution of Example 2 with ¢ = 0.01.

numerical solution

! ! ! ! ! ! ! ! !

Figure 3

01 02 03 04 05 06 07 08 09 1
X

The numerical solution of Example 3 with ¢ = 0.01.

0.8

0.6

0.4

0.2

numerical solution

Figure 4

x 10°
1.5

The numerical solution of Example 4 with ¢ = 0.01.

T
——8=0.003

numerical solution

! ! ! ! ! ! ! ! !

Figure S

01 02 03 04 05 06 07 08 09 1
X

The numerical solution of Example 4 with ¢ = 0.01.
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Example 4. Consider the singularly perturbed delay differen-
tial equation with oscillatory behaviour

&y"(x) + y(x — ) + 2p(x) = 1, with boundary conditions

The maximum absolute errors are presented in Table | for
¢ = 0.1 for different values of J. Also the graphs of the
computed solution of the problem presented for ¢ = 0.01 for
different values of J in Figs. 4 and 5.

For ¢ = 0, the solution to the boundary value problem (1)
and (2) exhibits layer or oscillatory behaviour according to the
sign of the coefficient of the reaction term. In Examples 1 and
4, the coefficient of the delay term is of O(1) while that of o(1)
in Examples 2 and 3.

5. Discussions and conclusion

We have discussed a computational technique for singularly
perturbed delay differential equations with twin layer or oscil-
latory behaviour. In this problem, the delay is not in the differ-
entiated term. In this method, we have transformed the second
order singularly perturbed delay differential equation into an
asymptotically equivalent first order neutral type delay differ-
ential equation and employed the Trapezoidal rule. Then, lin-
ear interpolation is used to get tridiagonal relation which is
solved easily by method of invariant imbedding algorithm.
The method is demonstrated by implementing on several
model examples by taking various values for the delay param-
eter and perturbation parameter.

To show the effect of delay on the twin boundary layer or
oscillatory behaviour of the solution, several numerical exam-
ples are carried out in Section 3. We observed that when the
order of the coefficient of the delay term is of o(1), the delay
affects the boundary layer solution but maintains the layer
behaviour. From Fig. 1, we observed that when the delay is
o(e), the solution maintains layer behaviour although the coef-
ficients in the equation are of O(1) and as the delay increases,
the thickness of the left boundary layer decreases while that of
the right boundary layer increases.

To demonstrate the effect on the oscillatory behaviour, we
have considered Examples 3 and 4. From Fig. 3 of Example 3,
we observed that if the coefficient of the delay is of o(1), the
amplitude of the oscillations increases slowly as the delay
increases provided the delay is of o(¢). From Figs. 4 and 5 of
Example 4, we observed that if the coefficient of the delay is
of O(1), the amplitude of the oscillations increases slowly from
the left end x = 0 to right end x = 1 as the delay increases
provided the delay is of o(e).
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