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ABSTRACT

This paper combined artificial neural network and multilinear
regression models to predict voltage stability for power
system. An approach for power system is considered by
varying loads. Therefore, a modified model, depending on
artificial neural network (ANN) dealed with estimated linear
regression, is implemented on the 14-bus system electrical
network dependent on its load flow data to estimate the
maximum loading point and contingency ranking. This
technique was compared with conventional methods (also
with basic linear regression models). Application of
simulation results shows that the proposed methods are
feasible and effective. The application of neural networks for
online voltage stability. The programming is done in
MATLAB-SIMULINK environment.

Keywords: IEEE 14 bus system; neural networks; multiple
regression models, MATLAB.

1. INTRODUCTION

The increase of power systems related to have been obtained
worldwide by engineers, customers and utilities. As demands
for energy is rising rapidly, in power system is increasing to
accommodate the rapid loading factor changing by load flow
control analysis for different contingencies. This continues
expansion and persistent active power make power system
more complex or may be vulnerable and difficult to maintain
its stability and ensure its security. Voltage stability and its
margin are well-defined and classified in [10]. While
indicated an appropriate load flow analysis for voltage
stability phenomena among engineering and researches are
still debatable. Voltage stability has been studied using two
main approaches: steady state and dynamic analysis, where
voltage instability as fact is considered as transient and
sdynamic phenomenon.

Although the transient/dynamic analysis is preferable by most
utilities, the steady state voltage stability approach is basically
used in research and on-line regression for applications
providing an insight into voltage stability problems with high
speed analysis.

1. VOLTAGE STABILITY ANALYSIS

PV and QV curves-Voltage profiles shown in the well-
known PV and QV curves are of the practical use for
determining the proximity to collapse so that operators can
take proper preventive control actions to safeguard the system.
Q-V curve technique is a general method of evaluating
voltage stability. It mainly presents the sensitivity and
variation of bus voltages with respect to the reactive power
injection. Q-V curves are used by many utilities for

determining proximity to voltage collapse so that operators
can make a good decision to avoid losing system stability. In
other words, by using Q-V curves, it is possible for the
operators and the planners to know the maximum reactive
power that can be achieved or added to the weakest bus before
reaching minimum voltage limit or voltage instability. The P-
V curves, active power-voltage curve, are the most widely
used method of predicting voltage security. They are used to
determine the MW distance from the operating point to the
critical voltage.
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Fig 1: Power Margin
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Fig 2: Q-V curve
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In this region, several voltage stability indicators are
estimated. It should be indicated at implementing these
already proposed indicators by ANN networks for back
propagation algorithm.

The adoptability of testing proximity to voltage
stability/collapse was tested beforehand for IEEE 14 bus
system. On-line determination of proximity of power system
to voltage collapse is essential for operating the system with
an adequate security margin.

The voltage stability, also called as load stability refers to the
ability of the system to maintain load bus voltages within
acceptable limit, following some disturbance or change in
power demand [12]. IEEE has given the formal definition of
voltage stability as: It is the ability of a power system to
maintain voltages so that when load admittance is increased,
load power will increase, i. e., both voltage and power are
controllable [4]. Voltage stability in its simplest form can be
illustrated by considering the two terminal network of fig. 1. It
consists of a constant voltage source ETH supplying a load ZL
through series impedance ZTH. This is representative of a
simple radial feed to load or a load area served by a large
system through a transmission line because any complex
supplying system may always be reduced to the Thevenin’s
equivalent circuit shown in fig. 2.
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Fig 3: Equivalent circuit as Thevenin equivalent

Simplified equivalent circuit of a local bus and rest of the
system treated as a Thevenin equivalent.

The magnitude of the current is given by —
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Where -
& = phase angle of impedance 74 and
¢ = phase angle of impedance 7,

The magnitude of the receiving end voltage is given by
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The apparent power supplied to the load is
3 1
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I1l. ARTIFICIAL NEURAL NETWORKS

A basic Artificial Neural Network (ANN) of power system is
a computational model that requires to account for the parallel
in connection of the human brain. Specifically, it is a network
of highly interconnecting processing elements (neurons)
operating in parallel connection, Fig. 4. An ANN can be
utilized to solve numerical problems involving complex
relationships between parameters. The basic type of ANN
used in this load flow study is a supervised learning one,
wherein the observation (target) is specified, and the ANN is
trained with adjusting different gains to reduce the absolute
error between the ANN output and the target, resulting in an
optimal solution (assuming the absolute and global minimum
is obtained). This is accomplished by varying the connections
between the elements, which involves an adjustment to the
weights (wl, 1...wll, z).
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Fig 4: A two-layer ANN with multi-input and single
hidden layer and output layer

In normal theory, this adjustment process can be viewed as a
form of ‘learning’. Thus, the ANN is considered to be a form
of artificial intelligence. ANNs were selected for this study
owing to their ability to model non-linear relationships. The
relationship between the input and output parameters in this
study is highly non-linear.
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IV. Mathematical formulation of MLRMs

The general formulation of a MLRM for a given observation i
is given, with all variables described in the sequence. The
variable y represents the dependent variable (VSM), then
variables represent system RPRs, the variables «, B and
vy represent the coefficients for each RPR in the model and i
represents the error term. The index i accounts for the number
o0 samples available, whereas the indexes j, | and k account for
the number of RPRs available.

;= {2‘0 + G’J,. -U —,"Hl'ikxﬁ + (-)j.\'g} + & .

for{i=l..nij=L..p:=1l..pik=LL .p: with k=1

(5)
Although quadratic and crossed terms are present (xi2j and xik
xil), the model is still linear on the coefficients «, yand
o and hence can be solved by the method of least square or
robust least square, In case several observations or samples
are available to the model, equation (5. 1) can be represented
in the vector-matrix form as shown in (5. 2), where the
coefficient vector S is given

byp=[o.L .0,.7.L L.o.L .o,

(12

v=Xp+s¢
i b (6)

Adapting the formulation given in (5. 2) to the problem at
hand, vector y will represent VSM measurements obtained
from offline system simulation; X will be a matrix containing
monitored RPRs and 3. represents the residual or errors.

The first column of matrix X is formed by a unitary vector (it
contains 1’s from the first until the last vector position) to
account for the linear interception coefficient 0 (. All the
remaining columns of X represent a RPR, a product of RPRs,
or a squared RPR as described in (5. 1). Each row of matrix X
and row of vector y represents a sample of the RPRs and
system VSM, respectively. The samples of RPRs and VSM
are taken at different points along the PV curve, enabling the
MLRM to be used at different loading levels along the LID.
The coefficient vector S is found by minimizing the sum of
the square of the residual as follows.

a2 0 Y-
Min|e| = Min5| y-Xp|

(@)
The solution of problem (5. 3) is defined as the least square
solution, The best linear unbiased estimation (BLUE) for the

vector of coefficients S is given by equation.
0 > bl -1 x )
p=(X'X) (Xy) .
' 8

Once the vector of coefficients B is found, the MLRM
regression model can be used online to estimate VSM. An
estimation of the VSM vector (¥) is obtained by multiplying
the vector of coefficients B8 by the matrix of monitored
regressors X as follows.

F - Xﬁ )

The difference between the estimated VSM values (§) and the
actual VSM values (y) is defined as residuals or errors ().

E=¥Y-Y¥
(10)
Confidence intervals for the estimated VSM () can be
obtained by modeling the residual probability density function
(pdf). Once obtained, the confidence interval (c. i. ) can then
be used to handle uncertainty of VSM estimation in the
following manner.

nll _ - + .
v=AP=xci )

Equation (11) represents how the MLRM are to be used in the
online environment to estimate VSM. The online monitored
RPR vector (X) is multiplied by the regression coefficient
vector ( ) to get an estimation of VSM. The confidence
interval is obtained by modeling the residual pdf and is later
added as bounds to the estimated VSM.

Uncertainty in system stress direction

Power system modeling and simulation

Using MLRMs to relate RPRs and system VSM
MLRM developmental procedure

Homoskedasticity

Normality of the residuals

Hypothesis test

Multicollinearity

V. APPLICATIONS AND RESULTS

This simulation approach deals a step by step approach that

initiates load flow study with different multilinear regressions.

The proposed algorithm consists of a series combination of

two methods for

Modeling and study of power systems stability. The two

methods are: Artificial neural network and linear regression

models. The step by step procedure of power system could be
derived as follows:

1. A neural network was applied using electric load
data and the output is fed to neural network training
regression.

2. A linear regression models were derived for all cases
(by varying loading factor, for different
contingencies and etc).

3. Then, the load of power systems was estimated as the
indicated artificial neural network (Step 1) moved by
the find out mean value obtained using (Step 2).

The commonly used as the coefficients which are nearby to
minimum values will be found during the different learning
methods/rules even though the number of iterations is
obtained at a reference value. Therefore, the estimated
performances of the estimated models are obtained with
further efficiency terms. Each parameter is estimated from the
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estimated values of the simulation model and the measured
data (targets). The accuracy of the proposed method is tested
for IEEE 14 bus test for power systems.

Each simulation model will be tested by four types of error to
guarantee the maximum accuracy and to ensure that the load
flow control analysis is near as possible to the actual load.
This will summed more complications to the problem but in
the same time. Since the mathematical values of the load flow
data entity improves at each and every iteration, in order to
make a fair comparison in terms of the squared error, we also
present a’ normalized RMSE”, which leads to the RMSE
value normalized.

The basic characteristic of voltage stability is illustrated with
IEEE 14-bus for power system. The generator produces active
power, which is transferred through a transmission line to
load. The reactive power capability of the generator is infinite.
Thus the generator terminal voltage V, is constant.
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Fig 5: Line diagram of IEEE14-bus test system
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VI. ILLUSTRATIONS
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Fig 6. Simulation Model for IEEE 14-BUS system
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Fig 7: step wise regression
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Fig 15: Regression analysis of NN-MLRM

The estimated simulation results are derived for the proposed
load flow with different load variations and Ybus formation
of, root mean square error (RMSE), normalized root mean
square error (NRMSE) and coefficient of correlation (R),
whose definitions are indicated, can be recalculated by precise
if MAPE, RMSE, NRMSE and the estimated parameter R are
nearer to series of data 0, 0, 0 and 1 simultaneously.

RMSE \,'I:?E?r'i”‘ ¢ — Lg)?

(13)
R [ P L i (R
v Ery(br-Ia)?
where: N = Number of observations
(14)

Each model will be checked by four different types of
absolute error to estimate the accuracy is maximum and to
obtain that the loading factors are varied. This will summed
large complications to the mathematical formulation but in the
same time it summed more guarantee for the load flow
analysis. Since the numerical estimation of the load flow
entity improves for every year, in order to make a suitable
comparison in terms of the squared error estimation, in terms
as a ‘normalized RMSE”.

Table 1: Comparison of estimated regressions in terms of
RMSE and R

RMSE | R
Linear regression 8.963e8 | 0.98
Step wise regression 2.73e8 | 0.9724
Partial regression 6.567e7 | 0.99999
Neural networks with MLRM | 1. 3e5 0.95

VIl. CONCLUSION

One of the works which are of power systems is too exactly to
estimate different load necessities at all instant of times.
Simulation Results developed from linear regression and
ANN toolbox combination are utilized in voltage stability and
its assessment. Neural Network algorithm used is back
propagation can understand to assume any operation just by
using load flow output as input. They are simulation model
free nonlinear estimators, which understand of resolving
mathematical formulation based on the presentation of a huge
number of training of weights. Artificial Neural Networks
estimate and describe a mathematical function of how the
outputs are functionally vary with the inputs and disturbance.
They represent a good approach that is potentially robust and
fault tolerant. In this work, an electric load flow analysis
based on artificial neural network combined with basic linear
regression model was determined using MATLAB-
SIMULINK environment. The system performs better results
than some other systems. The Improvement of accuracy more
than one of the parameters (active power, voltage, reactive
power, data analysis) as reference input, which is huge enough
to incorporate assll the effects which can be quantified.
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