

# Xanthan Sulfuric Acid: A New and Efficient Biosupported Solid Acid Catalyst for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones

B. Suresh Kuarm, J. Venu Madhav, S. Vijaya Laxmi & Dr. B. Rajitha

**To cite this article:** B. Suresh Kuarm, J. Venu Madhav, S. Vijaya Laxmi & Dr. B. Rajitha (2012) Xanthan Sulfuric Acid: A New and Efficient Biosupported Solid Acid Catalyst for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones, *Synthetic Communications*, 42:8, 1211-1217, DOI: [10.1080/00397911.2010.538483](https://doi.org/10.1080/00397911.2010.538483)

**To link to this article:** <https://doi.org/10.1080/00397911.2010.538483>



Published online: 22 Dec 2011.



Submit your article to this journal 

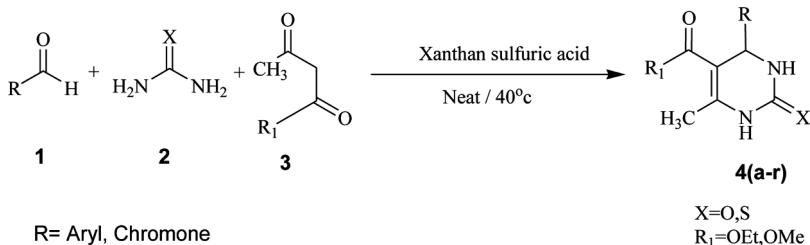


Article views: 321



View related articles 




Citing articles: 1 View citing articles 

# XANTHAN SULFURIC ACID: A NEW AND EFFICIENT BIOSUPPORTED SOLID ACID CATALYST FOR THE SYNTHESIS OF 3,4-DIHYDROPYRIMIDIN-2(1H)-ONES

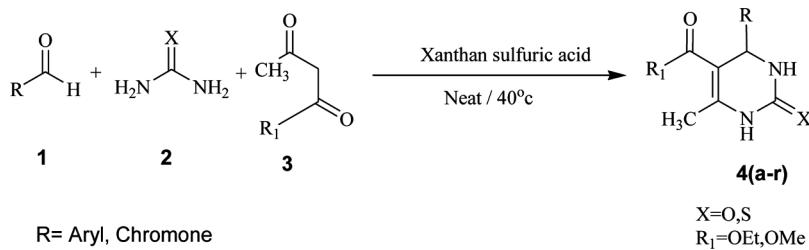
**B. Suresh Kuarm, J. Venu Madhav, S. Vijaya Laxmi, and B. Rajitha**

*Department of Chemistry, National Institute of Technology,  
Warangal, India*

## GRAPHICAL ABSTRACT



**Abstract** Xanthan sulfuric acid (XSA) is employed as a recyclable catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones. These syntheses were performed via a one-pot, three-component condensation of aldehydes, amines, and urea/thiourea under solvent-free conditions.


**Keywords** Biginelli reaction; 3,4-dihydropyrimidin-2(1H)-ones; one-pot synthesis; solvent-free conditions

## INTRODUCTION

Evolution of organic synthesis involving environmentally clean protocols under solvent-free conditions has emerged as an area of great interest from both environmental and economical points of view.<sup>[1]</sup> 3,4-Dihydropyrimidin-2(1H)-ones attract increasing interest because of their diverse therapeutic and pharmacological properties.<sup>[2,3]</sup> They are also reported to serve as calcium channel blockers, antihypertensive agents,  $\alpha_{1a}$  antagonists, and anti-HIV agents.<sup>[4]</sup> The biological activities of some marine alkaloids isolated recently have been attributed to the presence of a dihydropyrimidinone moiety.<sup>[5]</sup> To prepare the compounds, the first protocol was presented by Biginelli<sup>[6]</sup> more than a century ago, a one-pot condensation of

Received June 17, 2010.

Address correspondence to Dr. Bavanthula Rajitha, Department of Chemistry, National Institute of Technology, Warangal 506004, India. E-mail: rajithabhargavi@gmail.com



**Scheme 1.** Synthesis of 3,4-dihydropyrimidine-2(1H)-ones using xanthan sulfuric acid.

$\beta$ -ketoester, aldehyde, and urea under strongly acidic conditions. This method has its own merits and drawbacks. A major drawback of the classical Biginelli reaction is poor to moderate yields, particularly when the reaction is performed with an aliphatic aldehyde.<sup>[7]</sup> To improve the efficiency of the Biginelli reaction, a number of Lewis acids as well as protic acids as promoters such as  $\text{BF}_3$  etherate / copper (II) acetate,<sup>[8]</sup> polyphosphonate ester (PPE),<sup>[9]</sup> montmorillonite,<sup>[10]</sup>  $\text{InCl}_3$ ,<sup>[11]</sup> lanthanide triflate,<sup>[12]</sup>  $\text{H}_2\text{SO}_4$ ,<sup>[13]</sup> ion-exchange resin,<sup>[14]</sup> 1-*n*-butyl- 3-methyl imidazolium tetra fluoroborate ( $\text{BMImBF}_4$ ),<sup>[15]</sup>  $\text{BiCl}_3$ ,<sup>[16]</sup>  $\text{LiClO}_4$ ,<sup>[17]</sup>  $\text{InBr}_3$ ,<sup>[18]</sup>  $\text{FeCl}_3$ ,<sup>[19]</sup>  $\text{ZrCl}_4$ ,<sup>[20]</sup>  $\text{Cu}(\text{OTf})_2$ ,<sup>[21]</sup>  $\text{Bi}(\text{OTf})_3$ ,<sup>[22]</sup> ytterbium triflate,<sup>[23]</sup>  $\text{NH}_4\text{Cl}$ <sup>[24]</sup> have been used. However, many of these protocols have some drawbacks, such as use of expensive, highly acidic catalysts and prolonged reaction times. In addition, the yields of the corresponding 3,4-dihydropyrimidin-2(1H)-ones are not always satisfactory. Because of the importance of the Biginelli reaction, milder, faster, and more ecofriendly methods accompanied by higher yields are need to be introduced. Therefore, the search continues for a better catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones in terms of operational simplicity, reusability of catalyst, low cost, and greater selectivity.

Xanthan and its derivatives<sup>[25–27]</sup> have some unique properties, which make them attractive alternatives for conventional organic or inorganic supports for catalytic applications. Xanthan is the most abundant bacterial exopolysaccharide in the world and is produced through fermentation. It has been widely studied during the past decades, as it is a biodegradable material and a renewable resource. Unlike other gums, it is very stable under a wide range of temperatures and pH values. Xanthan sulfuric acid can be easily prepared by the reaction of xanthan with chlorosulfonic acid; the number of acidic ( $\text{H}^+$ ) sites in xanthan sulfuric acid is determined by acid–base titration to be 0.6 meq/g.

In continuation of our efforts to improve the Biginelli reaction,<sup>[28]</sup> and as part of our ongoing interest, we here report a straightforward and versatile method to afford 3,4-dihydropyrimidin-2(1H)-ones in good yield by employing xanthan sulfuric acid, as a mild acid catalyst.

## RESULTS AND DISCUSSION

Preparations of biologically important compounds are in high demand in organic chemistry. Therefore here we describe a mild and efficient synthesis of 3,4-dihydropyrimidin-2(1H)-ones using xanthan sulfuric acid<sup>[29]</sup> as a catalyst under

**Table 1.** Effect of various solvents<sup>a</sup>

| Entry | Solvent        | Yields <sup>b</sup> (%) |
|-------|----------------|-------------------------|
| 1     | Neat           | 95 <sup>c</sup>         |
| 2     | Acetonitrile   | 75                      |
| 3     | Ethanol        | 92                      |
| 4     | Dichloroethane | 50                      |
| 5     | Toluene        | 82                      |
| 6     | Methanol       | 86                      |

<sup>a</sup>Reaction conditions: benzaldehyde (1 mmol), EAA (1 mmol), urea (1.5 mmol), and xanthan sulfuric acid (0.1 g) stirred at 40°C under solvent-free conditions.

<sup>b</sup>Isolated yields.

<sup>c</sup>The same catalyst was used for four runs.

**Table 2.** Results of recyclability of the xanthan sulfuric acid<sup>a</sup>

| Run | Cycle | Time (min) | Yield (%) |
|-----|-------|------------|-----------|
| 1   | 0     | 20         | 95        |
| 2   | 1     | 20         | 94        |
| 3   | 2     | 20         | 91        |
| 4   | 3     | 20         | 84        |

<sup>a</sup>Reaction conditions: benzaldehyde (1 mmol), EAA (1 mmol), urea (1.5 mmol), and xanthan sulfuric acid (0.1 g) stirred at 40°C under solvent-free conditions.

solvent-free conditions. We explore catalytic properties of xanthan sulfuric acid under solvent-free conditions for the Biginelli reaction. The reaction proceeded smoothly without any solvent at 40°C with a catalytic amount of xanthan sulfuric acid. Yields are excellent with high purity.

The model reaction was also examined in various solvents as well as under solvent-free conditions in the presence of 0.1 g of xanthan sulfuric acid (Table 1). The results showed that the efficiency and the yield of the reaction under solvent-free conditions were better than those obtained in other solvents.

We can easily separate xanthan sulfuric acid from the reaction medium by washing it with CHCl<sub>3</sub> and drying in an oven (50 mm Hg pressure) at 60°C for 3 h prior to use in the other reaction. The recovered catalyst can be reused at least three additional times in subsequent reactions without significant loss in product yield (Table 2).

## EXPERIMENTAL

All the melting points are uncorrected. The progress of the reaction was monitored by thin-layer chromatography (TLC). Infrared (IR) spectra (KBr) were recorded on a Shimadzu Fourier transform (FTIR)-model 8010 spectrometer, and the <sup>1</sup>H NMR spectra were recorded on a Varian Gemini 200-MHz spectrometer using tetramethylsilane (TMS) as internal standard. Mass spectra were recorded on a Jeol JMS D-300 spectrometer. All solvents and reagents were purchased from Aldrich and Fluka.

### Typical Procedure for Synthesis of Dihydropyrimidinones (4a–r)

Xanthan sulfuric acid (0.1 g) was added to the mixture of aldehyde (1 mmol), 1,3-dicarbonyl compound (1 mmol), and urea or thiourea (1.5 mmol). The reaction mass was stirred at 40 °C for an appropriate time (Table 3). The reaction progress was checked by TLC. After completion of the reaction, the reaction mixture was cooled to room temperature, and CHCl<sub>3</sub> (15 ml) was added. The catalyst was filtered off, the solid was washed with CHCl<sub>3</sub> (5 ml), and the combined CHCl<sub>3</sub> solution was concentrated in a vacuum to afford the crude product. The pure product was obtained by further recrystallization from ethanol.

We examined the amount of catalyst loading in reaction. The best results were obtained by using 0.1 g of catalyst (yield 95%). If the catalyst is less than 0.1 g, poor yields are obtained. In the absence of catalyst, yields are in traces (Table 4).

### Product Characterization Data

**5-(Ethoxycarbonyl)-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (Table 1, Entry 4a).** Mp 201–203 °C. <sup>1</sup>H NMR: δ 9.21 (s, 1H, NH), 7.73 (s, 1H, NH), 7.27 (m, 5H, Ar-H), 5.14 (s, 1H, CH), 3.99 (q, 2H, OCH<sub>2</sub>), 2.23 (s, 3H, CH<sub>3</sub>), 1.08 (t, 3H, CH<sub>3</sub>); IR (KBr): 3243, 1722, 1639 cm<sup>-1</sup>. EIMS, 70 ev, *m/z*: 260 (M<sup>+</sup>). Calcd. for C<sub>14</sub>H<sub>16</sub>N<sub>2</sub>O<sub>3</sub>: C, 64.60; H, 6.20; N, 10.76. Found: C, 64.72; H, 6.29; N, 10.66.

**Table 3.** Xanthan sulfuric acid-catalyzed synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions

| Product | Aldehyde                                            | R <sub>1</sub> | X | Time (min) | Yield <sup>b</sup> (%) |
|---------|-----------------------------------------------------|----------------|---|------------|------------------------|
| 4a      | Benzaldehyde                                        | OEt            | O | 20         | 95                     |
| 4b      | 4-Methoxybenzaldehyde                               | OEt            | O | 30         | 94                     |
| 4c      | 4-Nitrobenzaldehyde                                 | OEt            | O | 25         | 91                     |
| 4d      | 4-Chlorobenzaldehyde                                | OEt            | O | 20         | 92                     |
| 4e      | 4-Fluorobenzaldehyde                                | OEt            | O | 25         | 90                     |
| 4f      | 2,4-Dichlorobenzaldehyde                            | OEt            | O | 30         | 89                     |
| 4g      | 2-Bromobenzaldehyde                                 | OEt            | O | 30         | 92                     |
| 4h      | 4-Hydroxybenzaldehyde                               | OEt            | S | 20         | 90                     |
| 4i      | 4-Methoxybenzaldehyde                               | OEt            | S | 40         | 93                     |
| 4j      | Benzaldehyde                                        | OMe            | O | 25         | 90                     |
| 4k      | 4-Methoxybenzaldehyde                               | OMe            | O | 20         | 89                     |
| 4l      | 4-Nitrobenzaldehyde                                 | OMe            | O | 20         | 88                     |
| 4m      | 2,4-Dichlorobenzaldehyde                            | OMe            | O | 20         | 81                     |
| 4n      | 4-Fluorobenzaldehyde                                | OMe            | O | 30         | 83                     |
| 4o      | 6-Nitro-4-oxo-4 <i>H</i> -chromene-3-carbaldehyde   | OEt            | O | 20         | 74                     |
| 4p      | 2-Naphthaldehyde                                    | OEt            | S | 25         | 78                     |
| 4q      | 4-Hydroxy-2-oxo-2 <i>H</i> -chromene-8-carbaldehyde | OEt            | O | 40         | 72                     |
| 4r      | 4-Oxo-4 <i>H</i> -chromene-3-carbaldehyde           | OEt            | O | 30         | 76                     |

<sup>a</sup>All the compounds are known; characterized by IR, <sup>1</sup>H NMR, and mass spectral analysis; and compared with the authentic samples.

<sup>b</sup>Isolated yields.

**Table 4.** Influence of xanthan sulfuric acid on reaction rates and yields<sup>a</sup>

| Entry | Catalyst (g) | Time (min) | Yield (%) <sup>b</sup> |
|-------|--------------|------------|------------------------|
| 1     | None         | 120        | Trace                  |
| 2     | 0.01         | 20         | 25                     |
| 3     | 0.04         | 20         | 51                     |
| 4     | 0.08         | 20         | 81                     |
| 5     | 0.1          | 20         | 95                     |
| 6     | 0.1          | 40         | 95                     |

<sup>a</sup>Reaction conditions: Mixture of benzaldehyde (1 mmol), EAA (1 mmol), urea (1.5 mmol), and xanthan sulfuric acid (0.1 g) stirred at 40°C under solvent-free conditions.

<sup>b</sup>Isolated yield.

**Ethyl 1,2,3,4-tetrahydro-6-methyl-4-(6-nitro-4-oxo-4H-chromen-3-yl)-2-oxopyrimidine-5-carboxylate (Table 3, Entry 4o).** Mp 90°C. <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>): δ 9.13 (bs, 1H, NH), 7.92 (bs, 1H, NH), 7.12–7.25 (m, 3H, Ar-H), 7.02 (s, 1H, CH), 5.18 (s, 1H, C<sub>4</sub>-H), 4.09 (q, 2H, OCH<sub>2</sub>), 2.40 (s, 3H, CH<sub>3</sub>), 1.75 (t, 3H, CH<sub>3</sub>); IR (KBr): 3250, 3196, 1734, 1716, 1652 cm<sup>-1</sup>. EIMS, 70 ev, *m/z*: 373 (M<sup>+</sup>). Calcd. for C<sub>17</sub>H<sub>15</sub>N<sub>3</sub>O<sub>7</sub>: C, 54.69; H, 4.05; N, 11.26. Found: C, 54.62; H, 4.16; N, 11.06.

**Ethyl 1,2,3,4-tetrahydro-6-methyl-4-(naphthalen-6-yl)-2-thioxopyrimidine-5-carboxylate (Table 3, Entry 4p).** Mp 149–150°C. <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>): δ 9.27 (bs, 1H, NH), 7.52 (bs, 1H, NH), 7.20–7.81 (m, 7H, CH), 5.19 (s, 1H, C<sub>4</sub>-H), 3.97 (q, 2H, OCH<sub>2</sub>), 2.25 (s, 3H, CH<sub>3</sub>), 1.10 (t, 3H, CH<sub>3</sub>); IR (KBr) : 3245, 3170, 1723, 1639 cm<sup>-1</sup>. EIMS, 70 ev, *m/z*: 326 (M<sup>+</sup>). Calcd. for C<sub>17</sub>H<sub>15</sub>N<sub>3</sub>O<sub>7</sub>: C, 66.23; H, 5.56; N, 8.58. Found: C, 66.31; H, 5.44; N, 8.62.

**Ethyl 1,2,3,4-tetrahydro-4-(7-hydroxy-2-oxo-2H-chromen-8-yl)-6-methyl-2-oxopyrimidine-5-carboxylate (Table 3, Entry 4q).** Mp 121–122°C. <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>): δ 9.23 (bs, 1H, NH), 8.01 (d, 1H, C<sub>4</sub>-H), 7.90 (bs, 1H, NH), 7.57 (d, 1H, Ar-H), 7.14 (d, 1H, Ar-H), 6.35 (d, 1H), 5.12 (d, 1H, C<sub>4</sub>-H), 3.97 (q, 2H, OCH<sub>2</sub>), 2.20 (s, 3H, CH<sub>3</sub>), 1.17 (t, 3H, CH<sub>3</sub>); IR (KBr): 3415, 3,315, 1728, 1710, 1690 cm<sup>-1</sup>. EIMS, 70 ev, *m/z*: 344 (M<sup>+</sup>). Calcd. for C<sub>17</sub>H<sub>16</sub>N<sub>2</sub>O<sub>6</sub>: C, 59.30; H, 4.68; N, 8.14. Found: C, 59.37; H, 4.54; N, 8.09.

**Ethyl 1,2,3,4-tetrahydro-6-methyl-2-oxo-4-(4-oxo-4H-chromen-3-yl)-pyrimidine-5-carboxylate (Table 3, Entry 4r).** Mp 110°C. <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>): δ 9.40 (bs, 1H, NH), 8.20 (d, 1H, Ar-H), 7.90 (bs, 1H, NH), 7.45–7.60 (m, 3H, Ar-H), 6.95 (1H, CH), 5.10 (s, 1H, C<sub>4</sub>-H), 4.12 (q, 2H, OCH<sub>2</sub>), 2.20 (s, 3H, CH<sub>3</sub>), 1.25 (t, 3H, CH<sub>3</sub>); IR (KBr): 3310, 3170, 1734, 1710, 1695 cm<sup>-1</sup>. EIMS, 70 ev, *m/z*: 328 (M<sup>+</sup>). Calcd. for C<sub>17</sub>H<sub>16</sub>N<sub>2</sub>O<sub>5</sub>: C, 62.19; H, 4.91; N, 8.53. Found: C, 62.27; H, 4.83; N, 8.59.

## CONCLUSION

In conclusion, we have developed a mild, simple, cost-effective procedure for the synthesis of 3,4-dihydropyrimidinones/thiones using a reusable solid acid

catalyst. Moreover, the mild reaction conditions, good yield of products, easy work-up, ready availability of the catalyst, and the ecologically clean procedure make the present method a useful and important addition to the present methodologies for the Biginelli synthesis.

## ACKNOWLEDGMENT

One of the authors, B. S. K., is grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for providing financial support in the form of a CSIR Senior Research Fellowship.

## REFERENCES

1. Kochi, M. *Green Reaction Media for Organic Synthesis*; Blackwell: Oxford, 2005.
2. Kappe, C. O. One hundred years of the Biginelli dihydropyrimidine synthesis. *Tetrahedron* **1993**, *49*, 6937.
3. Kappe, C. O.; Shishkin, O. V.; Uray, G.; Verdino, P. X-ray structure, conformational analysis, enantioseparation, and determination of absolute configuration of the mitotic kinesin Eg5 inhibitor monastrol. *Tetrahedron* **2000**, *56*, 1859.
4. (a) Kappe, C. O. Biologically active dihydropyrimidones of the Biginellitype: A literature survey. *Eur. J. Med. Chem.* **2000**, *35*, 1043–1052; (b) Patil, A. D.; Kumar, N. V.; Kokke, W. C.; Bean, M. F.; Freyer, A. J.; C. De, Brosse; Mai, S.; Truneh, A.; Faulkner, D. J.; Carte, B.; Breen, A. L.; Hertzberg, R. P.; Johnson, R. K.; Westley, J. W.; Potts, B. C. Novel alkaloids from the sponge *Batzella* sp.: Inhibitors of HIV gp120-human CD4 binding. *J. Org. Chem.* **1995**, *60*, 1182–1188.
5. Snider, B.; Shi, Z. Biomimetic synthesis of ( $\pm$ )-crambines A, B, C1, and C2: Revision of the structure of crambines B and C1. *J. Org. Chem.* **1993**, *58*, 3828–3839.
6. Biginelli, P. Aldehyde–urea derivatives of aceto- and oxaloacetic acids. *Gazz. Chim. Ital.* **1893**, *23*, 360.
7. Folkers, K.; Harwood, H. J.; Johnson, T. B. Research on pyrimidines, 130: Synthesis of 2-keto-1,2,3,4-tetrahydropyrimidines. *J. Am. Chem. Soc.* **1932**, *54*, 3751.
8. Hu, E. H.; Sidler, D. R.; Dolling, U. H. Unprecedented catalytic three-component one-pot condensation reaction: An efficient synthesis of 5-alkoxycarbonyl-4-aryl-3,4-dihydropyrimidin-2(1H)-ones. *J. Org. Chem.* **1998**, *63*, 3454.
9. Kappe, C. O.; Falsone, S. F. Polyphosphate Ester–mediated synthesis of dihydropyrimidinones: Improved conditions for the Biginelli reaction. *Synlett* **1998**, 718.
10. Bigi, F.; Carloni, S.; Frullanti, B.; Maggi, R.; Sartori, G. A revision of the Biginelli reaction under solid acid catalyst: Solvent-free synthesis of dihydropyrimidinones over montmorillonite KSF. *Tetrahedron Lett.* **1999**, *40*, 3465.
11. Ranu, B. C.; Hajra, A.; Jana, U. Indium(III) chloride-catalyzed one-pot synthesis of dihydropyrimidinones by a three-component coupling of 1,3-dicarbonyl compounds, aldehydes, and urea: An improved procedure for the Biginelli reaction. *J. Org. Chem.* **2000**, *65*, 6270.
12. Ma, Y.; Qian, C.; Wang, L.; Yang, M. Lanthanide triflate–catalyzed Biginelli reaction: one-pot synthesis of dihydropyrimidinones under solvent-free conditions. *J. Org. Chem.* **2000**, *65*, 3864.
13. Bussolari, J. C.; McDonnell, P. A. A new substrate for the Biginelli cyclocondensation: Direct preparation of 5-unsubstituted 3,4-dihydropyrimidin-2(1H)-ones from a  $\beta$ -keto carboxylic acid. *J. Org. Chem.* **2000**, *65*, 6777.

14. Dondoni, A.; Massi, A. Parallel synthesis of dihydropyrimidinones using Yb(III)-resin and polymer-supported scavengers under solvent-free conditions: A green chemistry approach to the Biginelli reaction. *Tetrahedron Lett.* **2001**, *42*, 7975.
15. Peng, J.; Deng, Y. Ionic liquid-catalyzed Biginelli reaction under solvent free conditions. *Tetrahedron Lett.* **2001**, *42*, 5917.
16. Ramalinga, K.; Vijayalakshmi, P.; Kaimal, T. N. B. Bismuth(III)-catalyzed synthesis of dihydropyrimidinones: Improved protocol conditions for the Biginelli reaction. *Synlett* **2001**, *6*, 863.
17. Yadav, J. S.; Subba Reddy, B. V.; Srinivas, R.; Venugopal, C.; Ramalingam, T. LiClO<sub>4</sub>-catalyzed one-pot synthesis of dihydropyrimidinones. *Synthesis* **2001**, *1341*.
18. Fu, N. Y.; Yuan, Y. F.; Cao, Z.; Wang, S. W.; Wang, J. T.; Peppe, C. Indium (III) bromide-catalyzed preparation of dihydropyrimidinones: Improved protocol conditions for the Biginelli reaction. *Tetrahedron* **2002**, *58*, 4801.
19. Lu, J.; Bai, Y. Catalysis of the Biginelli reaction by ferric and nickel chloride hexahydrates: One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. *Synthesis* **2002**, *4*, 466.
20. Reddy, C. V.; Mahesh, M.; Raju, P. V. K.; Babu, T. R.; Reddy, V. V. N. Zirconium(IV) chloride-catalyzed one-pot synthesis of 3,4 dihydropyrimidin-2(1H)-ones. *Tetrahedron Lett.* **2002**, *43*, 2657.
21. Prabhakar, A. S.; Dewkar; Sudalai, A. Cu(OTf)<sub>2</sub>: A reusable catalyst for high-yield synthesis of 3,4 dihydropyrimidin-2(1H)-ones. *Tetrahedron Lett.* **2003**, *44*, 3305–3308.
22. Srisivas Rao, A.; Ravivarala; Mujahid Alam, M. Bismuth triflate-catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H) ones: An improved protocol for the Biginelli reaction. *Synlett* **2003**, *1*, 67.
23. Wang, L.; Qian, C.; Tian, He.; Yun, M. A. Lanthanide triflate-catalyzed one-pot synthesis of dihydropyrimidin-2(1H)-thiones by a three-component of 1,3-dicarbonyl compounds, aldehydes, and thiourea using a solvent-free Biginelli condensation. *Synth. Commun.* **2003**, *33*, 1459–1468.
24. Shaabani, A.; Bazgir, A.; Teimouri, F. Ammonium chloride-catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions. *Tetrahedron Lett.* **2003**, *44*, 857.
25. Sargent, E. V.; Adolph, J.; Clemmons, M. K.; Kirk, G. D.; Pena, B. M.; Fedoruk, M. J. Evaluation of flu-like symptoms in workers handling xanthan gum powder. *J. Occup. Med.* **1990**, *32*, 625.
26. Davidson, R. L. (Ed.). *Handbook of Water-Soluble Gums and Resins*; McGraw-Hill: New York, 1980.
27. Whistler, R. L.; BeMiller, J. N. (Eds.). *Industrial Gums: Polysaccharides and Their Derivatives*; Academic Press: San Diego, 1973.
28. (a) Naveen Kumar, V.; Sunil Kumar, B.; Narsimha Reddy, P.; Thirupathi Reddy, Y.; Rajitha, B. Selectfluor-catalyzed one-pot synthesis of dihydropyrimidinones: An improved protocol for the Biginelli reaction. *Heterocycl. Commun.* **2007**, *13*, 29–32; (b) Rao, G. V. P.; Thirupathi Reddy, Y.; Narasimha Reddy, P.; Rajitha, B. Bismuth oxide perchlorate-catalysed efficient synthesis of 3,4-difydro pyrimidine-2-(1H)-ones: An improved high-yielding protocol for the Biginelli reaction. *Ind. J. Chem.* **2005**, *44B*, 2378; (c) Rao, G. V. P.; Thirupathi Reddy, Y.; Narasimha Reddy, P.; Rajitha, B. Bismuth subnitrate-catalysed efficient synthesis of 3,4-dihydropyrimidine-2-(1H)-ones: An improved protocol for the Biginelli reaction. *Synth. Commun.* **2004**, *34*, 3821.
29. Shaabani, A.; Maleki, A.; Soudi, M. R.; Mofakham, H. Xanthan sulfuric acid: A new and efficient bio-supported solid acid catalyst for the synthesis of  $\alpha$ -amino nitriles by condensation of carbonyl compounds, amines, and trimethylsilylcyanide. *Catal. Commun.* **2009**, *10*, 945.