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Abstract

The objective of this article is to study the natural convection over an inclined wavy surface embedded in a porous medium
saturated with nanofluid. To transform the complex wavy surface to a smooth surface, a coordinate transformation has been used.
The governing equations are transformed into a set of partial differential equations using the non-similarity transformations and
then applied the local similarity and non-similarity method to obtain ordinary differential equations. These resulting equations are
solved using the successive linearization method. The effects of amplitude of the wavy surface, angle of inclination of the wavy
surface to the horizontal, Brownian motion parameter, thermophoresis parameter on the non-dimensional heat and nanoparticle
mass transfer rates are studied and presented graphically.
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1. Introduction

Nanofluids are prepared by suspension of nanometer sized particles in conventional liquids. The term nanofluid
was first introduced by Choi [1] to refer this category of fluids. Several researchers have been using nanofluids, so as
to attain the highest possible thermal properties at the lowest possible concentrations (preferably < 1% by volume)
by stable suspension and uniform dispersion of nanometer sized particles (preferably < 10 nm) in the conventional
liquids. The nanoparticles suspended in a conventional liquid are in random motion under the influence of several
acting forces, such as the Brownian force. This random motion of the suspended nanoparticles strengthens energy
transport inside the liquid. Nanofluids have several engineering applications such as microelectronics, microfluidics,
transportation, medicine, solid-state lighting, manufacturing, high-power X-rays, scientific measurement, biomedical,
material processing and material synthesis. The detailed review on nanofluids can be found in the book by Das e al.
[2].

Convective heat and mass transfer in porous media has been widely studied in recent years due to its broad range
of engineering applications such as solar energy collectors, heat exchangers, geothermal and hydrocarbon recovery. A
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Fig. 1: Physical model

review of convective heat transfer in porous medium is presented in the book by Nield and Bejan [3]. Khan and Aziz
[4] numerically investigated the natural convective flow of a nanofluid over a vertical plate with a constant surface
heat flux. Haddad et al. [5] studied the significance of the effect of Brownian motion and thermophoretic parameters
in natural convection of nanofluids. Noghrehabadi ef al. [6] examined the natural convection heat and mass transfer
of nanofluids past a vertical plate under uniform surface heat and nanoparticle mass fluxes in a saturated Darcy porous
medium. Thohura ez al. [7] investigated the problem of steady natural convection along a vertical cone with uniform
surface heat flux for temperature dependent thermal conductivity. Chamkha et al. [8] studied the effect of uniform
heat and nanoparticle fluxes on non-Darcy natural convection of non-Newtonian fluid along a vertical cone embedded
in a porous medium filled with nanofluid.

The study of heat and mass transfer from the irregular wavy surfaces is of primary importance because of its
enhancing heat transfer characteristics. Tashtoush and Al-Odat [9] numerically investigated the effect of magnetic
field on forced convection heat and fluid flow along a wavy surface with prescribed heat flux. Molla et al. [10] studied
the natural convection boundary layer flow along a vertical complex wavy surface with uniform surface heat flux.
Rahman et al. [11] studied natural convection flow along a vertical wavy cone with uniform surface heat flux. The
preceding literature reveals that the problem of free convection of nanofluid along an inclined wavy surface embedded
in a porous medium with uniform surface heat and nanoparticle fluxes has not been considered so far. The present
study mainly focused on exploring the effects of amplitude, angle of inclination of the wavy plate to the horizontal,
Brownian motion and thermophoresis on natural convection in Darcy porous medium saturated with nanofluid.

2. Mathematical Formulation

Consider the steady laminar incompressible two-dimensional boundary layer free convection flow along a semi-
infinite inclined wavy surface embedded in a nanofluid saturated porous medium. The wavy plate is inclined at an
angle A (0° < A < 90°) to the horizontal. The inclination angle is 0° (for horizontal plate), 90° (for vertical plate)
and 0° < A < 90 (for inclined plate). The coordinate system is shown in Fig. 1. The wavy surface is described by
y = 8(x) = asin(nx/l) where a is the amplitude of the wavy surface and 2/ is the characteristic length of the wavy
surface. The wavy surface is maintained at uniform heat and nanoparticle volume fraction fluxes. The temperature and
nanoparticle volume fraction of the wavy surface are T, and ¢,, respectively and the ambient values of the temperature
and nanoparticle volume fraction of the wavy surface are denoted by T, and ¢, respectively. The values of T, and
¢,, are assumed to be greater than the ambient temperature 7', and nanoparticle volume fraction ¢, sufficiently far
from the wavy surface.

The porous medium is considered to be homogeneous and isotropic and is saturated with a fluid which is in local
thermodynamic equilibrium with the solid matrix. The fluid has constant properties except the density in the buoyancy
term of the balance of momentum equation. The governing equations for this problem under the laminar boundary
layer flow assumptions, Boussinesq approximation and using the Darcy’s flow through a homogeneous porous medium
near the inclined wavy surface are given by
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where u and v are the Darcy velocity components in the x and y directions respectively, T is the temperature, ¢ is
the nanoparticle concentration, g is the acceleration due to gravity, K is the permeability, o, is the the density of the
base fluid, p, is the density of the particles, « is the effective thermal diffusivity, 3 is the volumetric thermal expansion
coefficient of the nanofluid, u is the dynamic viscosity of the fluid, Dp is the Brownian diffusion coefficient, Dy is the
thermophoretic diffusion coefficient and vy is the ratio between the effective heat capacity of the nanoparticle material
and heat capacity of the fluid.

The boundary conditions are

v=0, gw=-k(nVT), g, =Dpn.Ve), at y=d(x) (52)
u=0, ToTs ¢—>¢o as y— o (5b)
Introducing the stream function ¢ by u = g—‘ﬁ, V= ‘9‘” . and the following non-dimensional variables
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into Eqs.(1)-(4) and letting Ra — oo (i.e., boundary layer approximation), we obtain the following boundary layer
equations:
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The associated boundary conditions are

0 - -
2f+3,s( f;) =0, 0=-V1+8, s=-V1+8, at 5=0 (10a)
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where Ra =

is the buoyancy ratio,

Ra™' is the thermophoresis parameter and
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The local Nusselt number Nu; and the nanoparticle Sherwood number NSk, are the parameters of engineering
interest. These parameters characterize the wall heat and nanoparticle mass transfer rates, respectively.

The dimensionless local Nusselt number Nu; = and the nanoparticle Sherwood number NS h; =
are given by

Xqy Xqnp
kKTw—Tw) Dp(dw—¢o)
Nl/tf _ 61/3 NShf _ fl/3 (11)
/3~ 9(5’0)’ Ra§1/3 - s(£,0)

Raf

3. Method of Solution

To solve the system of Eqns. (7)-(9) along with the boundary conditions (10), a local similarity and non-similarity
method [12,13] has been applied. The boundary value problems obtained from this method are solved by the succes-
sive linearisation method.

In the first level of truncation, the terms accompanied by & f—f are assumed to be very small. This is particularly true
when & << 1. Thus the terms with & a% in Eqns. (7)-(9) can be neglected to get the following system of equations.

f” = (sinA +§cosA) (0 - N,s) (12)
2 1
0 + §f9'_§f'9+§1/3 Nps't + &P NG? =0 (13)
2 1 N,
s”+§Lefs’—§Lef's+F;(9” =0 (14)

The associated boundary conditions are

=0, @ =-V1+8, §=-V1+§ 5=0 (15a)

f =0, 850, s—>0 as 15— oo, (15b)

For the second level of truncation we introduce g = %’ h = Z—g and k = g—; and recover the neglected terms at the

first level of truncation. Thus the governing equations at the second level reduces to

f” = (sinA +§cosA) (0 — N,s") (16)
2 1
0+ 310 =30+ EP NS0 + £ NO*=£(fh-6g) (17)
2 1 N,
"+ =Lefs —=Lef s+ —0" = Le£ (f'k — 5'g) (18)
3 3 Ny

The associated boundary conditions are

2f+36g=0, 0 =-V1+8, s=-V1+6 n=0 (19a)

=0, 850, s—>0 as n— oo, (19b)
At the third level of truncation we differenciate Eqns. (16) - (19) with respect to ¢ and neglect the terms g—g, % and

g—g to get the following system of equations
g” =(8cosA) (0 —N,s') + (sinA + 5cos A) (W' — N,k') (20)

5 2 1 4 1 1
n o+ gga' *3 fH - §g'e -3 fh+ §Nb§-‘_2/3s'6’ + NEVBKG + 5 + g1\7,5-2/39'2 +

INEVBON —&(gh—hg) =0 (21)
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5 2 1 4 N,
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The associated boundary conditions are

36 36

g=0, W =- —, kK =- —, at n=0 (23a)
VI + 62 VI + 62

g=0, h—>0, k>0 as n— oo, (23b)

The set of differential equations (16) - (18) and (20) - (22) together with the boundary conditions (19) and (23)
are solved using successive linearisation method([14,15]). Using this method the non linear boundary layer equations
reduce to a system of linear differential equations. The Chebyshev pseudo spectral method is then used to transform the
iterative sequence of linearized differential equations into a system of linear algebraic equations which are converted
into a matrix system.

Let X'(n) = [f(m), 6(n), s(17), g(m), h(n), k()] and assume that the independent vector Y'(17) can be expressed as

i—1
) =i+ Y Cal) 24)

n=0

where Y';(n), (i = 1,2, 3, ....) are unknown vectors and Y, (17) are the approximations which are obtained by recursively
solving the linear part of the equation system that results from substituting (24) in (16)-(23).

The initial approximations are chosen such that they satisfy the boundary conditions (19) and (23). The subsequent
solutions f;, 6;, s;, g, h;, and k; ,i > 1 are obtained by successively solving the linearized form of the equations which
are obtained by substituting Eq.(24) in the governing equations.

The approximate solutions for V() are then obtained as Y'(n) ~ %:0 Y,,(17) where M is the order of SLM approx-
imation. The linearized equations are solved using the Chebyshev spectral collocation method [16]. The unknown
functions are approximated by the Chebyshev interpolating polynomials in such a way that they are collocated at the
Gauss-Lobatto points defined as

fj:cos%, i=0,1,2, N (25)
where N is the number of collocation points used. The physical region [0, c0) is transformed into the region [-1, 1]
using the domain truncation technique in which the problem is solved on the interval [0, L] instead of [0, c0). This

leads to the mapping

1
%:%, 1<t (26)

where L is a scaling parameter used to invoke the boundary condition at infinity. The function () is approximated
at the collocation points by

N
Yi(¢) = ZTi(fk)Tk(fj), j=012,..,N 27
k=0

where Ty is the k™ Chebyshev polynomial defined by T;(£) = cos[kcos™'£]. The derivatives of the variables at the
collocation points are represented as

d & ,
ﬁ'ri(f) = kZ:(; DY), j=0,1,2,....N. (28)
where a is the order of differentiation and D = %9 with & being the Chebyshev spectral differentiation matrix.
Substituting Eqs.(26)-(28) into linearized form of equations leads to the matrix equation
A Xi =Ry, (29)

In Eq.(29), A;_; is a (6N + 6)X(6N + 6) square matrix and X; and R;_; are (6N + 6)x1 column vectors defined by
A =[Apl, p.g=12,...6X;=[F;,0;, ®;, G, H, K", Ri_| = [ry;_1,2-1,T3-1,T4-1,T5,-1,T1]" (30)
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Fig. 3: Effect of the Angle of inclination (A) on the heat and nanoparticle mass transfer rates.

Where a1, bri-1, Cki-1,dki-1 lki-1, My -1 are diagonal matrices of size (N+1)X(N+1) and I is an identity matrix
of size (N +1)X(N +1). After modifying the matrix system (29) to incorporate boundary conditions, the solution is
obtained as

X, =A R, €1V}

4. Results and Discussion

The solutions for dimensionless heat and nanoparticle mass transfer rates are computed and presented graphically
in Figs. 2-5. The effects of angle of inclination (A), Brownian motion parameter (), thermophoresis parameter (N;)
and amplitude (a) of the wavy surface have been discussed.

The effect of the wave amplitude on the Nusselt and nanoparticle Sherwood number is plotted in Fig. 2. This
figure shows that an enhancement in wavy amplitude increases the local heat and nanoparticle mass transfer rates as
compared with the limiting case of a smooth surface. Hence, the Streamwise distribution of the local Nusselt and
nanoparticle Sherwood number are harmonic curves with wavelength is equal to the wavelength of the inclined wavy
surface (0° < A < 90°). But, the Streamwise distribution of the local Nusselt and nanoparticle Sherwood number are
harmonic curves with wavelength is equal to twice the wavelength of the vertical wavy surface (A = 90?). In general,
we conclude that the surface becomes more roughened for increasing values of amplitude of the wavy surface.
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Fig. 5: Effect of the thermophoresis parameter (V;) on the heat and nanoparticle mass transfer rates.

The variation of heat and nanoparticle mass transfer rates for various values of the angle of inclination A is dis-
played in Fig. 3. This figure shows that increasing the angle of inclination increases the buoyancy force and assist the
flow, leading to an increase in the heat and nanoparticle mass transfer rates. The maximum values of the dimensionless
heat and nanoparticle mass transfer rates are observed when the surface is vertical; in which case, the buoyancy force
is at its maximum.

The effect of Brownian motion parameter N, on the heat and nanoparticle mass transfer rates is presented in Fig.
4. Fig. 4(a) depicts that the dimensionless heat transfer rate decreases with the increase in the Browinian motion
parameter. An increase in the value of Brownian motion parameter enhances the nanoparticle volume fraction transfer
rate, as shown in Fig. 4(b)

Fig. 5 depicts the streamwise distribution of Nusselt and Sherwood numbers for different values of thermophoresis
parameter N,. It is seen from Fig. 5(a) that the heat transfer rate decreases with the increase in the thermophoresis pa-
rameter. The effect of thermophoresis number on nanoparticle mass transfer is to increase the nanoparticle Sherwood
number as depicted in Fig. 5(b).

5. Conclusions

The problem of free convection heat and mass transfer over an inclined wavy surface embedded in a porous medium
saturated with nanofluid with uniform surface heat and nanoparticle volume fraction fluxes was analyzed. Numerical
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solutions were obtained for different values of Brownian motion parameter, thermophoresis parameter, amplitude
and angle of inclination of the wavy surface. The Brownian motion parameter N, significantly affects flow field i,e.
increasing the Brownian motion parameter increases the nanoparticle mass transfer rate but reduces the heat transfer
of the fluid. The effect of the thermophoresis parameter N;, on the fluid flow is to increase the local nanoparticle mass
transfer coefficient and to decrease the local heat transfer coefficient. An increase in the value of the wavy amplitude
a enhances the local heat and nanoparticle mass transfer rates of the fluid. The effect of angle of inclination A of the
wavy surface was found to enhance the heat and nanoparticle mass transfer rates of the fluid.
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