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Abstract

Complex engineering problems are often required to be addressed for multiobjective optimization. Wire electric dis-
charge machining is one such multiobjective optimization problem. Conflicting objectives such as material removal rate,
surface roughness and kerf have always been research interest for optimization. In this article, a novel optimization strat-
egy has been formulated by coupling grey relational analysis with firefly algorithm to optimize the responses. Process
parameters such as pulse-on time, pulse-off time, peak current and servo voltage are studied. Response parameters such
as material removal rate, surface roughness and kerf are considered. Firefly algorithm is the main technique and grey
relational analysis is used to generate a grey relational grade. This grade is further used in firefly algorithm for movement
of firefly to the neighboring brighter and attractive firefly. In this process of self-organization, simultaneous optimal solu-
tion for material removal rate, surface roughness and kerf is obtained. Peak current is found to be the most influencing
factor affecting all the three responses. Pareto surface plot is also plotted to recommend alternate solutions for various
responses based on the priorities. As the proposed strategy is generalized, it can be customized and applied for any
multiobjective optimization problem.
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Introduction global optimum solution, researchers are constantly
. . . . attempting to propose the most efficient algorithm.
Wire electric discharge machining (WEDM) is con- Global optimality in WEDM with different conflict-

stantly attracting a lot of researchers and industrialists
because of its wide range of applications for machining
almost any material, which can conduct. In the last 25
years, developers have been constantly improving
WEDM process to meet the requirements of the
industry.

Present day’s manufacturing sector demands pro-
duction of parts, which are of high quality without
compromising on the machining speed. This is possible
by proper selection of machining parameters. In the
case of WEDM process, material removal rate (MRR),
surface roughness (SR) and kerf are important
responses, which determine the production efficiency  Department of Mechanical Engineering, National Institute of Technology
and quality of the product. Selection of proper machin-  Warangal, Warangal, India
ing parameters is vital since it also includes interactions .

. .. Corresponding author:
among them, which makes the process stochastic in N Venkaiah, Department of Mechanical Engineering, National Institute of
nature. Since there is no single universal tool for find- Technology Warangal, Warangal 506004, Andhra Pradesh, India.
ing the best set of machining parameters to achieve Email: n_venkaiah@nitw.ac.in

ing objectives is not easy to reach. Many researchers
have focused on achieving multiobjective optimization
of WEDM. Golshan et al.' compared the performance
of brass wire and zinc-coated brass wire and optimized
multiple objectives using non-dominated sorting genetic
algorithm-II (NSGA-II). Pareto optimal set of solu-
tions is obtained for both the wires and concluded that
zinc-coated brass wire was more predictable and reli-
able. Rao and Pawar” developed a mathematical model
using response surface methodology (RSM) and
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Figure 1. Classification of optimization algorithms.

optimized WEDM process parameters using artificial
bee colony (ABC). Garg et al.’ formulated multiobjec-
tive optimization problem of WEDM using Box—
Behnken design and optimized using NSGA-II method.
A non-dominated Pareto optimal solution set was
obtained. Thereby, the best solution was selected. Most
of them used Taguchi- or RSM-based design of experi-
ments and formulated the regression equations. These
regression equations serve as objective functions for
optimization algorithms.

Optimization algorithms can be broadly classified as
deterministic and stochastic processes, as shown in
Figure 1. Furthermore, stochastic process can be
branched into Monte Carlo methods and evolutionary
algorithms. Heuristic and metaheuristic methods come
under evolutionary algorithms.

Metaheuristic algorithms are very powerful in sol-
ving stochastic optimization problems. Many research-
ers have been developing new algorithms by drawing
inspiration from nature.* These algorithms can be
broadly divided into four major categories: swarm
intelligence (SI) based, bio-inspired (but not SI-based),
Physics/Chemistry based and others. SI-based algo-
rithms are among the most popular and widely used.
They are concerned with collective, emerging behavior
of multiple, interacting agents who follow some simple
rules. And they are inspired by the collective behavior
of social insects, such as ants, termites, bees and fire-
flies, as well as from other animal societies like flocks
of birds, fish and so on. The reason for such popularity
is that SI algorithms usually share information among
multiple agents, so that self-organization, co-evolution
and learning during iterations may help to provide the
high efficiency of most SI-based algorithms.

Inspired by the tropic firefly swarms and their flash-
ing behavior, Yang>® developed a new metaheuristic
algorithm called firefly algorithm (FA), which is based
on SI. Although the FA has many similarities with
other algorithms based on the SI, this algorithm is
much simpler in both concept and implementation.
Furthermore, the recent literature shows that the algo-
rithm has outperformed other well-known algorithms

like genetic algorithm (GA), for solving many optimi-
zation problems. Khadwilard et al.” applied FA for sol-
ving job shop scheduling problem with five different
benchmark datasets and concluded that FA generates
better results. Aungkulanon et al.® compared FA and
particle swarm optimization (PSO) for their processing
time, convergence speed and quality of results using
benchmark models. FA outperformed PSO. Bharathi
Raja et al.” applied different optimization techniques
such as simulated annealing (SA), GA, PSO, FA,
hybrid algorithm (HA) and memetic algorithm (MA)
for mathematical modeling of turning operation. PSO
was found to give best results followed by FA. Chai-
ead et al.'"” compared FA and bees algorithm (BA) on
execution time, accuracy and convergence criteria. FA
was found to be better than BA. Bharathi Raja et al.'!
applied FA for optimization of die-sinking electric dis-
charge machining (EDM) of hardened die steel. FA
was used to predict the optimal parameters of EDM to
yield SR and machining time.

In the multiobjective optimization problems, multi-
ple objective functions conflict with one another. The
aim should be to find a vector of decision variables that
satisfies constraints and optimizes the objective func-
tions.'? In grey relational analysis (GRA), the responses
are first normalized in the range of 0 to 1. Next, based
on the normalized data, grey relational coefficients are
calculated. Entropy-based weights are employed to
determine the relative weighting factors for each output
response. Then, overall grey relational grade (GRG) is
determined by averaging the grey relational coefficients
corresponding to selected responses.'?

Methodology

In this article, a face-centered central composite design
(FCCD) is applied for experimentation. The responses
considered are MRR, SR and kerf. Analysis of var-
iance (ANOVA) is performed and regression modeling
is carried out to generate the objective functions for the
output responses. FA is used for multiobjective optimi-
zation of the objective functions. Based on the fitness
values, GRG is computed using GRA in each iteration.
FA uses this GRG, and search is made to achieve
higher GRG. The highest GRG corresponds to global
optimal solution in the selected range of process para-
meters. Figure 2 depicts the steps involved in the pro-
posed methodology.

Multiobjective FA

The FA has been designed to address all varieties of
optimization problems. However, all algorithms usually
pose some limitations, as stated in the No Free Lunch
theorem.!* In order to overcome these limitations,
hybrid methods are developed to seek improvements.
FA tries to mimic the tropical fireflies, attraction
behavior and flashing pattern. Researchers identified
that the purpose of this flashing lights is mainly to



Varun and Venkaiah

1387
—Fitness1: MRR—> MO optimization Global
—Fitness2: SR—>  using GRA » Optimal
—Fitness 3: Kerf—> coupled with FA Solution

Ton —> —MRR—>
Tore—» pace Regression
IP Centered ——SR—>» ANOVA —> .
> ccDp Modeling
SV — —Kerf—
Input Output
Parameters Responses

Figure 2. Steps in proposed methodology.

Ton: pulse-on time; Toge: pulse-off time; IP: peak current; SV: servo voltage; CCD: central composite design; ANOVA: analysis of variance; MRR:
material removal rate; SR: surface roughness; MO: multiobjective; GRA: grey relational analysis; FA: firefly algorithm.

attract their mating partners and at the same time to
warn potential threat from predators. Yang® developed
FA based on few rules obeyed by fireflies:

Fireflies are unisex so that one firefly will be
attracted to other fireflies regardless of their sex.
The attractiveness is proportional to the brightness,
and they both decrease as their distance increases.
Thus, for any two flashing fireflies, the less brighter
one will move toward the brighter one. If there is
no brighter one, then a particular firefly moves
randomly.

The brightness of a firefly is determined by the
landscape of the objective function.

This population-based FA finds the global optima
based on SI. In this work, initialized agents or fireflies
are randomly distributed in the search space based on
the objective function generated from regression model-
ing. The key modification in this article is that a GRG
is calculated based on the fitness values of the individ-
ual objective functions. The methodology is explained
in detail in section “GRA.” Then search is made to
achieve higher GRG using FA.

The firefly emits light proportional to the value of
GRG. The variation of light intensity and formulation
of attractiveness are the two important phenomena for
the co-evolution of FA.* The brightness 7 of a firefly at
a particular location x can be chosen as I(x) o f(x),
which means brightness is proportional to the value of
the objective function. However, the attractiveness 3 is
relative and varies with the distance r; between firefly i
and firefly j. As the distance increases from source of
light, its intensity decreases as absorbed by the medium.
Hence, the attractiveness varies with the degree of
absorption. The attractiveness of a firefly can be repre-
sented as a monotonically decreasing function® given
by equation (1)

B(r) = Bye " ()

where r is the distance between any two fireflies, By is
the initial attractiveness at r = 0 and vy is an absorption
coefficient, which controls the light intensity.

The distance between any two fireflies i and j, at
position x; and x;, respectively, can be defined as a
Cartesian or Euclidean distance as follows

d

Z (ik — X_/;k)2

k=1

(2)

rij:

W= =

where x;, is the kth component of the spatial coordi-
nate x; of the ith firefly and d is the number of
dimensions.

The movement of a firefly i, which is attracted by a
brighter firefly j, is given by equation (3)

X, =Xx;+ 'Boe*W?,‘(xi —x) ta (rand— %) (3)
where the first term is the current position of a firefly,
the second term denotes firefly’s attractiveness to light
intensity seen by adjacent fireflies and the third term is
used for the random movement of a firefly when there
are no brighter ones. The coefficient « is a randomiza-
tion parameter determined by the problem of interest,
while rand is a random number generator uniformly
distributed in the space [0, 1]. Bo = 1.0 and the attrac-
tiveness or absorption coefficient, y = 1.0, are used for
quick convergence.'”

Solving multiobjective optimization problem is
important for addressing majority of engineering prob-
lems. FA can be used to solve multiobjective optimiza-
tion problems by combining all the output response
objectives into single objective. Apostolopoulos and
Aristidis'? implemented weighted sum method in FA
for combining multiple objectives into a single objective
optimization problem. In this work, FA is coupled with
GRA to combine multiobjective  WEDM output
responses into a single GRG.

GRA

Deng'® proposed GRA to deal with uncertain and
incomplete systems. GRA is gaining popularity in the
recent years because of its ability to determine multiple
performance measures. Relative weighting for each
attribute is found using entropy weighting method.'’
Entropy is originally a thermodynamic concept.
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Information represents ordered degree, but entropy
represents disordered degree of system in information
theory.'® According to which, the objective with higher
variation in its objective function values should be
assigned a higher weightage.

Objective fitness values generated by the FA are
used to obtain GRG. GRG is defined as the relative
degree between sequence of individual responses. One
sequence X;(k) selected as the reference sequence is
called the localized GRG, that is, one sequence exists
in the grey relation space { P(X); '}

xi(k) = (xi(1), xi(2), ..., xi(k)) € X
wherei = 0,1,2,....,meN; k =1,2,...,n € N, thatis

xo(k) = (xo(1), x0(2), ..., x0(k))
xi(k) = (x1(1), x1(2), ..., x1(k))

Xm(k) = (xm(1), X(2), .., xpm(k))

Fitness values of objective functions from FA are
considered as the sequence to be used for finding GRG.
In GRA, initially normalization of data is performed.
This is also called as grey relational generation. The
normalized objective fitness results, x;, can be expressed
as

Larger-the-better (LB)

x0(k) — min x(k)

xi (k) = max xV(k) — min x%(k) “)
Smaller-the-better (SB)
v(k) = max xV(k) — x%(k) (s5)

max x¥(k) — min x%(k)

where x7 (k) is the value after the grey relational genera-
tion process and min x’(k) and max x?(k) denote the
minimum and maximum of x?(k), respectively.

Entropy weighting is introduced as follows:

1. Each attribute summation, Dy, is computed
m
Dp =Y xik) (6)
i=1
2. Normalization coefficient, K, is computed

1
K= GeasTxn @)

where n represents the number of responses.

3. Entropy for specific attribute, e, is found

m

e = K> We(Z) (®)

i=1

where Wo(Z;)) = Ze'""%) + (1 — Z;)e% — 1 and

xi(k)
Dk

Z,‘:

4. Total entropy value, E, is given by

5. Relative weighting factor, A, is given by

M= - ) (10)

According to the grey relational generation and
weighting factor of each attribute, GRG, I', is given by

r]’ _ An’tin + Amax (1 1)
‘ Aj+ Apax
wherei=0,1,2, ...... o k=1,2,...... ,m,j € iand

1 n
A= > Bak), Aoilk) = [xo(k) = xi(k)

i=1
Anin and A, are constants as given by

Amin = V™ € V]| x0(k) — x;(k)|
Amax = V™ € V™% | xo (k) — x,(k)|

The overall performance characteristic of the multi-
ple response process depends upon the calculated
GRG. Therefore, GRG is used in the FA for move-
ment of firefly to the brighter and attractive firefly.
With this hybrid method, multiobjective optimization
is attempted in this work.

The pseudo-code for proposed hybrid method called
GRA coupled with FA is presented in Table 1. The
procedure starts by considering formulated regression
equation as the objective function. Initially, population
of n fireflies is distributed among the search space uni-
formly. Once the fixed number of iterations and limits
of search space are defined, the iterations start to evalu-
ate each of the responses individually. Then, GRA is
carried out in each iteration, and a combined GRG is
calculated using entropy weighting method as described
in section “GRA.” Then, the co-evolution of the fire-
flies continues by moving toward the attractive fireflies
as illustrated in section “Multiobjective FA.”

Experimental procedure

WEDM  experiments were conducted on an
ULTRACUT S1 machine. The controllable process
parameters are selected based on the trial experiments
carried out using one-factor-at-a-time approach; care is
taken to see that the parameter ranges are well within
the working range of machine without wire breakage.
In this work, experiments are carried out by adopting
RSM to study the effect of the input parameters pre-
sented in Table 2. Four process parameters at three lev-
els are selected, and a FCCD is adopted for conducting
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Table I. Pseudo-code.

Objective functions fi(x), ..., fu(x) with X = (x|, Xa, ..., xg), d = no. of design variables

Generate an initial population of fireflies randomly x; (i = I, 2, ..., n) where n = no. of fireflies.

Light intensity | at x is determined by f(x) for all fireflies.
While (i < MaxGen)
Evaluate individual responses fi(x), ..., fu(x)
Generate grey relational generation
Generate grey relational grade based on the entropy method
Fori=1ton
Forj=1ton
If (I > J), move i toward j
Calculate attractiveness 3 and distance r;
Update variables and pass to the next iterations

End if
End for j
End for i

Rank fireflies in order and find the best firefly so far.

End while

Post-process results and visualization.

Table 2. Process parameters and their levels.

the experiments. Twenty-six runs with two center points
are executed, and their observations have been fitted to

Process parameters Unit Levels the second-order polynomial model. Output responses
| 2 3 such as MRR, SR and kerf are studied. A zinc-coated
copper wire with 0.25 mm diameter is used. The material
A. Pulse-on time (Ton) s 105 110 115 selected is EN 353, which is a case-carburized steel. This
B. Pulse-off time (Torr) s 50 55 60 material has various applications including crown wheel,
C. Peak current (IP) A 10 I 12 .. L . .
D. Servo voltage (V) v 10 50 90 crown pinion and pinion shaft. Machining time for a
length of 5 mm slot is recorded for each workpiece.
Thickness of the workpiece is 10 mm. The observations
are presented in Table 3.
Table 3. Experimental layout.
Serial number Type Ton (1s) Torr (J1s) IP (A) SV (V) MRR (mm?®/min) SR (wm) Kerf (mm)
| Factorial 105 50 10 10 0.156 3.65 0.311
2 Factorial 115 50 10 10 0.201 3.62 0.306
3 Factorial 105 60 10 10 0.199 2.14 0.327
4 Factorial 115 60 10 10 0.201 3.35 0.313
5 Factorial 105 50 12 10 4.754 2.05 0.348
6 Factorial 115 50 12 10 8.553 32 0.344
7 Factorial 105 60 12 10 3.478 1.81 0.325
8 Factorial 115 60 12 10 6.658 3.15 0.407
9 Factorial 105 50 10 90 0.287 52 0.352
10 Factorial 115 50 10 90 0.278 4.88 0.347
I Factorial 105 60 10 90 0.2 6.5 0.345
12 Factorial 115 60 10 90 0.223 5.55 0.358
13 Factorial 105 50 12 90 1.405 3.18 0.378
14 Factorial 115 50 12 90 5.114 2.35 0.431
15 Factorial 105 60 12 90 1.227 2.35 0.373
16 Factorial 115 60 12 90 1.981 1.6 0.449
17 Axial 105 55 I 50 2.385 1.58 0.352
18 Axial 115 55 Il 50 6.754 2.3 0.412
19 Axial 110 50 Il 50 5.482 1.74 0.394
20 Axial 110 60 Il 50 3.869 1.52 0.392
21 Axial 110 55 10 50 0.432 2.45 0.352
22 Axial 110 55 12 50 6.448 2.23 0.393
23 Axial 110 55 Il 10 7.673 1.6 0.368
24 Axial 110 55 Il 90 2.309 1.96 0.401
25 Center 110 55 Il 50 5.89 2.15 0.39
26 Center 110 55 Il 50 6.164 1.7 0.385

Ton: pulse-on time; Tog: pulse-off time; IP: peak current; SV: servo voltage; SR: surface roughness; MRR: material removal rate.
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Table 4. ANOVA and F-test for MRR.

Serial number Process Degrees of Sum of squares Mean square F-test p-value Percentage of
parameters freedom (prob > F) contribution
| A—Ton | 13.99558 13.99558 10.28656 0.0083 6.98139%4
2 B—Torr | 3.730091 3.730091 2.741567 0.1260 1.860676
3 C—IP | 77.87936 77.87936 57.24029 < 0.0001 38.84845
4 D—SV | 19.73804 19.73804 14.5072 0.0029 9.845902
5 AB | 0.803264 0.803264 0.590388 0.4584 0.400691
6 AC | 8.095448 8.095448 5.950046 0.0329 4.038241
7 AD | 0.406088 0.406088 0.298469 0.5958 0.202568
8 BC | 2.546418 2.546418 1.871583 0.1986 1.270226
9 BD | 0.006602 0.006602 0.004852 0.9457 0.003293
10 CD | 12.15743 12.15743 8.935545 0.0123 6.064472
I A? | 1.146274 1.146274 0.842496 0.3784 0.571794
12 B? | 0811819 0811819 0.596676 0.4561 0.404958
13 c? | 8.283957 8.283957 6.088598 0.0313 4.132275
14 D? | 0.156906 0.156906 0.115324 0.7406 0.078269
15 Residual I 14.96626 1.360569
16 Lack of fit 10 14.92872 1.492872 39.76962 0.1228 7.446873
17 Pure error | 0.037538 0.037538 0.018725
18 Cor. total 25 200.4696 100
Ton: pulse-on time; Togg: pulse-off time; IP: peak current; SV: servo voltage; Cor. total: Corrected Total.
Table 5. ANOVA and F-test for SR.
Serial number Process Degrees of Sum of Mean square F-test p-value Percentage of
parameters freedom squares (prob > F) contribution
| A—Ton | 0.131756 0.131756 0.337506 0.5730 0.286593
2 B—Torr | 0.200556 0.200556 0.513744 0.4885 0.436246
3 C—IP | 13.2098 13.2098 33.83828 0.0001 28.73378
4 D—SV | 45 45 11.52722 0.0060 9.78834
5 AB | 0.0484 0.0484 0.123982 0.7314 0.105279
6 AC | 0.0625 0.0625 0.1601 0.6967 0.135949
7 AD | 2.6569 2.6569 6.805927 0.0243 5.779254
8 BC | 0.265225 0.265225 0.679402 0.4273 0.576914
9 BD | 0.378225 0.378225 0.968863 0.3461 0.82271
10 CD | 6.375625 6.375625 16.33183 0.0019 13.86817
I A? | 0.568129 0.568129 1.455323 0.2530 1.235787
12 B? | 0.066383 0.066383 0.170047 0.6880 0.144396
13 c? | 1.942861 1.942861 4.976841 0.0475 4.226086
14 D? | 0.2477 0.2477 0.63451 0.4426 0.538794
15 Residual I 4.294184 0.39038
16 Lack of fit 10 4.192934 0.419293 4.141169 0.3663 9.120414
17 Pure error | 0.10125 0.10125 0.220238
18 Cor. total 25 45.97307 100

Ton: pulse-on time; Toge: pulse-off time; IP: peak current; SV: servo voltage; Cor. total: Corrected Total.

ANOVA

ANOVA and F-test were performed for studying the
statistically significant process parameters, and the per-
cent contribution of these parameters are also shown in
Tables 4-6. ANOVA results for MRR listed in Table 4
show that p-value, which are less than 0.05, indicates
that null hypothesis should be rejected, and thus, the
effect of the respective factor is significant. It can be
seen from Table 4 that the pulse-on time (Ton), peak
current (IP), servo voltage (SV), Ton X IP, IP X SV
and IP> have most significant impact on MRR.
Regression analysis is also performed to find the rela-
tionship between factors and MRR. The R? is given as

0.9253 and adjusted R” is 0.8303. R’ value indicates
that the predictors explain 92.5% of the variance in
MRR and the adjusted R* accounts for the number of
predictors in the model. Regression equation for MRR
is given in equation (12)

MRR = — 587.4722 + 5.0316Ton + 4.2548Topr
+ 31.47661P + 0.3222SV — 0.0089Ton Torr
+ 0.1422ToNIP — 0.00079TonSV
—0.0797ToprIP — 0.0001 ToprSV
—0.02179IPSV — 0.02676T3
—0.0225T4 . — 1.79851P? — 0.00015SV?* (12)
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Table 6. ANOVA and F-test for kerf.

Serial number Process Degrees of Sum of Mean F-test p-value Percentage of
parameters freedom squares square (prob > F) contribution
| A—Ton | 0.003641 0.003641 20.04407 0.0009 10.61349
2 B—Tore | 0.000338 0.000338 1.860781 0.1998 0.985298
3 C—IP | 0.010609 0.010609 58.40754 < 0.0001 30.92724
4 D—sv | 0.008235 0.008235 45.33436 < 0.0001 24.00489
5 AB | 0.00087 0.00087 4.790961 0.0511 2.536851
6 AC | 0.00297 0.00297 16.35203 0.0019 8.658524
7 AD | 0.00038 0.00038 2.093379 0.1758 1.10846
8 BC | 4.23E-05 4.23E-05 0.232598 0.6391 0.123162
9 BD | 0.000132 0.000132 0.728072 04117 0.38552
10 CD I 0.00024 0.00024 1.322641 0.2745 0.700349
I A? | 0.00022 0.00022 1.211929 0.2945 0.641726
12 B? | 7.65E-06 7.65E-06 0.042127 0.8411 0.022306
13 c? | 0.000902 0.000902 4.967967 0.0476 2.630577
14 D? | 0.000117 0.000117 0.646464 0.4384 0.342308
15 Residual I 0.001998 0.000182
16 Lack of fit 10 0.001986 0.000199 15.88469 0.1930 5.788146
17 Pure error | 1.25E-05 |.25E-05 0.036439
18 Cor. total 25 0.034304 100

Ton: pulse-on time; Togg: pulse-off time; IP: peak current; SV: servo voltage; Cor. total: Corrected Total.

ANOVA results for SR are listed in Table 5. It can
be observed that the IP, SV, TonX SV, IP X SV and
IP? are the most significant factors. The R* is given as
0.9066 and adjusted R is 0.7877. Regression equation
for SR is given in equation (13)

SR = 358.0665 — 4.2843Ton — 0.7267Torr
— 19.1883IP + 0.3485SV + 0.0022TonTorr
+0.0125ToNIP
—0.00203ToNSV — 0.02575TopgIP
+ 0.0007ToprSV — 0.0157IPSV
+0.01884T2 + 0.00644 T

+ 0.8711P% + 0.00019SV? (13)

ANOVA results for kerf are listed in Table 6. The
significant parameters are Ton, IP, SV, Ton X IP and
IP?. The R*is given as 0.9418 and adjusted R? is 0.8676.
Regression equation for kerf is given by equation (14)

kerf = — 1.3977 + 0.03701Ton — 0.04204Torr
+ 0.11478IP — 0.00199SV + 0.0003TonTorr
+ 0.00272ToNIP + 2.4375E — 05TonSV
+ 0.0003TorpIP — 0.00001 ToprSV
+9.6875E — 05IPSV
—0.00037Tgy + 6.91429E — 05T pp

—0.01877IP* — 4.23214E — 06SV> (14)

Results and discussion

FA is implemented using MATLAB software. The algo-
rithm is tested with different population sizes and found
that beyond the population size of 20 fireflies, there was

no much variation in solution convergence. Population
size of 20 fireflies is used, and 500 iterations are per-
formed. Individual optimization of MRR using FA
yields a maximum of 8.967 mm®/min at Ton (115 ws),
pulse-off time (Topg) (50 ws), IP (12 A) and SV (10 V),
as presented in Table 7. It is observed that maximum
MRR is predicted at high IP, low SV and high pulse-on
time (Ton). This is because, strong sparks are generated
at higher IPs and low SV. Higher pulse-on time ensures
to hold energy for longer duration of time, producing
high temperature. As a result, more material is melted
and eroded. Figure 3 shows the convergence plot of
MRR and the solution is converged at 12" iteration.

Individual optimization of SR using FA yields a
minimum value of 1.136 pm at Ton (107 ws), Torr
(60 ws), IP (11 A) and SV (10 V). It is observed that IP
and SV play a vital role in minimizing SR. With
increased IP, intense energy will be generated forming a
deeper crater causing higher SR. However, from the
ANOVA, it is evident that interaction effect of IP and
SV is also significant on the SR. Also, better SR is
observed at low SV. This is because interelectrode gap
at low SV is much narrow keeping the wire much closer
to the workpiece. This helps to machine the peaks on
the material, thereby minimizing the SR. Convergence
is observed at 14" iteration, as shown in Figure 3.

Individual optimization of kerf yields 0.298 mm at
Ton (115 ws), Topr (50 ws), IP (10 A) and SV (10 V).
For minimizing the kerf, IP and SV are important. At
lower IP and SV, spark energy is less forming smaller
size debris. These debris are easy to evacuated from the
machining zone, thereby resulting in low kerf. If the
debris size is larger, evacuation becomes difficult. It
can result in multiple sparks, which can widen the kerf.
The convergence plot for kerf is shown in Figure 4.
The solution is obtained at 42" iteration.
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Table 7. Results of firefly algorithm for individual responses.

Response parameters

Optimized machining parameters

Objective function

Ton (ps) Torr (1) IP(A) SV(V)
MRR (mm?*/min) 115 50 12 10 8.967
SR (jm) 107 60 I 10 1.136
Kerf (mm) 115 50 10 10 0.298

Ton: pulse-on time; Togr: pulse-off time; IP: peak current; SV: servo voltage; MRR: material removal rate; SR: surface roughness.

Table 8. Results of multiobjective optimization using GRA coupled with FA.

Optimized machining parameters Multiobjective function

Ton (15) Tore (15) IP (A) SV (V) MRR SR

Kerf

109 55 12 52 6.2 1.49

0.36

Ton: pulse-on time; Togr: pulse-off time; IP: peak current; SV: servo voltage; MRR: material removal rate; SR: surface roughness.

©
o ©
w

SR (um) MRR (mm°/min)

o

Kerf (mm)

o o

Number of Iterations

Figure 3. Convergence plot for MRR, SR and kerf.

MRR: material removal rate; SR: surface roughness.

Simultaneous optimization of three responses using
the proposed GRA coupled with FA method yields
MRR of 6.2 mm*/min, SR of 1.49 um and kerf of 0.36
mm. The corresponding process parameters observed
are Ton (109 ws), Torr (55 ws), IP (12 A) and SV
(52 V), as presented in Table 8. It is evident from the
ANOVA that IP has the most dominant influence on
MRR, SR and kerf. Hence, this parameter will have the
most influencing effect when considered simultaneously
also. Higher IP causes MRR to increase while compro-
mising on SR and kerf. However, due to the effects of
other process parameters and their interactions, global
optimal solution for the simultancous optimization of
multiple objectives is obtained almost at the middle lev-
els of the process parameters. At these levels, narrow
interelectrode gap results in much focused plasma chan-
nel, which increases volume of material removed per
spark with larger crater. As a result, increase in MRR
and SR is observed. kerf decreases with narrow inter-
electrode gap. In the proposed optimization strategy,

process parameters are tuned for achieving the best pos-
sible compromise among the responses. Simultaneous
optimal point is obtained at 49th iteration, as shown in
Figure 4.

When there are two or more objectives with conflict-
ing interests, solution rarely exists optimizing all the
objectives simultaneously. Ming et al.'” suggested a
Pareto optimal front for triple objective optimization
of WEDM. It was observed that if good surface finish
is required, a compromise on MRR is required and vice
versa. Hence, these Pareto plots were found to be help-
ful in understanding the trend of solution set. In this
work, 50 solution sets are obtained by repeating the
program execution. The objectives are taken along the
three axes of the three-dimensional (3D) Pareto surface
plot, as shown in Figure 5. Figure 6 shows the contour
plot of Figure 5. Each bubble describes a solution. The
point “B;” in Figures 5 and 6 describes a solution at
which MRR is maximum. However, SR and kerf are
not minimum. Similarly, point “B,” is a solution of
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minimum SR and kerf. This point does not give maxi-
mum MRR. Solutions such as point A in Figures 5 and
6 are said to be dominated by others. Solutions such as
B, B», ..., B, have the characteristic that no other solu-
tion, which satisfies all the three objectives, simultane-
ously exists. These are said to be non-dominated

0.98- B

Grey Relational Grade

I I I I
0’90 10 20 30 40 50 60 70

Number of Iterations

Figure 4. Convergence plot of GRA coupled with FA for
multiobjective optimization of MRR, SR and kerf.

solutions. The line or surface on which these solutions
lie is called non-dominated or optimum trade-off line
or surface. The objective function values corresponding
to the non-dominated set of solutions are called the
Pareto set. The trade-off surface identifies the subset of
solutions that offer the best compromise among the
objectives.

Conclusion

Manufacturing sector has always been practicing com-
promise among the output responses. In the case of
WEDM, because of the stochastic nature of the process,
exploring multiobjective optimal machining parameters
has become difficult. From the literature, FA was found
to be superior to other algorithms when tested on
benchmark problems. This work also exploits the accu-
racy and fast convergence offered by FA. However, this
algorithm can optimize a single response at a time.
WEDM being a multiobjective problem, a novel opti-
mization strategy is proposed in this work by coupling
the FA with GRA. GRA is used in FA for combining
multiple objectives into a single GRG. This grade is
used for the movement of a firefly to the brighter and

&5

MRR (mm°®/min)

Figure 5. 3D Pareto surface plot for the responses.
MRR: material removal rate; SR: surface roughness.

4 45

5
MRR (mm?®/min)

5.5 B
Kerf (mm)

Figure 6. Contour plot of responses.
MRR: material removal rate; SR: surface roughness.
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attractive firefly. In this process, a simultaneous opti-
mal solution for MRR, SR and kerf is obtained within
the selected machining parameters.

IP is found to be the most influencing factor affect-
ing all the three responses MRR, SR and kerf. Pareto
surface and contour plots are also plotted to recom-
mend alternate solutions for selection of responses
based on the priorities. Since the proposed strategy is
generalized, it can easily be customized for other multi-
objective optimization problems also.
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