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Abstract The flow of a steady, incompressible, micropo-
lar fluid between parallel plates is studied in the presence
of cross-diffusion effects. The governing non-linear systems
of differential equations are solved by the homotopy analy-
sis method. The non-dimensional velocity, temperature and
concentration profiles are displayed graphically for different
values of Dufour number, Soret number and coupling num-
ber. In addition, the skin-friction coefficient, heat and mass
transfer rates are shown in a tabular form.
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1 Introduction

It is well known that most fluids which are encountered in
chemical and allied processing applications do not satisfy the
classical Newton’s law and are accordingly known as non-
Newtonian fluids. Due to the important applications of non-
Newtonian fluids in biology, physiology, technology, and in-
dustry, considerable efforts have been directed towards the
analysis and understanding of such fluids. The prediction of
heat or mass transfer characteristics of non-Newtonian fluids
is very important because of its practical engineering applica-
tions, such as thermal design of industrial equipment dealing
with molten plastics, polymeric liquids, foodstuffs, or slur-
ries, etc. A number of mathematical models have been pro-
posed to explain the rheological behavior of non-Newtonian
fluids. Also, there exist several approaches to study the me-
chanics of fluids with a substructure. Ericson [1,2] derived
field equations which account for the presence of substruc-
tures in the fluid. It has been experimentally demonstrated
by Hoyt and Fabula [3] that fluids containing a small amount
of polymeric additives display a reduction in skin friction.
The fluid model introduced by Eringen [4] exhibits some
microscopic effects arising from the local structure and mi-
cromotion of fluid elements. Further, they sustain couple
stresses and include classical Newtonian fluid as a special
case. The model of micropolar fluid represents fluids con-
sisting of rigid, randomly oriented (or spherical) particles
suspended in a viscous medium where the deformation of
the particles is ignored. Physically, micropolar fluids may be
described as non-Newtonian fluids consisting of dumb-bell
molecules or short rigid cylindrical element, polymer fluids,
fluid suspension, etc. Micropolar fluids have been shown to
accurately simulate the flow characteristics of polymeric ad-
ditives, geomorphological sediments, colloidal suspensions,
haematological suspensions, liquid crystals, lubricants etc.
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The presence of dust or smoke, particularly in a gas, may also
be modeled using micropolar fluid dynamics. The mathemat-
ical theory of equations of micropolar fluids and applications
of these fluids in the theory of lubrication and porous media
are presented by Lukaszewicz [5]. The heat and mass transfer
in micropolar fluids is important in the context of chemical
engineering, aerospace engineering and industrial manufac-
turing processes.

When heat and mass transfer occur simultaneously in a
moving fluid, the relations between the flux and the driving
potentials are of a more intricate nature. It has been observed
that an energy flux can be generated not only by temperature
gradients but also by concentration gradients. The energy flux
caused by a concentration gradient is termed the diffusion-
thermo (Dufour) effect. On the other hand, mass flux can also
be created by temperature gradients and this embodies the
thermal-diffusion (Soret) effect. In most of the studies related
to heat and mass transfer process, Soret and Dufour effects are
neglected on the basis that they are of a smaller order of mag-
nitude than the effects described by Fouriers and Ficks laws.
But these effects are considered as second order phenom-
ena and may become significant in areas such as hydrology,
petrology, geosciences, etc. The Soret effect, for instance,
has been utilized for isotope separation and in mixture be-
tween gases with very light molecular weight and of medium
molecular weight. The Dufour effect was recently found to
be of order of considerable magnitude so that it cannot be
neglected [6]. Dursunkaya and Worek [7] studied diffusion-
thermo and thermal-diffusion effects in transient and steady
natural convection from a vertical surface, whereas Kafous-
sias and Williams [8] presented the same effects on mixed
convective and mass transfer steady laminar boundary layer
flow over a vertical flat plate with temperature dependent vis-
cosity. Awad and Sibanda [9] studied the Dufour and Soret
effects on heat and mass transfer in a micropolar fluid in a
horizontal channel. Free convection heat and mass transfer
flow in a vertical channel with the Dufour effect was stud-
ied by Ajibade and Jha [10]. Olanrewaju and Makinde [11]
analyzed the free convective heat and mass transfer of an
incompressible, electrically conducting fluid past a moving
vertical plate in the presence of suction and injection with
thermal diffusion (Soret) and diffusion-thermo (Dufour) ef-
fects. Srinivasacharya and Kaladhar [12] presented the nat-
ural convection heat and mass transfer of a couple stress fluid
in an annulus with Soret and Dufour effects. Elaiw et al. [13]
studied the effect of variable viscosity on the vortex insta-
bility of horizontal mixed convection boundary layer flow in
a saturated porous medium with variable wall temperature.
Mokheimer [14] numerically investigated the entropy gener-
ation due to laminar mixed convection in the entrance of verti-
cal channel between two isothermal/adiabatic parallel plates.

In the present paper, we analyze the effect of Soret and
Dufour on steady mixed convective micropolar fluid flow be-

tween parallel plates. The governing non-linear differential
equations have been solved by using the homotopy analy-
sis method (HAM). It was first proposed by Liao [15] in
1992 and is considered as one of the most efficient meth-
ods in solving different types of non-linear equations such as
coupled, decoupled, homogeneous and non-homogeneous.
Also, HAM provides us great freedom to choose different
base functions to express solutions of a non-linear problem
[16]. The convergent region of the HAM solution for the
model is introduced graphically and examined. The velocity,
microrotation, temperature, and concentration functions are
shown graphically for various parameters.

2 Mathematical Formulation

Consider a steady, laminar, mixed convection flow of incom-
pressible micropolar fluid between two parallel plates dis-
tance h apart. Choose the coordinate system such that the
origin is on the lower plate, x-axis is along the flow direc-
tion and y-axis is perpendicular to the plates. The lower plate
y = 0 is maintained at a constant temperature T1 and con-
centration C1, while the upper plate y = h at a constant
temperature T2 and concentration C2. Since the boundaries
in the x direction are of infinite dimensions, without loss
of generality, we assume that the physical quantities depend
on y only. The fluid properties are assumed to be constant
except for density variations in the buoyancy force term. In
addition, the Soret and Dufour effects are considered. The
flow is a mixed convection caused by buoyancy forces and
uniform pressure gradient in the direction of x . The fluid
velocity vector q̄ = (u; v) is assumed to be parallel to the
x-axis, so that only the x component u of the velocity vector
does not vanish but the transpiration cross-flow velocity v0

remains constant, where v0 < 0 is the velocity of suction and
v0 > 0 is the velocity of injection.

With the above assumptions and Boussinesq approxima-
tions with energy and concentration, the equations governing
the flow of an incompressible micropolar fluid are:

v = v0 = constant (1)

(μ + κ)
∂2u

∂y2 − ρv0
∂u

∂y
+ ρg{βT(T − T1) + βc(C − C1)}

− ∂ P

∂x
+ κ

∂Γ

∂y
= 0 (2)

γ
∂2Γ

∂y2 − ρ jv0
∂Γ

∂y
− 2κΓ − κ

∂u

∂y
= 0 (3)

kf
∂2T

∂y2 − cpρv0
∂T

∂y
+ (μ + κ)

(
∂u

∂y

)2
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+ γ

(
∂Γ

∂y

)2

+ 2κ

(
Γ 2 + Γ

∂u

∂y

)
+ DKT

Cs

∂2C

∂y2 = 0 (4)

D
∂2C

∂y2 − v0
∂C

∂y
+ DKT

Tm

∂2T

∂y2 = 0 (5)

where u is velocity components in the x directions Γ is mi-
crorotation, ρ and j are the fluid density and gyration para-
meter, μ, κ and γ are the material constants (viscosity coeffi-
cients), g is the acceleration due to gravity, p is pressure, βT

is the coefficient of thermal expansion, βc is the coefficient
of solutal expansion, kf the coefficient of thermal conductiv-
ity, D is the mass diffusivity, cp is the specific heat of fluid,
Cs is the concentration susceptibility, Tm is the mean fluid
temperature, and KT is the thermal diffusion ratio.

The boundary conditions are:

u = 0, v = v0, Γ = 0, T = T1, C = C1, at y = 0
(6a)

u = 0, v = v0, Γ = 0, T = T2, C = C2, at y = h
(6b)

Introducing the following non-dimensional variables:

η = y

h
, u = U0 f (η), Γ = U0

h
ω(η),

θ(η) = T − T1

T2 − T1
, φ(η) = C − C1

C2 − C1
(7)

in Eqs. (1)–(5), we get the following non-linear system of
differential equations

1

1 − N
f ′′ − R f ′ + N

1 − N
ω′ + GrT

Re
θ + Grc

Re
φ − A = 0

(8)

2 − N

m2
p

ω′′ − a j
1 − N

N
Rω′ − (2ω + f ′) = 0 (9)

θ ′′ − R Prθ ′ + Br

1 − N

[
f ′2 + N (2 − N )

m2
p

ω′2

+2N (ω2 − ω f ′)
]

+ Df Prφ′′ = 0 (10)

1

Sc
φ′′ − Rφ′ + Srθ

′′ = 0 (11)

where primes denote differentiation with respect toη, Sc = ν
D

is the Schmidt number, Pr = μcp
kf

is the Prandtl number,

Re = ρU0h
μ

is the Reynolds number, Sr = DKT(T2−T1)
νTm(C2−C1)

is the

Soret number, Df = DKT(C2−C1)
νcsCp(T2−T1)

is the Dufour number,

R = ρv0h
μ

is the suction/injuction parameter, N = κ
μ+κ

is

coupling number, GrT = gρ2βT (T2−T1)h3

μ2 is temperature

Grashof number, Grc = gρ2βc(C2−C1)h3

μ2 is the mass Grashof

number, A = h2

μU0

dP
dx is the constant pressure gradient,

m2
p = h2κ(2μ+κ)

γ (μ+κ)
is the micropolar parameter, a j = j

h2 is the

micro-inertial density parameter, Br = μU 2
0

kf (T2−T1)
is the

Brinkman number.
Boundary conditions (6) in terms of f , ω, θ and φ become

f = 0, ω = 0, θ = 0, φ = 0 at η = 0 (12a)

f = 0, ω = 0, θ = 1, φ = 1 as η = 1 (12b)

3 The HAM Series Solution

For HAM solutions, we choose the initial approximations of
f (η), ω(η), θ(η) and φ(η) as follows:

f0(η) = 0, ω0(η) = 0, θ0(η) = η, φ0(η) = η (13)

and choose the auxiliary linear operators L = ∂2

∂η2 such that
L(c1 + c2η) = 0 where c1 and c2 are constants. Introducing
non-zero auxiliary parameters h1, h2, h3 and h4, we develop
the zeroth-order deformation as follows:

(1 − p)L[ f (η; p) − f0(η)] =
ph1 N1[ f (η, p), ω(η, p), θ(η, p), φ(η, p)] (14)

(1 − p)L[ω(η; p) − ω0(η)] =
ph2 N2[ f (η, p), ω(η, p), θ(η, p), φ(η, p)] (15)

(1 − p)L[θ(η; p) − θ0(η)] =
ph3 N3[ f (η, p), ω(η, p), θ(η, p), φ(η, p)] (16)

(1 − p)L[φ(η; p) − φ0(η)] =
ph4 N4[ f (η, p), ω(η, p), θ(η, p), φ(η, p)] (17)

subject to the boundary conditions

f (0; p) = 0, f (1; p) = 0, ω(0; p) = 0, ω(1; p) = 0
θ(0; p) = 0, θ(1; p) = 1, φ(0; p) = 0, φ(1; p) = 1

(18)

where p ∈ [0, 1] is the embedding parameter and the non-
linear operators N1, N2, N3 and N4 are defined as:

N1[ f (η, p), ω(η, p), θ(η, p), φ(η, p)]
= 1

1 − N
f ′′ − R f ′ + N

1 − N
ω′

+GrT

Re
θ + Grc

Re
φ − A (19)

N2[ f (η, p), ω(η, p), θ(η, p), φ(η, p)]
= 2 − N

m2
p

ω′′ − aj
1 − N

N
Rω′ − 2ω − f ′ (20)

N3 [ f (η, p), ω(η, p), θ(η, p), φ(η, p)]
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= θ ′′ − R Prθ ′ + Br

1 − N

[
f ′2 + N (2 − N )

m2
p

ω′2

+ 2N (ω2 − ω f ′)
]

+ Df Prφ′′ (21)

N4[ f (η, p), ω(η, p), θ(η, p), φ(η, p)]
= 1

Sc
φ′′ − Rφ′ + Srθ

′′ (22)

For p = 0 we have the initial guess approximations

f (η; 0) = f0(η), ω(η; 0) = ω0(η), θ(η; 0)

= θ0(η), φ(η; 0) = φ0(η) (23)

When p = 1, Eqs. (14)–(17) are same as (8)–(11) respec-
tively, therefore at p = 1 we get the final solutions

f (η; 1) = f (η), ω(η; 1) = ω(η), θ(η; 1)

= θ(η), φ(η; 1) = φ(η) (24)

Hence the process of giving an increment to p from 0 to 1
is the process of f (η; p) varying continuously from the initial
guess f0(η) to the final solution f (η) (similar for ω(η; p),
θ(η; p) and φ(η; p)). This kind of continuous variation is
called deformation in topology so that we call system Eqs.
(14)–(18), the zeroth-order deformation equation. Next, the
mth-order deformation equations follow as

L[ fm(η) − χm fm−1(η)] = h1 R f
m(η),

L[ωm(η) − χmωm−1(η)] = h2 Rω
m(η)

L[θm(η) − χmθm−1(η)] = h3 Rθ
m(η),

L[φm(η) − χmφm−1(η)] = h4 Rφ
m(η)

(25)

with the boundary conditions

fm(0) = 0, fm(1) = 0, ωm(0) = 0, ωm(1) = 0
θm(0) = 0, θm(1) = 0, φm(0) = 0, φm(1) = 0

(26)

where

R f
m(η) = 1

1 − N
f ′′ − R f ′ + N

1 − N
ω′

+GrT

Re
θ + Grc

Re
φ − A(1 − χm) (27)

Rω
m(η) = 2 − N

m2
p

ω′′ − aj
1 − N

N
Rω′ − 2ω − f ′ (28)

Rθ
m(η) = θ ′′ − R Prθ ′ + Br

1 − N

[
m−1∑
n=0

f ′
m−1−n f ′

n

+ N (2 − N )

m2
p

m−1∑
n=0

ω′
m−1−nω′

n + 2N

( m−1∑
n=0

ωm−1−nωn

−
m−1∑
n=0

ωm−1−n f ′
n

)]
+ Df Prφ′′ (29)

Rφ
m(η) = 1

Sc
φ′′ − Rφ′ + Srθ

′′ (30)

for m being integer and

χm = 0 for m ≤ 1 = 1 for m > 1 (31)

The initial guess approximations f0(η), ω0(η), θ0(η) and
φ0(η), the linear operator L and the auxiliary parameters
h1, h2, h3 and h4 are assumed to be selected such that Eqs.
(14)–(18) have solution at each point p ∈ [0, 1] and also
with the help of Taylor’s series and due to Eq. (23); f (η; p),

ω(η; p), θ(η; p) and φ(η; p) can be expressed as

f (η; p) = f0(η) +
∞∑

m=1

fm(η)pm,

ω(η; p) = ω0(η) +
∞∑

m=1

ωm(η)pm,

θ(η; p) = θ0(η) +
∞∑

m=1

θm(η)pm,

φ(η; p) = φ0(η) +
∞∑

m=1

φm(η)pm,

(32)

in which h1, h2, h3 and h4 are chosen in such a way that the
series (32) are convergent at p = 1. Therefore we have from
(24) that

f (η) = f0(η) +
∞∑

m=1

fm(η),

ω(η) = ω0(η) +
∞∑

m=1

ωm(η),

θ(η) = θ0(η) +
∞∑

m=1

θm(η),

φ(η) = φ0(η) +
∞∑

m=1

φm(η),

(33)

We presume that the initial guesses to f , ω, θ and φ the
auxiliary linear operators L and the non-zero auxiliary para-
meters h1, h2, h3 and h4 are so properly selected that the de-
formation f (η, p), ω(η, p), θ(η, p) and φ(η, p) are smooth
enough and their mth-order derivatives with respect to p in
Eq. (33) exist and are given respectively by

fm(η) = 1
m!

∂m f (η;p)
∂pm

∣∣∣
p=0

, ωm(η) = 1
m!

∂mω(η;p)
∂pm

∣∣∣
p=0

, θm(η)

= 1
m!

∂mθ(η;p)
∂pm

∣∣∣
p=0

, φm(η) = 1
m!

∂mφ(η;p)
∂pm

∣∣∣
p=0

. It is clear that

the convergence of Taylor series at p = 1 is a prior assump-
tion, whose justification is provided Liao [17], so that the
system in (33) holds true. The formulae in (33) provide us
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Fig. 1 The h curve of a f (η), b ω(η), c θ(η), d φ(η), Df = 2.0 Sr = 0.03; N = 0.5

with a direct relationship between the initial guesses and the
exact solutions. All the effects of micropolar parameter, the
heat and mass transfer, Soret and Dufour effects, velocity and
microrotation can be studied from the exact formulas (33).
Moreover, a special emphasis should be placed here because
the mth-order deformation system (25) is a linear differential
equation system with the auxiliary linear operators L whose
fundamental solution is known.

4 Convergence of the HAM Solution

One of the chief aims of the HAM method is to produce so-
lutions that will converge in a much larger region than the

solutions obtained with traditional methods. Convergence of
the solution series depends upon the choice of initial ap-
proximations, the auxiliary linear operators and the non-zero
auxiliary parameters. By varying these parameters we can
adjust the region in which the series is convergent and the
rate at which the series converges. One of the major factors
that influences the convergence of the solution series is the
auxiliary parameters h1, h2, h3 and h4 as pointed by Liao
[15]. For this purpose, the h-curves are plotted by choosing
h1, h2, h3 and h4 in such a manner that the solutions (32)
ensure convergence [17]. Here to see the admissible values
of h1, h2, h3 and h4 the h-curves are plotted for 15th-order of
approximation in Fig. 1 by taking the values of the parameters
Re = 1, R = 2, A = 1, Br = 1.0, GrT = 0.2, Grc = 2.0,
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Fig. 2 Effect of Dufour and Soret numbers on a velocity (f), b microrotation, c temperature and d concentration for N = 0.5

Pr = 0.71, N = 0.5, a j = 0.001, mp = 1.0, Sc = 0.2,
Df = 2.0 and Sr = 0.03. It is noticed from Fig. 1a that the
range for the admissible values of h1 is −1.2 < h1 < −0.6.
From Fig. 1b, it is seen that the h-curve has a parallel line
segment that corresponds to a region −0.9 < h2 < −0.6.
Figure 1c depicts the admissible values of h3 as −1.5 < h3 <

−1.0. From Fig. 1d, it is observed that the range for the ad-
missible values of h4 is −1.15 < h4 < −0.8. A wide valid
zone is evident in these figures ensuring convergence of the
series.

To choose optimal value of auxiliary parameter, the aver-
age residual errors (see Reference [17] for more details) are
calculated at different order of approximations (m). Also,
for optimality of the convergence control parameters, rela-

tive errors [18] are calculated for different values of h in
the convergence region. It is found the series given by (32)
converge in the whole region of η when h1 = −0.9, h2 =
−0.7, h3 = −1.2, h4 = −1.0.

5 Results and Discussion

In order to investigate the effects of the different parame-
ters, the numerical values of velocity ( f ), microrotation (ω),
temperature (θ ) and the species concentrations (φ) are com-
puted by taking Pr = 0.71, Sc = 2.0, A = 1, Br = 1.0,
GrT = 0.2, Grc = 2.0, a j = 0.001, m = 1, R = 2.0 and
Re = 1. The values of Soret number Sr and Dufour num-
ber Df are chosen in such a way that their product is constant
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Fig. 3 Effect of coupling numbers on a velocity (f), b microrotation, c temperature and d concentration for Df = 0.03, Sr = 2

according to their definition provided that the mean tempera-
ture Tm is kept constant [8]. These values are used throughout
the computations, unless otherwise indicated.

Figure 2 displays the effects of Soret number Sr and Du-
four number Df on non-dimensional velocity, microrotation,
temperature and concentration for N = 0.5 and R = 2. It
is observed from Fig. 2a that the velocity of the fluid de-
creases with the decrease of Dufour number (or increase of
Soret number). Figure 2b demonstrates that the increase (de-
crease) in the value of Dufour (Soret) number increases the
microrotation in magnitude. The values of microrotation are

initially negative near the lower plate and positive near the
upper plate, showing a reverse rotation near the two bound-
aries. The reason is that the microrotation field in this region
is dominated by a small number of particles spins that are
generated by collisions with the boundary. It is noticed from
Fig. 2c that the temperature of the fluid increases with the
increase in the value of the Dufour number Df . It is clear
from Fig. 2d that the non-dimensional concentration of the
fluid decreases with the increase of Dufour number Df (or
decrease of Soret number). The Dufour number denotes the
contribution of the concentration gradients to the thermal en-
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Table 1 Effects of skin friction, heat and mass transfer coefficients for varying values of coupling, Soret, Dufour and suction/injuction Reynolds
numbers

N D f Sr R Lower plate Upper plate

f ′(0) θ ′(0) φ′(0) f ′(1) θ ′(1) φ′(1)

0.1 0.03 2.0 2.0 0.50696 0.77758 0.89527 −1.34676 1.17454 1.13649

0.3 0.03 2.0 2.0 0.43407 0.76516 0.899821 −1.0088 1.22429 1.11617

0.5 0.03 2.0 2.0 0.3399 0.749861 0.90549 −0.69148 1.27289 1.09629

0.7 0.03 2.0 2.0 0.22239 0.73134 0.91249 −0.39698 1.31898 1.07742

0.9 0.03 2.0 2.0 0.11802 0.72110 0.91595 −0.19154 1.33145 1.07432

0.4 0.03 2.0 3.0 0.33112 0.74892 0.81875 −0.88641 1.24766 1.21926

0.4 0.03 2.0 2.0 0.38983 0.75787 0.90251 −0.84740 1.24882 1.10614

0.4 0.03 2.0 1.0 0.45596 0.76770 0.99244 −0.801144 1.2524 0.99856

0.4 0.03 2.0 −1.0 0.60408 0.78779 1.19202 −0.69305 1.26719 0.80026

0.4 0.03 2.0 −2.0 0.68153 0.79669 1.30229 −0.63563 1.27776 0.70986

0.4 0.03 2.0 −3.0 0.75802 0.80402 1.41985 −0.57908 1.28962 0.62560

0.4 0.03 2.0 2.0 0.38983 0.75787 0.90251 −0.84740 1.24882 1.10614

0.4 0.06 1.0 2.0 0.38561 0.76115 0.85731 −0.84009 1.24474 1.16059

0.4 0.12 0.5 2.0 0.38355 0.77025 0.83446 −0.83652 1.23185 1.18831

0.4 2.0 0.03 2.0 0.38126 1.08063 0.81285 −0.83777 0.78031 1.21466

ergy flux in the flow. It can be seen that an increase in the
Dufour number causes a rise in the velocity and temperature
and a drop in the concentration.

The effect of coupling number on velocity, microrota-
tion, temperature and concentration is presented in Fig. 3.
The coupling number N characterizes the coupling of lin-
ear and rotational motion arising from the micromotion of
the fluid molecules. Hence N signifies the coupling between
the Newtonian (μ) and rotational viscosities (κ) and hence
0 ≤ N < 1. With a large value of N the effect of microstruc-
ture becomes significant, whereas with a small value of N the
individuality of the substructure is much less pronounced. As
κ → 0 i.e. N → 0, the micropolarity is lost and the fluid
behaves as non-polar fluid. Hence, N → 0 corresponds to
viscous fluid. It is observed from Fig. 3a that the velocity de-
creases with the increase of coupling number N . The max-
imum of velocity decreases in amplitude with an increase
of N . The velocity in case of micropolar fluid is less than
that in the viscous fluid case. It is seen from Fig. 3b that
the microrotation component decreases near the lower plate
and increases near the upper plate with increasing coupling
number N . The microrotation tends to zero as N → 0. It is
noticed from Fig.3c that the non-dimensional fluid temper-
ature decreases with increasing values of coupling number.
Hence micropolar effects behave as a coolant and are thus
effective in reducing the cooling rate and help in produc-
ing the desired temperature. It is clear from Fig. 3d that the
non-dimensional fluid concentration increases with increas-
ing values of N .

The skin friction is defined as Cf = 2τw

ρU 2
0

, where

τw = (μ + κ)
∂u

∂y
+ κΓ is the wall shear stress. Hence the

skin friction factors at the upper and lower plates, respec-
tively, are given by:

Cf1 Re =
(

2

1 − N

)
f ′(1), Cf2 Re

(
2

1 − N

)
f ′(0) (34)

The non-dimensional rate of heat-transfer, called the Nus-

selt number, is defined as Nu =
(

∂T

∂n

)
w

/(T2 − T1), where(
∂T

∂n

)
w

the temperature gradient in normal direction to the

plates. Similarly the non-dimensional rate of mass transfer,

called the Sherwood number, is defined as: Sh =
(

∂C

∂n

)
w

/(C2 − C1), where

(
∂C

∂n

)
w

denote the concentration gra-

dient in normal direction to the plates. The heat and mass
transfer rates on the two plates are given by:

Nu1 = −θ ′(0), Nu2 = −θ ′(1) and

Sh1 = −φ′(0), Sh2 = −φ′(1) (35)

The variations of f ′(0), f ′(1), θ ′(0), θ ′(1), φ′(0) and
φ′(1) which are proportional to the local skin friction coeffi-
cient, rate of heat and mass transfers at the lower and upper
plates are shown in Table 1 for different values of the cou-
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pling number, suction parameter Dufour and Soret number.
From this table it is observed that the value of skin friction
at both the plates is decreasing with the increasing values
of coupling number. The heat transfer rate decreases with
the increasing values of coupling number at the lower plate
whereas the reverse effect is observed at the upper plate. De-
crease in Soret number decreases the skin friction and mass
transfer but increases the heat transfer at the lower plate. From
these data it is seen that micropolar fluids reduce skin friction
as compared to the Newtonian fluid; this may be beneficial
in flow, temperature and concentration control of polymer
processing.

6 Conclusions

A mathematical model has been presented for incompressible
heat and mass transfer of a micropolar fluid between porous
parallel plates. The model has been transformed and rendered
into dimensionless form and solved using the approximate
analytical series solutions HAM. It is found that the velocity
decreases with an increase in micropolar parameter N. The
micropolar effects behave as a coolant and are thus effective
in reducing the cooling rate and help in producing desired
temperature. It is hoped that the present investigation of the
study of physics of flow can contribute its part for many
scientific and engineering applications and for studying more
complex geometry problems.
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